
Georgia Southern University

Georgia Southern Commons

Electronic Theses and Dissertations Jack N. Averitt College of Graduate Studies

Fall 2013

Accelerated Data Delivery Architecture
Michael L. Grecol

Follow this and additional works at: https://digitalcommons.georgiasouthern.edu/etd

 Part of the Computer and Systems Architecture Commons, Databases and Information
Systems Commons, Data Storage Systems Commons, Other Computer Sciences Commons,
Systems Architecture Commons, and the Theory and Algorithms Commons

Recommended Citation
Grecol, Michael L., "Accelerated Data Delivery Architecture" (2013). Electronic Theses and
Dissertations. 893.
https://digitalcommons.georgiasouthern.edu/etd/893

This thesis (open access) is brought to you for free and open access by the Jack N. Averitt College
of Graduate Studies at Georgia Southern Commons. It has been accepted for inclusion in Electronic
Theses and Dissertations by an authorized administrator of Georgia Southern Commons. For more
information, please contact digitalcommons@georgiasouthern.edu.

http://digitalcommons.georgiasouthern.edu/etd
http://digitalcommons.georgiasouthern.edu/etd
https://digitalcommons.georgiasouthern.edu/
https://digitalcommons.georgiasouthern.edu/etd
https://digitalcommons.georgiasouthern.edu/cogs
https://digitalcommons.georgiasouthern.edu/etd?utm_source=digitalcommons.georgiasouthern.edu%2Fetd%2F893&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/259?utm_source=digitalcommons.georgiasouthern.edu%2Fetd%2F893&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/145?utm_source=digitalcommons.georgiasouthern.edu%2Fetd%2F893&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/145?utm_source=digitalcommons.georgiasouthern.edu%2Fetd%2F893&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/261?utm_source=digitalcommons.georgiasouthern.edu%2Fetd%2F893&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/152?utm_source=digitalcommons.georgiasouthern.edu%2Fetd%2F893&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/144?utm_source=digitalcommons.georgiasouthern.edu%2Fetd%2F893&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/151?utm_source=digitalcommons.georgiasouthern.edu%2Fetd%2F893&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.georgiasouthern.edu/etd/893?utm_source=digitalcommons.georgiasouthern.edu%2Fetd%2F893&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digitalcommons@georgiasouthern.edu

ACCELERATED DATA DELIVERY ARCHITECTURE

by

MICHAEL GRECOL

(Under the Direction of Vladan Jovanovic)

ABSTRACT

This paper introduces the Accelerated Data Delivery Architecture (ADDA). ADDA

establishes a framework to distribute transactional data and control consistency to

achieve fast access to data, distributed scalability and non-blocking concurrency

control by using a clean declarative interface. It is designed to be used with web-

based business applications. This framework uses a combination of traditional

Relational Database Management System (RDBMS) combined with a distributed

Not Only SQL (NoSQL) database and a browser-based database. It uses a single

physical and conceptual database schema designed for a standard RDBMS driven

application.

The design allows the architect to assign consistency levels to entities which

determine the storage location and query methodology. The implementation of

these levels is flexible and requires no database schema changes in order to change

the level of an entity. Also, a data leasing system to enforce concurrency control

in a non-blocking manner is employed for critical data items. The system also

ensures that all data is available for query from the RDBMS server. This means

that the system can have the performance advantages of a DDBMS system and

the ACID qualities of a single-site RDBMS system without the complex design

considerations of traditional DDBMS systems.

ACCELERATED DATA DELIVERY ARCHITECTURE

by

MICHAEL GRECOL

B.S. Bellevue University, 2009

A Thesis Submitted to the Graduate Faculty of Georgia Southern University

in Partial Fulfilment of the Requirements for the Degree

MASTER OF SCIENCE

STATESBORO, GEORGIA

2013

c⃝2013

MICHAEL GRECOL

All Rights Reserved

iii

ACCELERATED DATA DELIVERY ARCHITECTURE

by

MICHAEL GRECOL

Major Professor: Vladan Jovanovic
Committee: Robert Cook

James Harris

Electronic Version Approved:
Fall 2013

iv

ACKNOWLEGEMENTS

I would like to thank Anggita Prawiranata for her on-going support, encour-

agement and editing advise which was instrumental to the completion of this re-

search. In addition, my deepest thanks go out to Dr. Vladan Jovanovic. He never

failed to respond to any request quickly and his encouragement, guidance and

wisdom was essential to my successful completion of this master’s degree.

v

Contents

Acknowledgements v

List of Tables ix

List of Figures x

1 Introduction 1

2 Background 2

3 State of the Art in Enterprise Applications 5

3.1 Database Technology . 5

3.1.1 Relational Database Management Systems 5

3.1.2 Distributed Database Management Systems 8

3.1.3 Not Only SQL . 10

3.1.4 Hybrid Database Systems . 12

3.2 Web Application Technology . 12

3.2.1 Object-Relational Mapping . 13

3.2.2 Browser Technology . 14

vi

3.3 Prefetching Technology . 14

4 Problems Current Technology 17

4.1 Problems with Database Technology 17

4.1.1 Relational Database Management System 17

4.1.2 Distributed Database Management 18

4.1.3 Not Only SQL . 19

4.1.4 Hybrid Databases . 20

4.2 Problems With Web Application Technology 21

4.2.1 Object Relational Mapping . 22

4.2.2 Browser Technology . 23

4.3 Problems with Prefetching . 24

5 Data Acceleration Architecture 32

5.1 Data Leasing System . 33

5.2 Defined Consistency Levels . 37

5.2.1 Passively Consistent . 38

5.2.2 Gradually Consistent . 39

5.2.3 Eventually Consistent . 41

5.2.4 Always Consistent . 43

5.2.5 Immediately Consistent . 44

5.3 Integration in Business Application . 47

5.4 Performance Experiments . 56

6 Conclusions 62

vii

Bibliography 65

Appendix A Browser Database Components 70

Appendix B RDBMS - NoSQL Synchronization 75

Appendix C RDBMS Update Publisher and Listener 78

viii

List of Tables

4.1 Sequence of actions for example application. 26

4.2 Screen to database table associations for test application. 27

4.3 Prefetch results for Type-Level Prefetching. 28

4.4 Prefetch results of PCCP algorithm. 30

4.5 Database pages and their corresponding records. 31

5.1 Classifications of consistency levels and their meaning. 37

ix

List of Figures

4.1 Data model of test system. 25

5.1 Example of ADDA architecture. 34

5.2 Passively consistent query. 38

5.3 Passively consistent update. 39

5.4 Gradually consistent query. 40

5.5 Gradually consistent update. 40

5.6 Gradually consistent timer elapsed. 41

5.7 Eventually consistent query. 42

5.8 Eventually consistent update. 43

5.9 Always consistent query. 43

5.10 Always consistent update. 44

5.11 Immediate consistent query. 45

5.12 Immediate consistent lock. 46

5.13 Immediate consistent update. 46

5.14 Test system data model. 48

5.15 Test system data model with consistency levels. 49

5.16 Storage meta-data included in each database location. 50

x

5.17 Update Procedure on RDBMS . 52

5.18 Example JSON data to update the browser database. 53

5.19 Synchronization Algorithm . 54

5.20 Application response time for RDBMS vs ADDA architecture. 57

5.21 Synchronization time between RDBMS and NoSql databases. 58

5.22 Time for EC and IC immediate update. 59

5.23 Application response time between RDBMS and browser database. . 60

5.24 Update time for browser database. 61

A.1 Procedure to create browser-based database update message at ap-

plication server. 71

A.2 Procedure to open browser-based database. 72

A.3 Procedure to update browser-based database. 72

A.4 Procedure to send browser-based database metadata to application

server. 72

A.5 Procedure to lookup a tuple from browser-based database and re-

place the text with the query results. 73

A.6 Example JSF code to present keys in document for browser-based

database to lookup. 74

B.1 Procedure to synchronized RDBMS and NoSQL at startup. 76

B.2 Component to synchronize NoSQL using timestamps. 77

C.1 Trigger to send update message to application during update. 79

C.2 Procedure to receive update message from RDBMS. 80

xi

C.3 Procedure to synchronize NoSQL based on received update message. 81

xii

Chapter 1

Introduction

This paper presents a single solution to the shortcomings of business applications

in the form of an application architecture that improves data access. This solution,

named ”Accelerated Data Delivery Architecture” is a set of standards and com-

ponents which employ a Hybrid RDBMS and NOSQL system to reduce RDBMS

load, make applications more responsive, better control concurrent access and tai-

lor data access to the individual user’s needs based on their business responsibility.

In Chapter 2, relevant background information is introduced which will allow

a more detailed understanding of the problems. Chapter 3 presents the current

state of the art of the areas which the system improves. Chapter 4 introduces these

problems in more detail. Chapter 5 explains the architecture, how it works and test

data which proves it effectiveness in all of these areas. In Chapter 6, conclusions

are made based on the details presented in Chapter 5.

1

Chapter 2

Background

Business applications are computer programs used by business users to help them

perform business functions. The idea behind business applications was to maxi-

mize profits by cutting costs associated with repetitive labor intensive operations

which can be done proficiently with a computer. This concept was a success be-

cause a single computer can replace hundreds of workers doing repetitive tasks.

In the early days of computing, business applications took the form of mainframes

and dumb terminals. In this architecture all of the processing was done on one cen-

tralized mainframe while each terminal served as merely input/output devices.

The weakness of this architecture was that the terminals did not allow users to

do any kind of data processing other than what was programmed on the main-

frame which means that the mainframe controlled all parts of the application from

database connectivity to user presentation.

As technologies improved, personal computers became available. The main-

frame architecture was replaced with Client-Server technology. This took the form

2

of thick client applications on the PC’s connected directly to database servers. It

was a great leap forward as users were able to use their computers to process data

locally and still had access to a centralized system. Now, presentation and local

processing was done on the user’s PC while the data storage took place on the

database server.

Client Server technology had severe limitations in terms of scalability and com-

patibility. The database server’s can only handle so many connections from clients

before being overloaded. Additionally, these systems were plagued with compati-

bility problems as any change in programming meant that every client would have

to have their application upgraded. This led to undesirable outcomes as clients ac-

cessed the same database with different versions of the application.

After the advent of the Internet, which brought the availability of web browsers,

business applications took the form of internal web applications using a 3-tier ar-

chitecture, presentation, business and data tiers[16, 20]. This solved the problems

of scalability and compatibility; however, web browsers ability to interact with

users was limited. With the advent of Web 2.0 Rich Internet Applications (RIA) be-

came possible which allowed web applications to behave more like desktop appli-

cations [17]. These improvements were used in business applications to improve

the efficiency in which users interacted with computers.

Throughout the these revolutions, the Relational Database Management Sys-

tem (RDBMS) has been the mainstay of data storage [35]. This is mainly due to its

qualities which provide Atomicity, Concurrency, Isolation and Durability (ACID).

This means that the RDBMS can be used with any application and guarantees are

in place to ensure the accuracy of data. In order to attain improvements in scala-

3

bility beyond the solitary RDBMS system, Distributed Database Management Sys-

tems (DDBMS) have to be employed. The DDBMS system is a database system

which can store data across more than one computer [37]. The downside to this is

increased complexity and high costs.

Because web applications are based on stateless HTTP protocol, it is dangerous

to open a connection to the database longer than a single request [10]. To overcome

this, modern web applications only make database connections long enough to

retrieve data. Once the data is retrieved, the connection is closed. This is because

a user can log off without notice leaving transactions open indefinitely.

4

Chapter 3

State of the Art in Enterprise

Applications

3.1 Database Technology

3.1.1 Relational Database Management Systems

In 1970 E.F. Codd wrote the paper ”A Relational Model of Data for Large Shared

Data Banks” [14]. His paper proposed storing data utilizing the mathematical

concept of relations. This was the birth of the modern Relational Database Man-

agement System (RDBMS). His paper addressed a successful storage paradigm;

however, modern RDBMS’s offer many more services beyond data storage and re-

trieval. These services include a system catalog, transaction support, concurrency

control, recovery services, authorization services, communication services and in-

tegrity services among others.

The modern RDBMS exhibits behaviors of Atomicity, Consistency, Isolation

5

and Durability (ACID) [36, 22, 25]. Each one of these properties is essential to

successful implementation of business applications. Below each one of these prop-

erties will be explained in more detail.

Atomicity refers to the concept of a transaction. Either all operations within a

transaction will complete or none of them will. This is referred to as commit or roll-

back state of a transaction. For example, if one operation in the transaction expe-

riences an unexpected failure, the transaction may be rolled back. This means that

changes in state which occurred before the failure will be reversed. Conversely, if

all operations succeed, the transaction may be committed. This means that all of

the changes in state that were part of the transaction will be permanent.

Consistency is a guarantee that the database will be in a consistent state. When

a transaction begins, data consistency rules will be satisfied and when the transac-

tion ends, data will also meet the databases consistency rules.

Isolation guarantees that the transaction will behave as if it is the only operation

being performed. This means that transactions cannot interfere with the changes

being made to data items in other transactions.

Durability is the property that guarantees that when a transaction completes,

the operations in the transaction cannot be reversed. This property also refers to

the database being able to withstand failures and still retain the committed data.

In order for an RDBMS to have acceptable performance, concurrent transac-

tions must be allowed to process. The problem is that concurrent transactions can

have undesirable results if not controlled properly. Kim, et al. has provided a

taxonomy of dirty data which expands on some of these dangers [30]. Improper

transaction management can result in four types of dirty data:

6

1. Lost update

2. Dirty read

3. Unrepeatable read

4. Lost transactions

A lost update is when two transactions update the same piece of data one after

another known as a ww conflict. The result is that the first update becomes over-

written by the second update. A dirty read happens when transaction one reads

data that was changed but not committed by transaction two known as a wr con-

flict. If transaction two later rolls back, then transaction one’s updated data was

based on inaccurate values. An unrepeatable read is when transaction two writes

data after transaction one reads it also known as a rw conflict. If transaction one

later updates the data it will be based on inaccurate values [37]. A lost transaction

is when a system failure happens before a transaction is committed. The durable

property guarantees that once a database transaction is committed it becomes per-

manent, but it is possible that transactions are lost before they commit [30].

In the forty plus years of RDBMS research, many transaction models have been

proposed. Dr. C. Mohan has surveyed some of these advanced transaction mod-

els. The most popular of these transaction models is the traditional ACID model

which is based on serializablity [34, 37]. Although there is a multitude of transac-

tion models, most of them are based on long-lived transactions outside the scope

of the database server. Microsoft allows the administrator to choose either op-

timistic or pessimistic concurrency control in their SQL Server 2008 R2 product.

7

Additionally, the server allows for setting of various isolation levels from read

uncommited which allows for dirty reads to serializable which ensures no transac-

tional interference. The read uncommitted setting is the fastest as it allows for full

parallel operation. On the other hand, serializable transactions must collect and

order transactions so as to avoid any interference.

3.1.2 Distributed Database Management Systems

Distributed Database Management Systems (DDBMS) are defined as database man-

agement systems which can store data across more than one computer [37]. DDBMS’s

may consist of a collection of RDBMS’s or other DBMS’s known as clusters.

DDBMS’s usually have the property of location transparency which means that

the user who is executing queries does not need to know the location of the data.

The system acts as if it is a single logical system. In a DDBMS, tables may be

partitioned or replicated. Tables may be partitioned horizontally, vertically or both

depending on design. The design of the system is a very complex operation as it’s

aim is to ensure high read performance by strategically locating data where it is

needed.

Traditional DDBMS’s may offer the same ACID guarantees of single-site RDBMS’s.

The most popular technique to maintain consistency is two phase locking (2PL)

[18]. In this approach, there are two phases, the growing phase and shrinking

phase. In the growing phase, the transaction acquires locks but does not release

any lock until all of the its requested locks have been granted. After all of the locks

have been granted, the shrinking phase will begin to release locks. In order for this

8

to work in a distributed environment, a common interface has to be put into place.

The eXtended Architecture (XA) published by X/Open group is a standard for

global transactions that has been implemented by most major commercial database

systems [2]. This standard defines the three components of distributed transaction

processing as:

1. The application program which defines the transaction boundaries.

2. Resource managers which are databases or other data sources.

3. Transaction manager which monitors transactions and takes responsibility

for transaction completion and failure.

In distributed transactions with 2PL, a data item may be locked while the trans-

action has already moved to another site to lock additional items needed for the

transaction.

Distributed deadlock management can take the form of deadlock prevention,

deadlock avoidance and deadlock detection and removal [37]. Although a multi-

tude of deadlock management algorithms has been proposed, mainly detection

and removal has been implemented in commercial software. Microsoft’s SQL

Server 2008 R2 and Oracle 11g both use deadlock detection and removal to handle

deadlocks as do many DDBMS implementations [8, 3, 37]. This scheme requires

that a deadlock detector is running on at least one machine to poll all of the dis-

tributed servers and detect possible deadlocks.

One special feature of DDBMS’s is replication. Replication is used in DDBMS’s

to increase performance by allowing maximum parallelism on data read opera-

9

tions by locating the same data on several different sites at the same time[37]. Hav-

ing many locations of the same data is a risk to the ACID guarantees of the data. In

order to ensure the ACID guarantees, all replicated sites must be updated on ev-

ery update before the update is committed. Generally, mechanisms like majority

voting or circulating tokens are used to avoid deadlocks and ensure synchronized

updates of all replicas [37].

3.1.3 Not Only SQL

Modern application environments require very responsive database systems to

drive their performance. After many years of relational RDBMS dominance, the

state of the art in performance is changing toward distributed database systems.

Dr. Eric Brewer has proposed that distributed systems can at most have only two

of the three properties of Consistency, Availability and Partition tolerance (CAP)

this is known as CAP theorem [12]. This was seen as a loosening of the restric-

tions of ACID guarantees and has led to the develop of Not Only SQL (NoSQL)

database systems. These are fast, highly distributed systems designed for quick

access to data.

NoSQL systems subscribe to the Basically Available Soft-state Eventual con-

sistency (BASE) concept of consistency control [36]. BASE-oriented consistency

control accepts out of date data in exchange for the advantages of distributing

data. This data will eventually be consistent according to the BASE model. Many

different types of NoSQL systems have been implemented. NoSQL databases of-

fer much higher throughput than traditional RDBMS’s [39]. Additionally, these

10

databases are designed to run well on less expensive hardware [39]. Cattell classi-

fies these new database systems as three types, namely [13]:

1. Key-value stores

2. Document stores

3. Extensible record stores

Key-value stores are the simplest type of NoSQL database. These databases

use an indexed key to refer to the location of a piece of data [13]. Document stores

are the next level of complexity which store indexed documents. These systems

can store many types of documents, can have multiple indices’s and have more

robust query functionality than key-value stores. Extensible data stores, based on

Google’s Big Table, utilize a row/column data store with the ability to store rows

and columns over different locations [13].

MongoDB is an open source NoSQL document data store. This database does

not respond to SQL queries but offers much of the functionality of SQL through

its robust query interface [4]. Instead of using the SQL language, MongoDB uses a

combination of query commands and Binary Java Script Object Notation (BSON)

[1] which is a schema-less compact serialized interchange format. This allows the

database to have rich query functionality. Additionally, MongoDB offers aggrega-

tion, sharding and replication services[4].

11

3.1.4 Hybrid Database Systems

Hybrid databases is a concept that may solve the combined needs of performance

and consistency. Current research on hybrid database systems is mainly limited

to a mixture of in-memory to RDBMS database systems such as SAP’s HANA

database [24, 19, 38]. Hybrid Databases have existed since the mid 1990’s with

WebDNA’s hybrid in-memory - RDBMS solution [28]. Additionally, hybrid NoSQL

- RDBMS systems are beginning to emerge; which currently are limited to cloud

services or experimental designs [9].

3.2 Web Application Technology

Web-based business applications are often arranged in three-tiers [16, 20]. The first

tier is the presentation tier, the second is the business logic tier and the third is the

data tier. Each tier represents a physical site. For example, the presentation tier is

the web browser, while the business logic tier is the application server and the data

tier is the RDBMS. This allows for the application to be distributed, thus optimized

performance.

The connection between the presentation tier and the business logic tier is HTTP

protocol run over internal or external networks. This allows for reliable commu-

nication of content to and from the browser. Communication to and from the data

tier usually consists of some form of TCP/IP communication.

A leading design architecture is N-Layer architecture. In this architectural style,

layers are used as logical divisors of components [16]. Each layer has separate

responsibilities and changes to one part should minimally impact another part.

12

This promotes a flexible environment where a layer’s physical location can change

with less effort and maintainability is improved[16].

N-Layered architecture consists of several layers such as presentation, applica-

tion, business, infrastructure and data persistence layers. Each layer has a specific

function to perform. Each layer works together beginning and terminating at the

presentation layer. In order to process a transaction each layer has to be trans-

versed to ensure predictable execution paths which aid in design, implementation

and maintenance.

3.2.1 Object-Relational Mapping

Object Relational Mapping (ORM) systems are application components which adapt

relational database objects with programming language objects. These systems

provide methods in which objects may be read or written to the database sys-

tem through manipulation of in-memory objects. Two popular ORM systems are

Java Persistence Architecture and ADO.NET Entity Framework [10]. In modern

transactional applications, ORM is the standard for database retrieval and manip-

ulation. Modern application architectures are designed around using this as the

primary data access method.

ORM systems are designed to make the application RDBMS vendor transparent

to the developer. This gives the enterprise the ability to change RDBMS vendors

of the application. In other words, if a system is built with ORM technology, one

may migrate the application to a different database vendor with very little pro-

gramming changes.

13

3.2.2 Browser Technology

The standard display component in modern applications is the web-browser. Web

Browser technology has traditionally been based on Hyper Text Markup Language

(HTML) and Javascript. HTML has undergone five major version changes since its

inception. The current standard, HTML5, allows for a number of new features that

are helping to drive highly responsive application systems [7]. Firstly, HTML5 im-

proves interactive behavior through native support of new media types. Addition-

ally, HTML5 sets out a standard for a browser-based database system known as

indexeddb. Indexeddb is a NoSQL key-value datastore which allows the browser

to persist data in the browser environment. The browser can execute queries and

update data through Javascript running in the browser.

Additionally, the V8 Javascript engine which is now available in many browsers

offers performance advantages over older Javascript engines [6]. HTML5 and V8

represent significant advancements in browser technology. They have the poten-

tial to transform the browser from a display platform to a computing platform.

3.3 Prefetching Technology

Prefetching has been used to decrease latency time in a multitude of environments.

In a study of prefetching low-level instructions, [32] found that the overhead of

prefetching instructions was minimal compared to the gain. Similarly to our ap-

plication, operating systems also use predictive prefetching to make the system

more responsive. Microsoft windows Vista and above use a system called Super-

Fetch which analyzes memory usage patterns and preemptively loads memory

14

based on past history [5]. This will be accomplished through the use of analytics to

predict user actions before they happen. Prefetching methods may be classified in

dimensions of either prediction engine used and granularity of prediction. There

are four known types of prediction engines: strategy-based, structure-based, hint-

based and context-model based [21]. Strategy-based methods used explicitly pro-

grammed strategies to determine what to prefetch. This method prefetches based

on explicitly defined groups contexts. Structure-based prefetching uses relation-

ships or other structural information to determine what to prefetch. Hint-based

algorithms use hints provided by the application like access patterns. Context-

model-based prefetching uses preceding events to predict the next event[27].

Khemmarat et al. proposed context-model-based prefetching to decrease the

latency of retrieving user uploaded videos[29]. They did this by identifying which

video should be prefetched and how much of that video. In their case, the related

video list and search result list was used to predict the user’s next action.

Han et al. has proposed using type-level access patterns to prefetch data in a

ORDBMS [26]. This model uses the concept of prefetching objects as opposed to

disk pages based on navigational paths of objects. This is accomplished by using

type-level access locality and type-level path to predict the next object to be re-

trieved. In other words, lists or recursive data elements embedded into ORDBMS

objects are prefetched based on predictions.

He et al. proposes a path and cache conscious model called PCCP [27]. This

model uses both database page and object access to make predictions and prefetch

at the database page level. Similarly to the type-level path, statistics are used to

keep statistics on object access which is used to predict the next database page to

15

be retrieved. It introduces the concept of cache consciousness where if a certain

page has the probability of already being in memory it is not prefetched. This al-

lows it to prefetch a database page far in advance based on a small navigational

sample. It uses feature point selection to determine the drivers of the navigational

path. In this prefetching scheme the calculated navigational path is used to pre-

dict and prefetch database pages. This method uses training data to calculate the

navigational paths in advance. The term cache concious refers to using histori-

cal training data to determine which pages will always be resident in the cache or

not. These pages are marked as resident or non-resident and allow the prefetching

system prefetch data earlier.

16

Chapter 4

Problems Current Technology

4.1 Problems with Database Technology

4.1.1 Relational Database Management System

As mentioned in 3.1.1, RDBMS systems are sensitive to concurrent transactions.

To maintain ACID properties, transactions must be executed in serialized order.

Industrial strength RDBMS systems allow for setting the isolation level which is

defined as the degree in which a transaction may interact with other transactions

[15]. At one extreme, isolation levels allow a transaction to read uncommitted data.

This gives the system high performance; however, it introduces the dangers of

dirty data discussed in 3.1.1. At the other extreme, transactions can only execute in

serializable order. Serializability is ordering transactions so they are equivalent to

a serial schedule[37]. This is required to maintain the ACID properties discussed in

3.1.1. The weakness in this isolation level is that resources are consumed to check

serializability and the it limits the amount of parallel operation that the server can

17

perform [3, 37].

In addition to this, the cost of licensing a RDBMS system is very high. This

causes the enterprise to load multiple applications on a single RDBMS server to

maximize utilization of that resource. The effect of this loading is that the perfor-

mance of each application decreases as the RDBMS becomes loaded down. This

introduces an enigma for architects, how to maximize the RDBMS utilization and

still have responsive applications.

4.1.2 Distributed Database Management

Section 3.1.2 introduced DDBMS systems. One way to increase the performance of

an RDBMS is the distribute data to a cluster of RDBMS’s into a DDBMS. DDBMS

systems require a number of components to ensure ACID compliance. Each of

these components uses resources and some require a separate server. This in-

creases the complexity of a system. Assuming a DDBMS may be a series system

in which data objects only exist at one location at a time, reliability of a system

can be calculated as seen in Equation 4.1 [11]. Let QS be the unreliability of the

system while Ri be the reliability of a component in that system. It is easy to see

that having more components make s system more unreliable. To counteract this

issue, components will have to be put in parallel as redundancy [11]. This means

that hardware must be purchased, configured and maintained.

QS = 1−
n

∏
i=1

Ri (4.1)

18

In addition to the basic problem of reliability, new dangers of deadlocks are

introduced in DDBMS systems. As transactions are executed across many sites, it

is possible that a transaction is open on one site while the transaction has moved to

another site to complete work. This greatly increases the likelihood of a deadlock

occurring. Additionally, if a site goes down while a distributed transaction is in

process, it can block other processes from resources. Therefore, deadlock detection

systems must be put into place as seen in 3.1.2.

The downside to all of this increased complexity is increased cost and risk. As

the complexity increases, so does the cost of equipment, maintenance and licens-

ing.

4.1.3 Not Only SQL

NoSQL systems as described in 3.1.3 offer many performance advantages of the

traditionally DDBMS systems as described in 3.1.2. However, the key driver of this

increased performance is the fact that these systems do not have traditional ACID

properties. This is a problem for most business application as a key requirement

of the DBMS are the ACID properties themselves.

NoSQL databases do not offer the full functionality of a RDBMS database. For

example, MongoDb is a BSON document datastore which means that data is stored

and processed as BSON documents, not relations [4]. Therefore, joins are not na-

tively supported. Unlike RDBMS tuples, a BSON document may include objects

and arrays [1]. This means that NoSQL databases violate Codd’s 1st Normal Form

(1NF) [14] because an attribute can contain more than one single value.

19

In NoSQL databases, an attribute can contain an array or an object or even an

array of objects. This is useful for high performance as expensive joins are avoided

and related data may be stored in a single document. While not adhering to 1NF

increases flexibility and speed, it opens up the possibility of update anomalies.

Therefore, to update related data, one would have to find all objects which include

the subject data and update them as well. On the other side, data in Cod’s 3rd Nor-

mal Form, the standard for relational data, suffers from difficulties in representing

data accurate to transactional time as referenced in [31]. NoSQL databases do not

suffer from that because updated reference data is only updated at a point of time

forward unless older objects are explicitly modified.

This is very significant because in order to build an application to be used with

a NoSQL database system, one must consider these design aspects at the beginning

of the project and have a solid commitment to this technology. Each component

would have to be built around violating 1NF which means that the DBMS cannot

be changed to a RDBMS without a complete system redesign.

4.1.4 Hybrid Databases

Section 3.1.4 introduced several type of hybrid database systems. These databases

systems have potential to solve the RDBMS performance problems; however these

are not practical for business appplications. For example, in-memory databases

require specialized hardware which may not be an acceptable cost for the enter-

prise. Additionally, hybrid NoSQL - RDBMS systems are currently are limited to

cloud services or experimental designs, not hybrid architectures to be used with

20

industrial strength RDBMS systems like SQL Server or Oracle database [9]. En-

terprises require proven technologies to be used with critical data. Risking critical

data with experimental technology or DBMS’s without a demonstrated history of

reliability will be unacceptable to the design requirements of many business appli-

cations. Furthermore, maintaining experimental systems in a time-critical manner

will not be possible as IT staff would need experience in such systems to keep them

running well.

4.2 Problems With Web Application Technology

As mentioned in 3.2, web applications run off a disconnected database model. This

means a connection is made to the database long enough to retrieve data. Once the

data is retrieved, the connection is closed. With this model, even with ACID guar-

antees at the database level, there is no guarantee that the data is current once it is

loaded from the application. The traditional method of ensuring data is valid is to

leave a transaction open when the data is retrieved, that is not an option in mod-

ern applications[10]. Transactions take up valuable database resources this would

severely limit the number of users in the system. Additionally, the stateless nature

of HTTP means that users could disconnect from the application without notice

leaving transactions open indefinitely. Since concurrency is only controlled within

the database itself and not at the application level, applications rely on frequent

polling to detect changes in data. This leads to unnecessary database loading. Lin,

et al. proposed database replication to move data closer to the user and reduce

loading of the main RDBMS [33]. This greatly increases the expense database li-

21

censing.

N-Layer design which was introduced in 3.2 meets the needs for business ap-

plications that can benefit from distributed components. However, no standard-

ized way of using more than one database system has been proposed as a part of

N-Layer design.

Applications use the database for a varied number of requirements such as crit-

ical business data, reference data and application configuration settings. Current

designs are systems-centric meaning they typically look inward at the system de-

sign and components. This being the case, architectures of the day with a system-

centric view do not explicitly define how storage should be handled for the varied

uses of the data. The next level of design methodology should look beyond the

system to the ontological aspects of the data and make design decisions based on

the true meaning, requirements and value of the data.

4.2.1 Object Relational Mapping

The problem with ORM systems as described in 3.2.1 is the loss of control on the

exact data manipulation statements that are sent to the DBMS. This is particularly

problematic with update transactions. Depending on the implementation of the

ORM system, only changed attributes may be updated or entire objects. This loss

of update statement control coupled with the problem of concurrency control men-

tioned in 4.2 may lead to concurrently updated data being lost. The default con-

currency control for ORM systems is optimistic concurrency in Last Writer Wins

(LWW) fashion [40]. This poses a problem when two updates are executed on the

22

same object. Due to the fact that ORM frameworks may update an entire object at

once, there is a danger of loosing updated attributes. This happens when updates

are performed on two different attributes of the same parent object. Although the

two attributes are not in conflict, but their parent object are subject to WW con-

flicts defined in 3.1.1. This results in non-conflicting data from first transaction

being lost.

The lack of control may lead to performance problems as well. Since the de-

veloper has no control over the actual language sent to the RDBMS, the ORM sys-

tem may not send fully optimized queries. Developers may be able to develop

advanced query methods which are intended to increase performance; however,

these may be specifically written to a vendor-specific RDBMS which nullifies the

ORM’s advantage of database vendor transparency mentioned in 3.2.1.

4.2.2 Browser Technology

Despite the advances in browser technology, the web browser still works on a state-

less protocol. This, coupled with the disconnected database model mentioned in

4.2, browser-based applications subject data to concurrency anomalies.

Additionally, browser-based database systems use has not been standardized

in applications. Due to the larger problem of system-centric design against onto-

logical value of data seen in 4.2, architects are ill prepared to use web browsers

in a standardized way. This has caused the browser-based database system to be

under utilized in practice.

23

4.3 Problems with Prefetching

The drawback to type-level prefetching mentioned in 3.3 is that prefetching is lim-

ited to type-level access locality which may not be the user’s next activity. If the

next action does not have type-level access locality, the system will not prefetch ac-

curately. Also, since it is not user conscious, it is not able to discern requests from

multiple users.

He et al.’s proposal is designed to work well when there are repetitive patterns

of database access within an application. It may not be effective for multiple users

requesting different pieces of data concurrently. Additionally, when users retrieve

a new object on every request, this model may not prefetch these new objects.

Enterprise web applications differ from consumer internet applications as their

usage is based on individual’s work process. Meaning, that each person concur-

rently working in the system may be viewing and updating different parts of the

database based on area of responsibility. For example, some users manage data by

account and others by time period. This paper’s contribution is geared specifically

towards enterprise web applications; therefore, the examples and scientific proof

given applies to specifically to these applications.

In this section we will present an example of an enterprise web application. A

simplified data model for this application can be seen in Figure 4.1. Let’s assume,

for the sake of this example, that there are two concurrent users at the time of

the analysis. User A is a shipping department user who’s function is to view the

orders, prepare packages for shipping and enter shipping information into the sys-

tem. User B is an accounting user who’s function is to update the payment status

24

of statements and invoices. To illustrate the efficacy of each prefetching concept

lets assume that each database page holds five rows of data and the pages hold

rows sequentially in order of the id column. An example of the user’s actions in

the system are listed in Table 4.1. Each one of these user actions are accompanied

by queries to several tables in the database and rendering the HTML response to

the browser. Using this scenario, we can project the efficacy of the two prefetching

schemas.

Person Company

Orders

OrderDetail

Statement

Payment

CompanyType

CreditTerm

PersonType

PaymentType

ProductTaxType

State

Country

Figure 4.1: Data model of test system.

Next is an analysis of Han et al.’s Type-Level access pattern concept using the

user activity provided in Table 4.1. Additionally, each user screen is associated

25

Table 4.1: Sequence of actions for example application.

Transaction User A Action User B Action
1 Login
2 Login
3 Load Portal Screen
4 Load Portal Screen
5 Open Accounting List
6 Open Shipping List
7 Open Statement #10
8 Open Order #100
9 Update Statement #10
10 Open Order #101
11 Open Accounting List
12 Open Shipping List
13 Open Statement #18
14 Open Order #102

with one or more database entities from Figure 4.1 these associations are listed in

Table 4.2. For this analysis, lets assume that the Type-Level Paths have already

been generated. A table of transactions and the prefetching algorithms perfor-

mance is listed in Table 4.3.

Starting at transation 1, the navigational root is the Login screen. When this is

accessed, the algorithm will follow the navigational path, but there is no person or

company object being queried until the person actually logs on. Once the user logs

on, the user’s company will be put into cache. Then, the portal screen is opened

on transactions 3 and 4. The portal page contains links to work lists and news. The

system has not loaded any objects from the ORDBMS, only statistics and news;

therefore, no prefetching activities have happened. On transaction numbers 5 and

11 the accounting list is loaded from the database. When these screens are loaded,

the prefetching algorithm loads all of the associated payments, invoices and com-

26

panies related to the records listed on the screen. Concurrently, the shipping list is

loaded from the database on transaction 6 by User B. This causes all of the ship-

ments, packages and carriers to be prefetched into the cache. This prefetch does not

cache any data because at this time, there are no shipments, packages or carriers

attached to the order. The same pattern repeats itself on subsequent transactions.

Therefore, we can conclude that this algorithm will not prefetch any of the work-

lists nor the objects within the worklists; however, the data related to the those

objects will be fetched. This should improve the application slightly; however,

since an enterprise application is based heavily on worklists, the improvement is

less than optimal. Additionally, no facility is made with this prefetching algorithm

concerning concurrency and outdated data in the cache. This violates the ACID

contract as blind write (WW) inconsistencies may occur as defined in 3.1.1.

Table 4.2: Screen to database table associations for test application.

Screen Name Database Tables
Login Person, Company
Portal Person, Company, Statements, Orders
Accounting List Statements
Statement Record Statements, Payments, Invoice, Company
Shipping List Orders, Shipment
Order Record Orders, Shipment, Packages, Carriers

Applying the concepts of PCCP to the same example, the predicted prefetch

results were determined in Table 4.4 and a reference of database pages is pro-

vided for in Table 4.5. The PCCP algorithm assumes that carriers, person and

company are always in memory; therefore, they are marked as resident and not

prefetched. We also assume that the PCCP algorithm prefetches pages that relate

27

Table 4.3: Prefetch results for Type-Level Prefetching.

Sequence Prefetch Action Database Action
1 +Company Q:Person Object.
2 +Company Q:Person Object.
3 ∅ Q:News
4 ∅ Q:News
5 +Payments, Invoices, Companies Q:Statements
6 +Shipment, Packages, Carriers (NULL) Q:Orders
7 Q:Payments, Invoices, Companies Q:Statement
8 Q:Shipments, Packages, Carriers Q:Order
9 ∅ U:Statement
10 Q:Shipments, Packages, Carriers Q:Order
11 +Payments, Invoices, Companies Q:Statements
12 +Shipment, Packages, Carriers (NULL) Q:Orders
13 Q:Payments, Invoices, Companies Q:Statement
14 Q:Shipments, Packages, Carriers Q:Order

to the id’s that were retrieved in the access path. Beginning with transactions 1,

2, 3 and 4, the PCCP algorithm does not prefetch any data because the algorithm

cannot determine the user’s access path because different users access different

parts of the program depending on their job function. When user A’s action causes

the database to query statements for the accounting list, the algorithm sees the

combination of orders→statements and prefetches the payments entity because

previous users fetched payments directly after looking at statements. As seen in

transaction 5, Page 20 of the payments entity is put into the cache. On transac-

tion 6, user B opens the shipment list, the PCCP algorithm sees the sequence of

statements→orders, shipments, from the combination of transaction 5 and trans-

action 6. Since the combination of statements→orders usually results in a query

of invoices, the PCCP algorithm prefetches page 20 of invoices corresponding to

records 96-100. In transaction 7, user A opens the statement 10, the PCCP algo-

28

rithm sees the combination of orders, shipment→statements, payments, invoice

and prefetches page 2 and 20 of packages. In Transaction 8, user B opens order 100,

the PCCP algorithm sees the navigation of statement, payment, invoice→orders,

shipment, packages, carriers. This navigational path does not have any training

data, therefore it does not prefetch any data. The packages entity for order 100 is

already in the cache, so the algorithm uses the cache data for this. Transaction 9 is

an update, so no data is prefetched. In transaction 10, user B opens order 101 which

is not in the cache and it has no navigational path to evaluate since the last state-

ment was a prefetch; therefore, no prefetch operations take place. In Transaction

11, order 101 is opened, the algorithm sees the combination of orders, shipments,

packages→statements the PCCP algorithm prefetches pages 20 of invoices because

the it correlates to shipment 101 and the accounting list. Transaction 12 is essen-

tially the same as transaction 6; therefore, the same result applies. Transaction 13

loads pages 4 and 21 of the packages entity because statement 18 exists on page

4 and the latest shipping list now is page 21. Transaction 14 finds the packages

entity that it needs is in the cache while the remainder of items is queried from the

database.

These prefetching algorithms are effective for many systems in which access

patterns are predictable; however, in an enterprise’s operational systems where

each user’s access patterns are unique they cannot predict operations at the database

or application level. Since several user’s actions are interleaved prediction without

user awareness can result in less than optimal prefetching. Additionally, prefetch-

ing schemes have a very limited time frame in which to calculate predictions and

retrieve data. Additionally, memory resources are always limited. Using mem-

29

Table 4.4: Prefetch results of PCCP algorithm.

Sequence Prefetch Action Database Action
1 ∅ Q:Person Object.
2 ∅ Q:Person Object.
3 ∅ Q:News
4 ∅ Q:News
5 +Payments-Page20 Q:Statements
6 +Invoices-Page20 Q:Orders, Shipment
7 +Packages-Page2,20 Q:Statement,Payments, Invoices, Companies
8 Q:Packages Q: Carriers, Order, Shipments
9 ∅ U:Statement
10 ∅ Q:Order,Shipments, Packages, Carriers
11 +Invoices-Page20 Q:Statements
12 +Invoices-Page20 Q:Orders, Shipment
13 +Packages-Page4,21 Q:Statement,Payments, Invoices, Companies
14 Q:Packages Q:Order,Shipments,Carriers

ory as a cache may lead to wasted resources or cache misses meaning an object is

expelled from the cache just before it is actually needed.

30

Table 4.5: Database pages and their corresponding records.

Database Page Records
Page1 1-5
Page2 6-10
Page3 11-15
Page4 16-20
Page5 21-25
Page6 26-30
Page7 31-35
Page8 36-40
Page9 41-45
Page10 46-50
Page11 51-55
Page12 56-60
Page13 61-65
Page14 66-70
Page15 71-75
Page16 76-80
Page17 81-85
Page18 86-90
Page19 91-95
Page20 96-100
Page21 101-105

31

Chapter 5

Data Acceleration Architecture

In order to achieve the consistency of a traditional RDBMS coupled with the per-

formance advantages of a NoSQL DBMS, this paper proposes an application archi-

tecture as middleware to distribute data between an industrial strength RDBMS

and a cutting-edge NoSQL system. To demonstrate the idea (proof of concept) we

use Microsoft’s SQL Server as our RDBMS which is a proven industrial strength

RDBMS solving reliability and maintenance issues in 4.1.4.The system also uses

MongoDB as our NoSQL database and the chosen middleware architecture is the

J2EE framework.

The ADDA architecture has two main concepts which drive the design, namely

the Defined Consistency Levels and Data Leasing System. These two concepts al-

low for an application to be developed independently as a standard three-tier de-

sign as defined in 3.2 and later ported to a distributed data implementation. It

gives the architect flexibility to define objects in different ways to meet the require-

ments of the business thus making design decisions based on the requirements,

32

meaning and value of data as mentioned in 4.2. These two concepts are explained

below.

1. Data Leasing System. For entities which require high consistency level a tight

contract between application and a database is needed to ensure that the ap-

plication always has the most recent data. Having a leasing system which

ensures the freshness of the data and manages the access carefully allows

reduces polling and increases control of critical data items helping to solve

concurrency issued defined in 4.2. This reduces the risk of WR and WW inter-

ference mentioned in 3.1.1. Additionally, entities of lower consistency level

are routed through the leasing system which manages the storage location

and currency of the data.

2. Defined Consistency Levels. Not all entities in a database require stringent

ACID requirements. As such, certain entities may be distributed safely. Defin-

ing the required consistency levels for entities is the precursor to the archi-

tectural framework that this paper proposes. Once this is defined, certain

data entities can achieve the performance advantages of distribution based

on their consistency level.

5.1 Data Leasing System

The topology of the ADDA system consists of the three tiers much like the stan-

dard web application architecture [16, 20]. However the difference lies in the use of

several data stores. ADDA utilizes a NoSQL datastore at the application tier which

33

may also be moved to a forth tier but we leave this for future elaboration. Addi-

tionally, it utilizes the browser-based database consistent with the newest browser

based technology, HTML5, at the client tier. Figure 5.1 shows the internal compo-

nents of the ADDA system with the presentation tier at the top, the business logic

tier in the middle and the data tier at the bottom.

Browser

Database

Browser

Application

Server

NOSQL

Database

Server

RDBMS

Data

Leasing

System

Update

Publisher

Update

Processor

Realtime

System

Broadcast

Updates

Updates

Browser DB

Updates

Query/Update

Message Queue

Queries

Query/Update

HTTP Request

/ Response

Query/Update

Update /

Status

Tier

1

2

3

Figure 5.1: Example of ADDA architecture.

The main component in the ADDA system is the data leasing system. It is the

central component which includes the logic for all data operations. One function

of this component is to route queries and updates to the correct data store. When a

query is issued to the data leasing system, it reads the requested item’s consistency

34

level and retrieves the data from the correct data source. If the data source is the

indexed db, then the Javascript code to retrieve the data is included in the HTML

page which is sent to the browser. Another function of the data leasing system is

the update engine.

The data leasing system uses ORM mapping to propagate data across several

heterogeneous databases. It uses timestamps to determine if a concurrent update

had occurred on the data object. If it hasn’t, then the object is updated. If con-

current updates have occurred, the system updates only fields that were changed

since the last update. In this way, it avoids overwriting attributes of concurrently

updated object as mentioned in 4.2.1. If the system has more than one applica-

tion server, the system will update in Last Writer Wins (LWW) manner. This is

consistent with current methodology concerning optimistic concurrency [40].

Updating the browser database is quite different. The HTML responses sent

to the browser include a Javascript component named the update processor. The

update processor checks the current status of the browser database and sends the

largest timestamp during its normal request to the server. If the data leasing sys-

tem determines an update is needed, it collects the update and puts JSON data in

the clients update queue at the application server. When the client requests an-

other page, the update queue is sent with the response. When that is received by

the browser, the update processor updates the associated records in the browser

database. In this way, the client never waits for a page to load while the server is

processing its browser database update. Instead, it sends the data as a part of the

next response. The will present the framework to a standardized architecture to

utilize the browser-based database system solving the problems of 4.2.2.

35

The Data Leasing System also manages subscriptions. Subscriptions are used

in the system to provide realtime updates to high consistency level data. This

helps to solve web application issues not being able to keep transactions open as

dicussed in 4.2. When an object is updated, the update publisher sends a message

about the updated objects to the data leasing system. This immediately updates

the data at the application server. Therefore, there is no need for the polling of

the RDBMS for the current data which helps to reduce RDBMS burden which may

cause it to slow down as noted in 4.1.1. In this way, the system can keep an object

in memory for fast performance while immediate subscription updates keep it up

to date. In order for this to work, the data leasing system works with the realtime

system which is a Javacript component which runs on the browser. The realtime

system informs the data leasing system when the client is viewing certain objects

and updates the screen in real time.

The data leasing system also can lock data objects using block-free locking

mechanisms. Current methodology for concurrency control involve locking data

objects by blocking access to them. This interrupts the control of a program making

it unresponsive. It also introduces the risk of deadlocks. The data leasing system

locks the data object by leasing it to a specific user. If that user updates the ob-

ject, the data update is accepted. If another user attempts to lock the object, it will

fail as it is already locked by another user. Additionally, if another user attempts

to update the object, the operation returns failed immediately because it is locked

by another user. This allows for superior consistency control while allowing the

application to handle failed transactions without blocking control. The architect

can choose to use a timed retry, to queue their update in the background or to ask

36

the user to retry. The data leasing system can maintain leases on critical objects by

using the update publisher to track when a user has control of an object.

5.2 Defined Consistency Levels

The concept of consistency levels allows for the application to be designed using a

single data model. That data model is classified into the consistency levels shown

in Table 5.1. In this way, the consistency level will control the storage methodology

and location of data.

Table 5.1: Classifications of consistency levels and their meaning.

Consistency
Level

Definition Data Lo-
cation

Timing of refresh

Passively
Consistent
(PC)

Object is refreshed based
on a milestone.

Browser Object is checked during
login or other milestone
and refreshed if needed.

Gradually
Consistent
(GC)

Object is refreshed in
timed intervals.

NoSQL Next Page Refresh after
time expires if object has
changed.

Eventually
Consistent
(EC)

Object is refreshed after it
is changed.

NoSQL Next Page Refresh

Always Con-
sistent (AC)

Object is always queried
from the database.

RDBMS Next Page Refresh

Immediately
Consistent
(IC)

Object is always queried
from the database, and up-
dated in real time.

RDBMS Realtime

In order to achieve the dynamic hybrid DBMS through defined consistency lev-

els and the data leasing system, data items must be assigned a consistency level.

At the lowest form of consistency level, data is allowed to be displayed at a stale

37

state, preferring fast response time over freshness of data. At the highest consis-

tency level, the data must always reflect the current state of the RDBMS. A listing

of the consistency levels and their definitions may be seen in Table 5.1.

5.2.1 Passively Consistent

Passively Consistent objects utilize in-browser databases in a standard way solving

the problems seen in 4.2.2. The advantage is speed as requests do not have to go

to the server to be processed as seen in Figure 5.2.

DB Server

RDBMS

Application

NOSQL

Browser

Indexed

DB

Query Results

Figure 5.2: Passively consistent query.

Passively consistent data is synchronized when the user passes milestones se-

lected by the architect. Timestamps are used to verify whether the data is synchro-

nized or not. The first milestone would typically be the login screen. At login,

the browser would send the timestamps of each entity stored in the browser’s

database. The application server processes the login and returns the response to

the client. The application server then concurrently analyzes the timestamps and

adds data to the client’s update queue in order to keep it up to date. The data is

38

sent to the client on the next page response that is sent to the client. Each response

to the client includes data updates which are in the form of JSON data. When up-

dating data, the system follows the procedure shown in Figure 5.3. When updates

are received, it is updated immediately in the NoSQL database and a response is

sent to the client. In a concurrent operation, the update is sent to the RDBMS and

the timestamp is updated at the NoSQL database. Once successful, the isDirty flag

is set, and any new data which is in the update queue is sent to the client.

DB Server

RDBMS

Application

NOSQL

Browser

Indexed

DB

1-Update

2-Update

4-Update

5-Timestamp

isDirty=true

6-Push Data

on Next Response

7-Update

3-Response

Figure 5.3: Passively consistent update.

5.2.2 Gradually Consistent

Gradual consistent entities have the property of being synchronized with the RDBMS

in timed intervals. This increases the performance through batch processing which

favors performance over consistency. A seen in Figure 5.4, passively consistent

data items are queried from the NoSQL database. The application benefits from

being queried from a fast dedicated database server. The update of gradually con-

39

sistent objects is considered infrequent, but it is frequently queried. The update

process of a gradually consistent item can be seen in Figure 5.5. When the user

chooses to update an item, the new data is immediately updated in the NoSQL

database. This allows the application to return control to the user quickly while

queuing transactions to be updated at the RDBMS. When the transaction is put in

the transaction queue, a copy of the before and after objects are kept.

DB Server

RDBMS

Application

NOSQL

Browser

Indexed

DB

1-Page Request

4-Page

Response

2-Query

3-Results

Figure 5.4: Gradually consistent query.

DB Server

RDBMS

Application

NOSQL

Browser

Indexed

DB

1-Update

3-Page

Response

2-Update

Add Transaction To

Queue

Figure 5.5: Gradually consistent update.

40

Up until now, the RDBMS is out of date with the updates that the user have

executed. Since the gradually consistent data accepts inconsistent data for a cer-

tain amount of time while the system is collecting updates. Therefore the updating

the RDBMS is triggered on an elapsed timer event. Once the timer has elapsed the

system concurrently executes a batch update to the RDBMS as seen in Figure 5.6.

Because data objects are not verified at the RDBMS on every update, a synchro-

nization algorithm in will be employed to ensure the best possible consistency.

DB Server

RDBMS

Application

NOSQL

Browser

Indexed

DB
1-Update Packet

3-Queue Error

Notifications

2-Timestamp +

Errors

Figure 5.6: Gradually consistent timer elapsed.

5.2.3 Eventually Consistent

Eventually Consistent Entities are stored at the dedicated NoSQL database for fast

data retrieval as seen in Figure 5.7. When the user updates the data, the process

is executed as shown in Figure 5.8. The NoSQL database is updated and the re-

sponse is given to the user, in a concurrent process, an update is initiated on the

RDBMS. Eventual consistency uses timestamp comparisons to determine if the up-

date should be accepted, rejected or merged. If the timestamp of the RDBMS ob-

41

ject and the NoSQL object is the same, the update is accepted as no changes were

made to the data before If the timestamps differ, then an update has occurred on

the RDBMS between data retrieval and update. In this case each field of the pro-

posed update, and the RDBMS data which matches the timestamp. Also, a each

field of the current RDBMS data is compared to the data matching the timestamp.

If the changed fields intersect then, the data cannot be updated. If not, the data

is merged by only changing the fields which have been updated in the current

update operation. Ensuring not to overwrite any fields that have been changed

previously.

When updates are processed on eventually consistent objects on the RDBMS,

a broadcast message is sent to all registered NoSQL databases with the new data.

This ensures fast updates of the NoSQL database without polling. Once the data

is received it uses timestamp ordering to update data in the NoSQL database. This

keeps the NoSQL database very close to actual consistency.

DB Server

RDBMS

Application

NOSQL

Browser

Indexed

DB

1-Page Request

4-Page

Response

2-Query

3-Results

Figure 5.7: Eventually consistent query.

42

DB Server

RDBMS

Application

NOSQL

Browser

Indexed

DB

1-Update

3-Page

Response

2-Update

4-Update

5-Timestamp

6-Queue

Response

Figure 5.8: Eventually consistent update.

5.2.4 Always Consistent

Always consistent data is always queried and updated via the RDBMS server. It’s

operation is exactly the same as standard 3-tier architecture. The query process

may be seen in Figure 5.9 and the update process in Figure 5.10. In this query the

data which is in the application is always the data which is stored in the RDBMS.

Concurrency control is handled completely by the RDBMS. Therefore, the user is

subject to the delays and latency issues dictated by the current state of the RDBMS

server.

DB Server

RDBMS

Application

NOSQL

Browser

Indexed

DB

1-Query

4-Page

Response

2-Query

3-Result

Figure 5.9: Always consistent query.

43

DB Server

RDBMS

Application

NOSQL

Browser

Indexed

DB

1-Update

4-Page

Response

2-Update

3-Result

Figure 5.10: Always consistent update.

5.2.5 Immediately Consistent

Immediately consistent is the highest consistency level and offers consistency guar-

antees higher than typical web applications. When a user queries an immediate

consistent data object, a lease request is registered for this item and the item is re-

trieved from the RDBMS and stored in memory. If any updates occur while a user

is viewing it, the update is immediately sent to from the RDBMS to the application

server. At which time, it is updated at the user’s screen immediately. The browser

uses long polling techniques to keep a connection to the application server open.

This allows it to receive updates in realtime. Subsequent queries of this data by one

or more users result in the copy of the item in memory being returned to the re-

quester and that requester receives the same updates in real time as seen in Figure

5.11.

When a user wishes to modify an immediately consistent object, a lock must be

acquired. The process to lock the item can be seen in Figure 5.12. Once this item is

44

locked, a lock ID is inserted into the lease entity. Any subsequent update attempt

for this object must include the lock code. If the lock code is not included or is the

wrong code, the update is rejected. If another user tries to lock the object while it

is already locked, a null lock code is returned which keeps the user from locking

this object. If the another user wishes to be put in queue to edit this object, they

may choose to do so and the lock will be forwarded to the next user in order. This

ensures only one user may update this record at a time.

Once the lock is acquired, the user may update the object as seen in Figure 5.13.

Any update will be forwarded to all users who are viewing this object through the

data leasing system and realtime system. Once the update is complete, the lock is

automatically removed and may be requested by another user if any users are in

the lock queue, a new lock code will be sent to the first user in the queue.

DB Server

RDBMS

Application

NOSQL

Browser

Indexed

DB

1-Query

4-Page

Response

2-Query

+ Lease Request

3-Result

Data Held in

Shared Memory

5-Updates

Browser opens

long poll while data

is on screen.

6-Updates Sent

Realtime

Figure 5.11: Immediate consistent query.

45

DB Server

RDBMS

Application

NOSQL

Browser

Indexed

DB

1-Lock Request

3-Lock Status

Data Locked at

Application

2-Lock Status

Browser Opens

Long Poll

Immediately

Consistent Data

Can only be

Updated Through

the Application

Figure 5.12: Immediate consistent lock.

DB Server

RDBMS

Application

NOSQL

Browser

Indexed

DB

1-Update

4-Response

Data Changed in

Memory

3-Results

Browser Opens

Long Poll

5-Updates Sent

Realtime

To all viewing users

2-Update

Figure 5.13: Immediate consistent update.

46

5.3 Integration in Business Application

To prove the value in a real world scenario a realistic business application has

been built and tested with ADDA. The ADDA system was implemented in three

tier architecture as seen in Figure 5.1.

For the RDBMS system, Microsoft SQL Server was used in an Athlon x64 sys-

tem with 3GB RAM running the Windows Server 2008 operating system. The ap-

plication tier was implemented on an Intel i5 system with 4GB RAM using Oracle

Glassfish 4.0 application server and Mongo DB 2.4.4 running on the CentOS 6 op-

erating system. The client is running on a Intel i3 system with 8GB RAM using

Google Chrome 29.0 web browser running on the Windows 7 operating system.

The data model used with the test application may be seen in Figure 5.14. This

data model is based on the TPC Benchmark C (TPC-C) which simulates a real-

world business application database. The TPC-C benchmark tests were used to

simulate the complex activity of an OLTP activities on the RDBMS system. In ad-

dition, a separate TPC-C database was used to measure the performance of the

running application. This accurately simulates access to an isolated database on a

shared RDBMS server.

The system was implemented using Java Enterprise Architecture 7.0 (JEE), Java

Server Faces 2.1 (JSF), Primefaces 3.4, Eclipselink Java Persistence Architecture 2.5

(JPA) and JQuery 1.8.1. JPA is a Object Relational Mapping (ORM) framework

which seamlessly maps database objects to Java objects. In order to implement

both the SQL and NoSQL database, a composite persistence unit was used which

includes one persistence unit with all of the SQL Server entities and another per-

47

Warehouse

Order New_Order

Order_Line

Stock Customer

District

History

District

Item

Figure 5.14: Test system data model.

sistence unit which includes the PC, GC and EC entities. Both persistence units

extend an abstract class so an object from any consistency level can be used in the

application with a high degree of location transparency.

Each entity of the test database was assigned a consistency level. The data

model of the test database along with the assigned consistency levels, illustrated

as two letter abbreviations, may be seen in Figure 5.15. This model allows for

testing of the various parts of the system in a realistic OLTP environment.

In order to implement the system, each data tier must have the storage meta-

data shown in Figure 5.16. These items allow the ADDA system synchronize, in-

stantiate and copy objects between database locations. During application startup,

the ADDA system synchronizes PC, GC and EC entities by using storage meta-

data from the RDBMS and the NoSQL servers. The resulting inconsistencies are

then updated to the NoSQL server to bring both databases to a consistent state.

48

Warehouse

Order New_Order

Order_Line

Stock Customer

District

History

District

Item

PC PC

GC

GC

GC

IC

EC EC

EC

Figure 5.15: Test system data model with consistency levels.

The NoSQL server contains the PC, GC and EC entities in the same form as the

RDBMS except the table names are prepended with the letter ”N”. This allows for

easy differentiation when developing the application because it prefers convention

over configuration.

All entities have a procedure which updates the updateTs in the StorageInfo

entity as a part of their update process. In the RDBMS, this takes the form of an

update trigger. The browser database uses a Javascipt component which updates

the the browsers StorageInfo collection. Since the NoSQL database does not sup-

port triggers, the StorageInfo data is updated through a Java procedure.

The RDBMS procedure has additional functionality besided updating the times-

tamp which may be seen in Figure 5.17. This procedure checks if the updated ob-

ject has a lock data lease against the object indicated as a leaseType ’LCK’. If the

49

StorageInfo

storageInfoId

tableName

consistencyLevel

noSqlDateQuery

sqlDateQuery

sqlJavaClass

noSqlJavaClass

updateTs

StorageDependency

determinant (FK)

dependent (FK)

DataLease

dataLeaseId

storageInfoId (FK)

objectId

leaseType

leaseOriginServer

lockCode

leaseBegin

leaseExpire

Figure 5.16: Storage meta-data included in each database location.

50

item is locked an error is thrown and the changes rolled back. If not, the procedure

updates the StorageInfo updateTs attribute. Then, the procedure tests if the cur-

rent object is an EC entity or an IC entity with a read data lease as indicated by the

leaseType ’RD’. If either condition is true, a message with this entity and the new

update timestamp is sent to the Data Leasing system via a message queue. This

prompts the Data Leasing system to begin to update the NoSql database and syn-

chronize it with the RDBMS server. Once that is complete, the procedure checks

for any update dependencies through the StorageDependency entity. This allows

for views of joined data to be externalized. If dependencies are found, the infor-

mation is sent to the Data Leasing system to prompt it to synchronize the NoSql

database.

The synchronization of the browser database takes place in both the client tier

and the application tier. When a client logs in with their browser, the browser

sends the StorageInfo data to the application server which prepares an update

packet on a separate thread of execution. When the update is ready it is put on

the user’s update queue. This is then sent to the browser in the form of a JSON ob-

ject transmitted in a hidden field. An example of this JSON object may be seen in

Figure 5.18. In this example keys 1 and 2 are inserted or updated in table1 with the

name and description attributes. When the Javascript component detects data in

this field, it converts the JSON text into a Javascript object which contains a tables

object that contains an array of objects with the table name, key and values. This

data is iterated through and updated in the browsers database.

PC data is stored at both the NoSQL database and the Browser Database. The

browser database is very limited in functionality and does not offer the complex

51

Algorithm 1: Update Procedure on RDBMS

1 TS = CURRENT TIMESTAMP;
2 SID ← Π(storageIn f oId)σtableName=thisTableName(StorageIn f o) ;
3 if thisRowId¬ ∈

Π(rowId)σ(leaseType=′LCK′,storageIn f oId=SID,lockCode ̸=thisLockCode)(DataLease);
4 then
5 Throw ERROR ’THIS IMMEDIATELY CONSISTENT ITEM IS LOCKED.’;
6 end
7 else
8 CL← Π(consistencyLevel)σstorageIn f oId=SID(StorageIn f o);
9 StorageIn f o ← Π(updateTs=TS)σstorageIn f oId=SID(StorageIn f o);

10 LS← Π(storageIn f oId)σleaseType=′RD′,leaseBegin<TS,leaseExpire>TS,(DataLease) if
CL =′ IC′ then

11 DataLease←
Π(lockCode←thisLockCode,leaseType←′LCK′)σstorageIn f oId=SID,RowId=thisRowId(DataLease);

12 end
13 if CL =′ EC′ ∨ (CL =′ IC′ ∧ SID ∈ LS) then
14 UpdateMessagQueue← (thisTableName, TS);
15 end
16 foreach

17 CL← Π(consistencyLevel)σdeterminant=SID(StorageIn f o ◃▹

StorageDependency(storageIn f oId=dependent));
18 TN ← Π(tableName)σdeterminant=SID(StorageIn f o ◃▹

StorageDependency(storageIn f oId=dependent));
19 DP← Π(dependent)σdeterminant=SID(StorageDependency);
20 do
21 if CL =′ EC′ ∨ (CL =′ IC′ ∧ DP ∈ LS) then
22 UpdateMessagQueue← (TN, TS);
23 StorageIn f o ← Π(updateTs=TS)σstorageIn f oId=DP(StorageIn f o);
24 end
25 end
26 if CL =′ IC then
27 DataLease←

Π(lockCode←∅,leaseType=∅)σstorageIn f oId=SID,RowId=thisRowId(DataLease);
28 end
29 end

Figure 5.17: Update Procedure on RDBMS

52

{ "tables" :

[

{"tablename" : "table1", "key" : "1", "value" :

{"name" : "object1" , "description" : "description1"}

},

{"tablename" : "table1", "key" : "2", "value" :

{"name" : "object2" , "description" : "description2"}

}

]

}

Figure 5.18: Example JSON data to update the browser database.

query model enjoyed by RDBMS systems Nonetheless, it can be a very effective

method to make data operations very responsive because queries do not have to be

sent to the application server for processing. However, its limitations make it more

useful for reference data in which complex joins are not needed. One use for this

is replacing numeric keys with human readable fields. For example, the district

id of 2 does not have a meaning to the user. Replacing the id with the district

name requires a join at the database server which may be expensive. In order to

offload this burden from the database server and reduce joins, the id number is

sent to the browser in the html page along with the name of the entity and the

display field. The browser looks up these items and replaces the number with the

human readable name. Additionally, picklists may be displayed for the users input

without calling the server resulting in responsive operation.

Since PC and GC level entities are subject to concurrent updates a LWW method-

ology is used to resolve such conflicts. Due to the fact that ORM frameworks may

update an entire object at once, there is a danger of loosing updated attributes.

This happens when updates are performed on two different attributes of the same

53

parent object. Although the two attributes are not in conflict, but their parent ob-

ject are subject to WW conflicts. To resolve this, the merging algorithm shown in

Figure C.3 has been employed. This algorithm checks if the object was modified

between retrieve and update. If an update did occur, it compares the before and af-

ter snapshot of the proposed update, determines which fields have been modified

and only changes those fields in the target object.

Algorithm 2: Synchronization Algorithm
Data: UpdateTransactionList = List of update transactions collected by the

application including before and after versions of the data objects.

1 foreach Transaction in UpdateTransactionList do
2 RDBMSRecord = Select current record from RDBMS;
3 if RDBMSRecord.UpdateTimestamp == Transaction.OriginalTimestamp

then
4 RDBMSUpdate(Transaction.after.allFields);
5 else
6 for i← to Transaction.FieldCount do
7 if Transaction.before.field[i]!=Transaction.after.field[i] then
8 UpdateList.add(Transaction.after.field[i]) ;
9 end

10 RDBMSUpdate(UpdateList);
11 end
12 end
13 end
14 end

Figure 5.19: Synchronization Algorithm

GC, PC and EC entities are stored in the NoSQL database. NoSQL databases

do not offer the full functionality of a RDBMS database. For example, MongoDb

is a BSON document datastore which means that data is stored and processed

as BSON documents, not relations. Therefore, joins are not natively supported.

54

Unlike RDBMS tuples, a BSON document may include objects and arrays. This

means that NoSQL databases violate Codd’s 1st Normal Form (1NF) [14] because

an attribute can contain more than one single value.

In NoSQL databases, an attribute can contain an array or an object or even an

array of objects. This is useful for high performance as expensive joins are avoided

and related data may be stored in a single document. While not adhering to 1NF

increases flexibility and speed, it opens up the possibility of update anomalies.

Therefore, to update related data, one would have to find all objects which include

the subject data and update them as well. On the other side, data in Cod’s 3rd Nor-

mal Form, the standard for relational data, suffers from difficulties in representing

data accurate to transactional time as referenced in [31]. NoSQL databases do not

suffer from that because updated reference data is only updated at a point of time

forward unless older objects are explicitly modified. NoSQL databases store the

reference data as a part of the parent data. Storing parent and reference data in

the same document in the ADDA system will cause inconsistencies between the

NoSQL data and the RDBMS data.

To combat inconsistencies due to disparate storage methodologies between the

RDBMS and NoSQL, data is joined at the RDBMS server as a view. This view is

then externalized in the NoSQL database resulting in externalized views which

is consistent with RDBMS data. Equation 5.1 illustrates the three joined entities

which may represent a view in our application. Let R, S and T be relations. A

change in any of the attributes of R, S and T will result in a change in the result of

the R joined to S joined to T. For this reason, the concept of entity dependence was

included in the storage metadata as seen in Figure 5.16. This allows the application

55

to correctly update an externalized view based on a change in the underlying table

data.

R ◃▹ S(A=A′) ◃▹ T(B=B′) → R× S× Tσ(A=A′,B=B′)

∴ ∆R ∨ ∆S ∨ ∆T → ∆(R ◃▹ S(A=A′) ◃▹ T(B=B′))

(5.1)

The test system was constructed and tests were evaluated to determine the ef-

fects of the ADDA architecture on the application and the RDBMS.

5.4 Performance Experiments

To measure the difference in responsiveness to the user, a Javascript component

was built to record the exact time when a user requests an object and the time

when the entire response is finished loading including all Javascript functions ex-

ecuted and the result is displayed to the user. Unlike server-side measurements,

this method measures the actual response time that the user experiences.

The response-time test used a 3 table join data grid with a total table size of

60,000 records as its test data. Five test queries were executed for each scenario

and their response time was recorded. Three scenarios were compared.

1. RDBMS query using ORM relationships. This method used the ORM to join

data and return the results.

2. RDBMS query using views. This method defined a view which incorporated

the three table join and the ORM system treats the view as a separate entity.

3. NoSQL query using externalized views.

56

These three scenarios demonstrate the performance difference between the stan-

dard ORM method, mapping an ORM object to a SQL view and using the NoSQL

to retrieve the data. The NoSQL query test tests GC and EC query performance.

Each of these tests were conducted under various load conditions using the TPC-

C benchmark to simulate user traffic on the RDBMS under controlled conditions.

Figure 5.20 shows the result of this test. Throughout the test, the response time of

the RDBMS was higher than the NoSQL queries. As expected the NoSQL was un-

affected by the traffic on the RDBMS server and consistently resulted in response

times of around 300ms even though RDBMS load traffic originated from the same

server as the NoSQL database. Using views is a vast improvement over standard

ORM relationships; however, the data shows the most responsive performance

comes from the NoSQL database using GC or EC entities. This demonstrates the

advantages of this design.

�

����

����

����

����

�����

�����

�����

� �� ��� ��� ���

�
�
��
�
�
��
��
	

�
�	
�
�

�

��������	�
���������
���������

����������	
��
��	
�
����

���
������

�����

������

�	
��
�����
�����
���
������������� �	
��
�����
�����
��� �

!���"
�����
�����
#$�������%�&
��� �

Figure 5.20: Application response time for RDBMS vs ADDA architecture.

The synchronization of records between the RDBMS and the NoSQL database

57

was tested. In this test the measurement of time began at the first step of the syn-

chronization which is the retrieval of the StorageInfo objects from both databases.

The two StorageInfo objects are then compared, the out of sync items are identi-

fied, retrieved from the RDBMS and updated to the NoSQL server. This proce-

dure is used for PC,GC and EC entities. The results of this test can be seen in

Figure 5.21. For 20 records, the update time was 20ms/record. When a larger

entity with 30,000 records were updated, the updated time per record decreased

to 2ms/record. When 60,000 records were updated, the update time per record

was reduced to 1.8ms/record. This represents the cost of copying data from the

RDBMS to the NoSQL server. This cost is only applicable during startup or during

other milestones or timer events of PC and GC entities respectively.

�

�

�

�

�

��

��

��

��

�� ����� �����

�
�
��
�
�
��
��
�	

�
�
�
��
�

�
�
�

�
�
��

�

�
�

�
��

�

��������	�
�����
������������

��������	
�����
���������
���
���

�������
�
�
��

Figure 5.21: Synchronization time between RDBMS and NoSql databases.

Both EC and IC entities use a message queue to update objects in real time. The

difference between EC and IC is that EC objects are stored at the NoSQL database

and IC objects are stored at the RDBMS database. When a user is viewing an IC

58

object, they acquire a read lease on the object. When the user has a read lease,

any update to the object is sent to the user’s browser in real time. In the case

of IC objects, the data is sent from the RDBMS database and loaded directly into

memory. Unlike IC objects, the EC entities always get updated in real time. The EC

also objects have an additional step to update the NoSQL database. Therefore, the

performance of the Data Leasing system real time update mechanism was tested.

The test measured the time of update on the RDBMS and compared it to the time

in which the IC and EC object updates were completed. The results of this test is

recorded in Figure 5.22. The response time for these update is very low below 100

users where the database response time peaks. The RDBMS response time lowers

somewhat when 150-200 users are actively using the RDBMS. According to this

results, the IC and EC updates take a maximum of two seconds to complete their

operation.

�

���

���

���

���

����

����

����

����

����

����

� �� ��� ��� ���

�
�
��
�
�
��
��
	

�
�	
�
�

�

��������	�
���������
�������������

��������	
����
��������������
��	����������

�

��	�������
��	����������

�		
��
�
����������
������
�

��
���
�����������
������
�

Figure 5.22: Time for EC and IC immediate update.

The PC entities leverage the in-browser database to improve response time. The

59

Javascript component mentioned above was used to measure the response times

for various scenarios. The test was to query a list of data which was required to

be joined to a reference table. Two scenarios were tested. One scenario used the

standard ORM joins to retrieve the data from the RDBMS. The second scenario

used the same data from the RDBMS without the join to the reference data. In

this scenario, the reference data is a PC entity stored at the browser. The results

can be seen in Figure 5.23. As the load on the RDBMS server was increased the

advantages of using the browser-based PC data is clear. At 200 active users, the

PC data response time was 3x less than using the RDBMS ORM joins. The cost to

load the data into the browser database has also been tested. Figure 5.24 shows

that an average update time for 20 records is approximately 2ms per record. This

concludes that the benefit far outweighs the cost of maintaining the data at the

client.

�

���

����

����

����

����

����

����

����

� �� ��� ��� ���

�
�
��
�
�
��
��
	

�
�	
�
�

�

��������	�
���������
�������������

���������	
��
�
���
�������
��

���������
��	�����	�
�������

��	
��

�����	������

�����������������

�	
	
	��	������

��	
��

�����	������

����� ����!	"��#������	��

$�����	������	
	
	��	

����

Figure 5.23: Application response time between RDBMS and browser database.

60

�

��

���

���

���

���

���

� � �

�
��

�
��
�
��

�

���������	
�����
����
���������

���	
���

����
��

��
��	�

���	
���

����
��
���

��
��	

Figure 5.24: Update time for browser database.

61

Chapter 6

Conclusions

The experiments in this paper have demonstrated the advantages of using the

ADDA architecture. The ADDA architecture allows the architect to design a single

data model and distribute the data based on the acceptable consistency level. This

architecture can improve the responsiveness of an application 10 times or more

than using a single shared RDBMS server alone.

The Passively Consistent level allows one to leverage the browser-based database

which is part of the HTML5 specification to achieve a richly responsive application.

Query and display times for data using this method are on average three times less

than using an ORM system to query the reference data from the RDBMS system.

The cost to maintain the data in the browser-based database is low averaging two

milliseconds per record. Because of the limitations of the browser-based database,

Passively Consistent data should be limited to small sized reference data which

does not need the join functionality.

Larger reference data should be stored as Gradually Consistent data. This al-

62

lows for increased performance from the NoSql database which can return results

up to 10 times faster than a heavily loaded RDBMS. Gradually Consistent entities

are updated based on periodic intervals. The cost to updated the data in the NoSql

database in terms for time can be as low as two milliseconds per record. The cost

to update these items is very low as compared to the benefits. These data entities

work in batch update mode; therefore, they employ optimistic concurrency in the

form of Last Writer Wins methodology. This is enhanced by a merging algorithm;

however it is advisable to use this consistency level on data that does not change

often to maximize its high gain, low cost profile.

Eventually Consistent data can reap even more benefits in terms of response

time. The data has shown that Eventually Consistent data can be 30 times faster

than joining relational data on a loaded RDBMS server. Utilizing the concept of

externalized views, joins are processed only one time, then externalized on the

NoSql database. Because Eventually Consistent Data is updated immediately via

inter process communication, the cost is higher to maintain the data in the NoSql

database. However, since a data refresh may take a maximum of two seconds on a

heavily loaded RDBMS server, the Eventually Consistent data should always be at

an acceptable consistency level for data which is not time sensitive at the second

or millisecond level. The concept of table dependencies make externalized views

on a NoSql server possible.

Immediately Consistent data is held on a read lease whenever a user opens

an Immediately Consistent record. This allows for real time updates without re-

querying the RDBMS server. The first query for this consistency level comes di-

rectly from the RDBMS server. Subsequent queries are retrieved directly from

63

memory. With externalized locking Immediately Consistent objects ensure block-

less exclusivity reducing the possibility of deadlocks. The data has shown that

the maximum update time for Immediately Consistent data is approximately 1.6

seconds on a heavily loaded RDBMS.

The ADDA architecture is a basis for continuing research on methodology for

design of distributed database applications.It favors small, fast databases which

bring the data closer to the client while maintaining acceptable levels of consis-

tency can be the key to achieving responsive applications and lowering the load

on RDBMS servers. Further research into more complex models and dependencies

will help us utilize this new architecture in a myriad of applications.

This paper is part of my on-going research in using middle-ware technologies

to integrate heterogeneous data storage systems. I first published on this concept

a part of the 2012 SAIS conference [23]. Versions of this paper are currently under

review for publishing in the Communications of the ACM with plans to publish in

other venues as well.

64

Bibliography

[1] BSON Specification 1.0. http://bsonspec.org/#/specification [Accessed 11 Au-

gust 2013].

[2] Distributed Transaction Processing: The XA Specification.

http://pubs.opengroup.org/onlinepubs/009680699/toc.pdf [Accessed

01 September 2013].

[3] SQL Server 2008 R2 Books Online. Microsoft Corporation.

http://www.microsoft.com/en-us/download/details.aspx?id=9071 [Ac-

cessed 10 August 2013].

[4] The MongoDB 2.4 Manual. http://docs.mongodb.org/master/MongoDB-

manual.pdf [11 August 2013].

[5] Windows PC Accelerators, Oct. 2010. http://msdn.microsoft.com/en-

us/library/windows/hardware/gg463388.aspx [Accessed 5 July 2013].

[6] About V8, 2012. http://developers.google.com/v8/intro [Accessed 16 Au-

gust 2013].

65

[7] HTML 5.1 Specicification, 08 2013. http://www.w3.org/html/wg/drafts/html/master

[Accessed 16 August 2013].

[8] L. Ashdown and T. Kyte. Oracle Database Concepts11g Release 2 (11.2). Ora-

cle. http://docs.oracle.com/cd/E11882 01/server.112/e25789.pdf [Accessed

8 August 2013].

[9] A. Avram. Hybrid SQL-NoSQL Databases Are Gaining Ground.

www.infoq.com, Feb. 2012. http://www.infoq.com/news/2012/02/Hybrid-

SQL-NoSQL [Accessed 10 September 2013].

[10] J. M. Barnes. Object-Relational Mapping as a Persistence Mechanism for

Object-Oriented Applications. Master’s thesis, Macalester College, Apr. 2007.

http://digitalcommons.macalester.edu/mathcs honors/6/ [Accessed 4 Au-

gust 2013].

[11] R. Billinton and R. N. Allan. Reliability evaluation of engineering systems.

Plenum press New York, 1983.

[12] E. A. Brewer. Towards robust distributed systems. In PODC, page 7, 2000.

[13] R. Cattell. Scalable SQL and NoSQL data stores. ACM SIGMOD Record,

39(4):12–27, 2011.

[14] E. F. Codd. A relational model of data for large shared data banks. Commun.

ACM, 26(1):64–69, Jan. 1983.

[15] T. M. Connolly. Database systems: a practical approach to design, implementation,

and management. Pearson Education, 2005.

66

[16] C. de la Torre, U. Zorrilla, M. A. Ramos, and J. Calvarro. N-Layered Domain-

Oriented Architecture Guide with .NET 4.0. Microsoft Corporation, first edition.

[17] P. J. Deitel and H. M. Deitel. Internet and World Wide Web: How to program.

Prentice Hall, New Jersey, U.S.A., 2009.

[18] K. P. Eswaran, J. N. Gray, R. A. Lorie, and I. L. Traiger. The notions of consis-

tency and predicate locks in a database system. Commun. ACM, 19(11):624–

633, Nov. 1976.

[19] F. Färber, S. K. Cha, J. Primsch, C. Bornhövd, S. Sigg, and W. Lehner. SAP

HANA database: data management for modern business applications. SIG-

MOD Rec., 40(4):45–51, Jan. 2012.

[20] M. Fowler. Patterns of Enterprise Application Architecture. Addison-Wesley Pro-

fessional, 1 edition, Nov. 2002.

[21] C. Gerlhof and A. Kemper. A multi-threaded architecture for prefetching in

object bases. Advances in Database TechnologyEDBT’94, pages 351–364, 1994.

[22] J. Gray. The Transaction Concept: Virtues and Limitations. 1981.

http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.59.5051 [Ac-

cessed 3 August 2013].

[23] M. Grecol. STANDARD DATA MODEL FOR CUSTOMS EDI FILINGS.

Southern Association of Information Systems, 2012.

67

[24] M. Grund, J. Krüger, H. Plattner, A. Zeier, P. Cudre-Mauroux, and S. Madden.

HYRISE: a main memory hybrid storage engine. Proc. VLDB Endow., 4(2):105–

116, Nov. 2010.

[25] T. Haerder and A. Reuter. Principles of transaction-oriented database recov-

ery. ACM Comput. Surv., 15(4):287–317, Dec. 1983.

[26] W.-S. Han, K.-Y. Whang, and Y.-S. Moon. A formal framework for prefetching

based on the type-level access pattern in object-relational DBMSs. Knowledge

and Data Engineering, IEEE Transactions on, 17(10):1436–1448, 2005.

[27] Z. He and A. Marquez. Path and cache conscious prefetching (PCCP). The

VLDB Journal, 16(2):235–249, Apr. 2007.

[28] E. Houts. Starnine combination is capable, complex solution. InfoWorld,

19(44):83–86, 1997.

[29] S. Khemmarat, R. Zhou, L. Gao, and M. Zink. Watching user generated videos

with prefetching. In Proceedings of the second annual ACM conference on Multi-

media systems, MMSys ’11, pages 187–198, New York, NY, USA, 2011. ACM.

[30] W. Kim, B.-J. Choi, E.-K. Hong, S.-K. Kim, and D. Lee. A taxonomy of dirty

data. Data Mining and Knowledge Discovery, 7(1):81–99, 2003.

[31] C. Knowles. 6NF Conceptual Models and Data Warehousing 2.0. Southern

Association of Information Systems, 2012.

[32] J. Lee, H. Kim, and R. Vuduc. When Prefetching Works, When It Doesn

’t, and Why. ACM Trans. Archit. Code Optim., 9(1), Mar. 2012.

68

[33] Y. Lin, B. Kemme, M. Patino-Martinez, and R. Jimenez-Peris. Enhancing Edge

Computing with Database Replication. In Reliable Distributed Systems, 2007.

SRDS 2007. 26th IEEE International Symposium on, pages 45–54, 2007.

[34] C. Mohan. Tutorial: Advanced transaction models-survey and critique. In

ACM SIGMOD International Conference on Management of Data, Minneapolis,

Minnesota, 1994.

[35] C. Nance, T. Losser, R. Iype, and G. Harmon. Nosql vs rdbms-why there is

room for both. 2013.

[36] D. Pritchett. BASE: An Acid Alternative. Queue, 6(3):48–55, May 2008.

[37] S. K. Rahimi and F. S. Haug. Distributed Database Management Systems: A Prac-

tical Approach. John Wiley & Sons, Inc, 2010.

[38] P. Rösch, L. Dannecker, F. Färber, and G. Hackenbroich. A storage advisor for

hybrid-store databases. Proc. VLDB Endow., 5(12):1748–1758, Aug. 2012.

[39] C. Strauch, U.-L. S. Sites, and W. Kriha. NoSQL databases. URL: http://www.

christof-strauch. de/nosqldbs. pdf (07.11. 2012), 2011.

[40] R. H. Thomas. A Majority consensus approach to concurrency control for

multiple copy databases. ACM Trans. Database Syst., 4(2):180–209, June 1979.

69

Appendix A

Browser Database Components

70

public String updateBrowser (HashMap<String,Date> status) throws
ClassNotFoundException, UnknownHostException{

Query q = getSqlEm().createNamedQuery("NStorageInfo.findall",
NStorageInfo.class);

noSqlStorageInfo = q.getResultList();
String output = "{ \"tables\" : [";
for (NStorageInfo ni : noSqlStorageInfo) {

if(ni.getConsistencyLevel().equalsIgnoreCase("PC")){
Date updateLevel = status.get(ni.getTableName().toUpperCase());
if (updateLevel==null)updateLevel = new Date(0);
System.out.println("Updating " + ni.getTableName() +" " +
ni.getUpdateTs() +

ni.getUpdateTs());
MongoClient mongoClient = new MongoClient(
"192.168.254.11",27017);
DB db = mongoClient.getDB("tpccnosql");
System.out.println(db);
DBCollection coll = db.getCollection("N" + ni.getTableName().

toUpperCase());
System.out.println(coll);
BasicDBObject query = new BasicDBObject("updateTs",new
BasicDBObject ("$gt",updateLevel));
System.out.println(query);
DBCursor cursor = coll.find(query);
System.out.println(cursor);
boolean first = true;
try {

while(cursor.hasNext()) {
DBObject d = cursor.next();
if (!first) output += ", ";
output += "{ \"tablename\" : \"" + ni.getTableName().

toLowerCase() + "\" , \"key\" : \"" + d.get("_id") +
"\", \"value\" : " + d.toString() + "}";

first = false;
System.out.println(output);

}
} finally {

output += "]}";
cursor.close();

}
}

}
return output;

}

Figure A.1: Procedure to create browser-based database update message at appli-

cation server.

71

$().ready(function(){

var dbOpenPromise = $.indexedDB("orderSystem");

dbOpenPromise.done(function(db,event){

updatedbObj();

lookupValues();

pageLoaded();

});

dbOpenPromise.fail(function(error, event){

alert(’ERROR’ + error.message);

alert(’ERROR Evt’ + event);

});

});

Figure A.2: Procedure to open browser-based database.

function updatedbObj(){

updateObject = $.parseJSON(unescape($("[id*=updatedb]").val()));

if(updateObject) $.each(updateObject.tables,function(index,value){

$.indexedDB("orderSystem").objectStore(

value.tablename,true).put(value.value, value.key);});

}

Figure A.3: Procedure to update browser-based database.

function sendMetaData(){

var Jsonvar;

$.indexedDB("orderSystem").objectStore("StorageInfo").get().then(

function(item){

Jsonvar+=JSON.stringify(item);

});

$("[id*=storageInfo]").val(Jsonvar);

}

Figure A.4: Procedure to send browser-based database metadata to application

server.

72

function lookupValues(){

$("[id*=pclookup]").each(

function(index){

var s=$(this).text().split(":");

var o = this;

$.indexedDB("orderSystem").objectStore(s[0]).get(s[1]).then(

function(item){

$(o).text(item[s[2]]);

});

});

}

Figure A.5: Procedure to lookup a tuple from browser-based database and replace

the text with the query results.

73

<p:dataTable id = "HistoryData" var="o"

value="#{orderController.sHistory}"

paginator="true" rows="10"

paginatorTemplate="{CurrentPageReport} {FirstPageLink}

{RowsPerPageDropdown}"

rowsPerPageTemplate="5,10,15">

<f:facet name="header">

Ajax Pagination

</f:facet>

<p:column headerText="o.hCId.cLast">

<h:outputText value="#{o.ohCId.cLast}" />

</p:column>

<p:column headerText="o.hCId.cFirst">

<h:outputText value="#{o.ohCId.cFirst}" />

</p:column>

<p:column headerText="o.hDId.dName">

<h:outputLabel id = "pclookup"

value="District:#{o.hDId}:dName" />

</p:column>

<p:column headerText="o.hDId.dCity">

<h:outputLabel id = "pclookup2"

value="District:#{o.hDId}:dCity" />

</p:column>

<p:column headerText="o.hData">

<h:outputText value="#{o.hData}" />

</p:column>

<p:column headerText="o.hDate">

<h:outputText value="#{o.hDate}" />

</p:column>

</p:dataTable>

Figure A.6: Example JSF code to present keys in document for browser-based

database to lookup.

74

Appendix B

RDBMS - NoSQL Synchronization

75

public void SyncNoSql(String level) throws ClassNotFoundException {

Query q = getSqlEm().createNamedQuery("StorageInfo.findall",

StorageInfo.class);

sqlStorageInfo = q.getResultList();

q = getSqlEm().createNamedQuery("NStorageInfo.findall",

NStorageInfo.class);

noSqlStorageInfo = q.getResultList();

for (StorageInfo si : sqlStorageInfo) {

if (si.getConsistencyLevel().equals(level)) {

NStorageInfo ni = null;

for (NStorageInfo n : noSqlStorageInfo) {

if (n.getTableName().equals(si.getTableName())) {

ni = n;

break;

}

}

SyncOneEntity(si,ni);

}

}

DataListener listener = new DataListener();

listener.setDl(this);

Thread T = new Thread(listener);

T.start();

}

Figure B.1: Procedure to synchronized RDBMS and NoSQL at startup.

76

public void SyncOneEntity(StorageInfo si, NStorageInfo ni) throws
ClassNotFoundException{

em.clear();
Query q;
int counter = 0;
long start = System.currentTimeMillis();
if (ni != null & ni.getUpdateTs().before(si.getUpdateTs())) {

System.out.println("Updating " + ni.getTableName() +
si.getUpdateTs() + ni.getUpdateTs());

q = getSqlEm().createNamedQuery(
si.getSqlJavaClass().trim() + ".findUpdatedObjects",
Class.forName(si.getSqlJavaClass()));

q.setParameter("uTimeStamp", ni.getUpdateTs());
List<Object> updateObjects = q.getResultList();
getSqlEm().getTransaction().begin();
for (Object fromObj : updateObjects) {

try {
Object toObj = Class

.forName(si.getNoSqlJavaClass())

.newInstance();
Date uDate = copyProperties(fromObj, toObj);
System.out.println(fromObj.toString() + ": "

+ toObj.toString());
if (uDate != null && uDate.after(ni.getUpdateTs())){

ni.setUpdateTs(uDate);
System.out.println("UpdatedDate" + uDate);

}
em.merge(toObj);
em.merge(ni);
if(counter%1000==0){

getSqlEm().getTransaction().commit();
getSqlEm().getTransaction().begin();

}
counter++;

} catch (InstantiationException e) {e.printStackTrace();
} catch (IllegalAccessException e) {e.printStackTrace();}
System.out.println("Updated " + counter

+ " Objects in "
+ (System.currentTimeMillis() - start)
+ "milliseconds");

}
em.merge(ni);
em.getTransaction().commit();
System.out.println("Updated " + counter + " Objects in "

+ (System.currentTimeMillis() - start)
+ "milliseconds");

System.out.println("Time: " + System.currentTimeMillis());
}

}

Figure B.2: Component to synchronize NoSQL using timestamps.

77

Appendix C

RDBMS Update Publisher and

Listener

78

ALTER TRIGGER [dbo].[HISTORY_EM]
ON [dbo].[HISTORY]

AFTER INSERT,DELETE,UPDATE
AS
BEGIN
SET NOCOUNT ON;
DECLARE @tableid varchar(35);
DECLARE @Message VARCHAR(128);
DECLARE @SBDialog uniqueidentifier;
DECLARE @dt as datetime;
set @dt = GETDATE();

update HISTORY set updateTs = @dt where h_c_id2 =
(select h_c_id2 from inserted)
BEGIN DIALOG CONVERSATION @SBDialog
FROM SERVICE SBSendService
TO SERVICE ’SBReceiveService’
ON CONTRACT SBContract
WITH ENCRYPTION = OFF
DECLARE tableids CURSOR

FOR
select s2.tableName from StorageInfo si
inner join StorageDependency sd on si.storageId = sd.determinant
inner join StorageInfo s2 on sd.dependent = s2.storageId
where si.tableName= ’HISTORY’
union
select tablename from StorageInfo where tableName = ’HISTORY’;
OPEN tableids
FETCH NEXT FROM tableids INTO @tableid
WHILE @@FETCH_STATUS =0
BEGIN
update StorageInfo set updateTs = @dt
WHERE tableName = @tableid;
set @Message = (SELECT @tableid + ’,’ + cast(DATEDIFF(s,
’1970-01-01 00:00:00’,
@dt)as varchar(12)) + right(CONVERT(VARCHAR(26),@dt, 114),3));

SEND ON CONVERSATION @SBDialog MESSAGE TYPE SBMessage (@Message);
--select @Message;
FETCH NEXT FROM tableids INTO @tableid
END
CLOSE tableids;
DEALLOCATE tableids;
-- Send messages on Dialog
END

Figure C.1: Trigger to send update message to application during update.

79

private String getMessage(){
String output="";
DriverManager dm = null;
Connection conn = null;
try {

conn = dm.getConnection("jdbc:sqlserver://192.168.254.10:1433;
databaseName=tpcc2", "sa","anggita8264");
System.out.println("Connected");

Statement statement = conn.createStatement();
System.out.println("Waiting for Queue");

ResultSet rs = statement.executeQuery("waitfor (RECEIVE TOP(1)
CONVERT(VARCHAR(MAX), message_body) AS Message FROM
SBReceiveQueue)");

System.out.println("MESSAGE \t " + System.currentTimeMillis());
rs.next();

output = rs.getString(1);
} catch (SQLException e) {

e.printStackTrace();
try {

if (conn!=null && !conn.isClosed()) conn.close();
} catch (SQLException e1) {

e1.printStackTrace();
}

}
finally
{

if(conn!=null)
try {

conn.close();
} catch (SQLException e) {

e.printStackTrace();
}

}
return output;

}

Figure C.2: Procedure to receive update message from RDBMS.

80

private void getUpdates(String message){
String args[] = message.split(",");
if(args.length>1){

String name;
long time;
StorageInfo s=null;
NStorageInfo n=null;
name = args[0];
time = Long.parseLong(args[1]);
if (name.equals("")||time==0) return;
for(StorageInfo si: dl.getSqlStorageInfo()){

if(si.getTableName().equalsIgnoreCase(name)){
s= si;
break;

}
}

for(NStorageInfo ni: dl.getNoSqlStorageInfo()){
if(ni.getTableName().equalsIgnoreCase(name)){

n= ni;
break;

}
}
if(n==null || s==null) {

System.out.println("Cant’ find ID " + name);
return;

}
System.out.println(s.getUpdateTs());
s= dl.getSqlEm().find(s.getClass(),s.getStorageId());
System.out.println(s.getUpdateTs());

System.out.println("Updating " + s.getTableName() +
"\t" + args[1]);
try {

dl.SyncOneEntity(s, n);
} catch (ClassNotFoundException e) {

e.printStackTrace();
}

}
}

Figure C.3: Procedure to synchronize NoSQL based on received update message.

81

	Accelerated Data Delivery Architecture
	Recommended Citation

	tmp.1384909736.pdf.KjB_x

