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by 
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(Under the Direction of Lorenza Beati) 

ABSTRACT 

Ixodes scapularis, the black legged tick, is a species endemic to North America 
with a range including most of the eastern-half of the United States and portions of 
Canada and Mexico. The tick is an important vector of diseases transmitted to 
humans and animals. Since its first description in 1821, the taxonomy of the 
species has been controversial. Biological differences have been identified in the 
northern and southern populations, yet no consensus exists on population structure 
and the causes of this disparity. Earlier molecular studies utilizing nuclear and 
mitochondrial genetic markers have revealed the occurrence of two distinct 
lineages: a genetically diverse southern clade found in the southern-half of the 
distribution area of I. scapularis, and a more genetically homogeneous American 
clade found throughout the I. scapularis range. Although mitochondrial markers 
have assisted in clarifying the population history of the tick, nuclear, bi-parentally 
inherited markers such as microsatellite loci can provide additional information at 
a finer scale. Furthermore, previous studies were based on either limited sampling, 
which did not represent the whole geographic range of the tick, or were based on 
single molecular markers. In this study, we (a) generated a new dataset by 
collecting samples throughout the distribution range of I. scapularis; (b) developed 
microsatellite markers for the study of the genetic structure of I. scapularis; (c) 
amplified and sequenced two different mitochondrial datasets and analyzed them 
phylogenetically in order to compare our data with previously published 
reconstructions; and (d) analyzed population genetics parameters and compared 
results obtained by analyzing mitochondrial vs. microsatellite markers. Our data 
confirm some of the earlier findings, but provide additional information on the 
geographically distinct genetic diversity of the species, and the evolutionary 
mechanisms that shaped its present structure. These data may further help our 
understanding of how pathogens circulate within I. scapularis populations. 
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CHAPTER 1 

Introduction 

Taxonomic information: Ixodes scapularis Say, 1821, often referred to as the 

black legged tick, is a bloodsucking ectoparasite that feeds on a variety of vertebrate 

hosts, including: birds, mammals, and reptiles (Bishopp and Trembley, 1945; Keirans et 

al., 1996; Guzmán-Cornejo and Robbins, 2010; Bouchard et al., 2011). It is endemic to 

North America and its range includes the United States, Canada, and Mexico (Keirans et 

al., 1996; Dennis et al., 1998) (Figure I). Since its first description by Thomas Say (1821), 

the species has undergone periods of taxonomic ambiguity due in part to discontinuity in 

geographic distribution or clinal variations in morphological characters (Hutcheson and 

Oliver, 1996; 1998) and behavior (Kinsey et al., 2000; Clark et al., 2002). Nomenclature 

associated with I. scapularis is listed below. 

Synonymy list: 
 

Ixodes scapularis Say, 1821 
Ixodes fuscous Say, 1821 
Ixodes reduvius Neumann, 1899 (pro parte) 
Ixodes pratti Banks, 1908 (pro parte) 
Ixodes fuscus Neumann, 1911 
Ixodes ricinus variation scapularis Say, 1821 sensu Nuttall and Warburton, 1911 
Ixodes ozarkus Cooley, 1944 
Ixodes muris Good, 1973 
Ixodes dammini Spielman, Clifford, Piesman and Corwin, 1979 

(From: The ticks of the world. Nomenclature, described stages, hosts and distribution (Acarida, Ixodida) 
Camicas et al., 1998; Catalogue of life: 3rd February 2012, www.catalogueoflife.org) 

 

Due to the sexually dimorphic nature of the species, initial morphological descriptions 

resulted in a dual classification of adult forms: Ixodes fuscous and I. scapularis, referring 
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to males and females respectively (Say, 1821). Biological and morphological similarities to 

other ticks belonging to what is known as the Ixodes ricinus complex (Keirans et al., 

1999; Xu et al., 2003), resulted in multiple re-classifications of I. scapularis. Neumann 

(1899) included specimens of both the European I. ricinus and the American I. scapularis 

in his description of Ixodes reduvius. In 1908, Banks described Ixodes pratti based on 

both, specimens of Ixodes kingi and I. scapularis; I. kingi formerly used as an ambiguous 

synonym of the latter (Camicas et al., 1998). In 1911, I. scapularis was reduced to a 

variation of I. ricinus Nuttall and Warburton, 1911. Cooley (1944) described a new 

species of Ixodes from Arkansas, Ixodes ozarkus, which he distinguished from I. 

scapularis based mainly on overall size and hypostomal variation. Spielman et al. (1979) 

considered the I. ricinus-like complex in North America, composed of three Ixodes 

species: Ixodes pacificus in the West, I. scapularis in the Southeast and Ixodes dammini in 

the Northeast and Upper Midwest; using morphology and distinct association with 

pathogens to distinguish between I. dammini and I. scapularis. More recently, Oliver et 

al. (1993) synonymized I. dammini with I. scapularis after establishing successful 

reciprocal crosses between colonies generated from southern and northeastern ticks, 

producing viable offspring through the F3 generation. These results were confirmed using 

ribosomal deoxyribonucleic acid (rDNA) genetic markers (Wesson et al., 1993). 

Geographic distribution: I. scapularis has a widespread geographic range within 

North America. In the United States it is found throughout most of the eastern half of the 

country including: the Atlantic Coast (Maine to the southern tip of Florida), westward 

into the lower-lying elevations of eastern Texas, and in several north central states 
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(Michigan, Indiana, Illinois, Wisconsin, Minnesota, Iowa, North Dakota and South  

Dakota) (Keirans et al., 1996; Dennis et al., 1998) (Figure I). More recently, I. scapularis 

were collected in parts of Ohio (Needham personal communication). Endemic zones in 

Canada are believed to be isolated to specific locations in south-central and southeastern 

parts including southeastern Manitoba, southern and eastern Ontario, Nova Scotia, and 

more recently, southern New Brunswick and Quebec (Keirans et al., 1996; Ogden et al., 

2006; Ogden et al., 2008b; Ogden et al., 2008c; Bouchard et al., 2011). In Mexico, the 

southernmost established range of I. scapularis extends into the states of Chiapas, 

Coahuila, Jalisco, Nuevo León, Oaxaca and Tamaulipas (Keirans et al., 1996; Guzmán-

Cornejo and Robbins, 2010). 

Geographic distribution is limited by a number of factors including: soil-type (Guerra et al., 2002; 

Bunnell et al., 2003), land cover (Mannelli et al., 1994; Stafford III et al., 1998; Guerra et al., 

2002) and climate (Brownstein et al., 2003; Bunnell et al., 2003; Diuk-Wasser et al., 2010). In 

2002, Guerra et al., created a habitat profile for I. scapularis in the north central United States 

and found habitat preference of I. scapularis to be deciduous, dry to mesic forests and alfisol-

type soils of sandy or loam-sand textures overlying sedimentary rock. Bunnell et al. (2003) 

confirmed that there was a significant statistical correlation between areas with sandy soils, at 

lower elevations, and of moderate distance to forest and water and an increase in tick abundance. 

The same study also found a negative correlation between tick abundance and areas 

characterized as wetlands or areas at higher elevations. Climate and associated factors, 

particularly humidity, and elevation limit the range of I. scapularis (Brownstein et al., 2003) and 

its population density (Diuk-Wasser et al., 2010). A study conducted by Gern et al. (2008) 
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showed similar relationships in I. ricinus, with a negative correlation between increased altitude 

and tick questing density. In addition, they found that the prevalence of Borrelia burgdorferi 

infection in questing ticks decreased with increasing altitude. It is important that these factors be 

constantly re-evaluated, as recent climatic warming trends are believed to have resulted in range 

expansions into Western portions of Canada (Bouchard et al., 2011). Changes such as habitat 

alteration and decreases in pronounced seasonal variations due to global warming have already 

been shown to influence vectors and the pathogens that they transmit (Gubler et al., 2001).  

Host associations: Host availability, along with environmental conditions play 

important roles in tick abundance (Oorebeek and Kleindorfer, 2008). I. scapularis is a 

generalist, found to feed on a variety of vertebrate hosts during its blood-feeding life 

cycles. Recorded host associations include several mammal species (i.e. domesticated and 

wild mammals, small to large in size), birds, reptiles and amphibians (Bishopp and 

Trembley, 1945; Keirans et al., 1994; Keirans et al., 1996; Clark et al., 2002; Durden et 

al., 2002; Guzmán-Cornejo and Robbins, 2010; Bouchard et al., 2011). By adopting a 

generalist strategy, species are readily able to exploit new hosts, which allows for 

possible range expansions under ideal environmental conditions (Dennis et al., 2011). 

Some hosts are important because they serve as competent reservoirs for vector-borne 

zoonotic pathogens. A competent host not only carries the pathogen, but also makes it 

available to the vector (Brunner et al., 2008). Brunner et al. (2008) confirmed the 

susceptibility of several host species to Borrelia burgdorferi sensu stricto and identified 

high (Peromyscus leucopus), intermediate (Blarina brevicauda and Tamias striatus) and 

low (Odocoileus virginianus, Sciurus carolinensis and Tamiasciurus vulgaris) level 
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competent reservoirs.  

In the southeast, host preference of immature stages of I. scapularis have been found to 

include a variety of reptiles, most of which are not found in the north (Apperson et al., 

1993). This was thought to be the reason why the prevalence of Borrelia was lower in the 

Southeast (Levin et al., 1996; Durden et al., 2002), as lizards were shown to be 

incompetent hosts along the Pacific coast (Lane, 1990; Manweiler et al., 1992). However, 

Levin et al. (1996) found that two eastern lizard species (Eumeces inexpectatus and Anolis 

carolinensis) could be infected in the laboratory through needle inoculation or tick bite. 

Xenodiagnosis with ticks showed that the infection with B. burgdorferi could last up to 

five weeks after a three-week incubation period. Clark et al. (2005) studied B. burgdorferi 

sensu lato infection rates in wild lizards in South Carolina and Florida and demonstrated 

high infection prevalence with three strains of the bacterium among nine species of wild 

caught lizard species. They also found evidence indicating significant genetic variability in 

southern strains of B. burgdorferi and individual lizards infected with multiple strains.  

Level of infectivity may be of particular importance to medical and veterinary 

practitioners when a high level competent reservoir is widely distributed and has an 

overlapping range with the vector. In a newly endemic zone in southeastern Canada, 

Bouchard et al. (2011) found in their survey of small mammals that 35% of all feeding 

ticks in their study fed on adult male mice (Peromyscus leucopus and Peromyscus 

maniculatus). 

Territoriality and range size of the host also affect the geographic structure of I. 

scapularis. Recent I. scapularis range expansions in Canada have been associated with 
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migratory bird flyways and are believed to have caused an increase in infection rates for 

Lyme borreliosis and human granulocytic anaplasmosis (Ogden et al., 2008a). 

Epidemiology and control: I. scapularis is the vector for several pathogens 

including three diseases that affect humans: Lyme disease (B. burgdorferi sensu stricto), 

human granulocytic anaplasmosis (Anaplasma phagocytophilium) and human babesiosis 

(Babesia microti). Due to high tick densities and prevalence rates of the etiologic agents, 

geographic areas of highest transmission risk are the Northeast and upper Midwest 

regions of North America (Varde et al., 1998). 

Qiu et al. (2002) examined the co-evolution of I. scapularis and B. burgdorferi sensu 

stricto, the causative agent of Lyme disease, and the tick’s influence on the geographic 

distribution of the disease. They found that the genetic structure of I. scapularis has 

played a crucial role in shaping the genetic structure of B. burgdorferi sensu stricto and 

also provided some evidence that a lack of tick genetic variability in the Northeast may be 

a cause of high infection rates.  

All resources for vector control, including funding, have been allocated to the northern 

states due to noted differences of infection rate in the northern and southern populations. 

Northern I. scapularis are responsible for >80% of Lyme disease cases in North America 

(Barbour and Fish, 2003). Different control methods have been tested, including 

pesticides; e.g., fipronil (Dolan et al., 2004) and permethrin (Solberg et al., 2003; Curtis et 

al., 2011). Also, targeted applications of pesticides with a limited range of action have 

been attempted, such as the 4-Poster device, a passive feeding station that controls ticks 

on white-tailed deer (Odocoileus virginianus) (Solberg et al., 2003; Curtis et al., 2011) and 
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a prophylactic doxycycline bait formulated to prevent the transmission of B. burgdorferi 

to rodents (Dolan et al., 2008). 

Molecular biology and Ixodes scapularis genetic diversity: Initial arguments 

over the classification of the I. ricinus-like ticks in North America relied on behavioral, 

morphological, and geographic inferences (Say, 1821; Cooley, 1944; Bishopp and 

Trembley, 1945). Biological differences have been identified in the northern and southern 

distributions (McLain et al., 1995; Rich et al., 1995; Hutcheson and Oliver, 1996; Keirans 

et al., 1996; Qiu et al., 2002; Rosenthal and Spielman, 2004), yet no consensus exists on 

population structure and the causes of this disparity. Earlier molecular studies that 

examined the population genetics of I. scapularis utilized nuclear and mitochondrial 

(mtDNA) genetic markers in phylogenetic analyses. Mitochondrial gene markers are 

maternally inherited, faster evolving than nuclear ribosomal genes, and are informative 

for resolving relationships between closely related populations and demographic 

evolutionary histories (Caporale et al., 1995; Rich et al., 1995; Norris et al., 1996; Xu et 

al., 2003). Similarly, the deoxyribonucleic acid (DNA) sequences of the nuclear internal 

transcribed spacer regions  (non-functional ribonucleic acid (RNA) regions separating 

structural rRNAs) are variable enough to provide information at the intraspecific level 

(Wesson et al., 1993; McLain et al., 1995). 

In 1993, a study involving reciprocal crosses, assortative mating, morphometrics, isozyme and 

chromosomal analyses indicated the conspecificity of I. scapularis and I. dammini (Oliver et al., 

1993). Wesson et al. (1993) analyzed the two internal transcribed spacers of nuclear ribosomal 

DNA, ITS-1 and ITS-2, to investigate the validity of I. dammini in a comparative study, which 
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included samples of I. pacificus and I. scapularis. As they found I. dammini and I. scapularis 

sequences clustered in the same lineages, they deduced that the two species were conspecific. 

Based on 16SrRNA analyses, Caporale et al. (1995) examined the phylogeny of several members 

of the genus Ixodes, including I. scapularis and found the I. ricinus complex to be monophyletic, 

a conclusion that was later challenged by Xu et al. (2003). They also found I. scapularis and I. 

dammini to be more closely related to each other (2% genetic distance) than either of them to 

other recognized species (up to 12.8%). Nevertheless, they concluded that I. dammini and I. 

scapularis were different species, as the low divergence level between them, was comparable to 

genetic distance between distinct species of flies and beetles. Rich et al. (1995) included samples 

from a wider geographic range in a study also based on 16SrRNA analyses. Their work analyzed 

the taxonomic status of I. dammini and I. scapularis. Their analyses revealed support for the 

occurrence of two distinct lineages of recent divergence: a southern clade established in the 

southeast with its northernmost range in North Carolina and a northern clade found in the 

Northeast and north central states. They concluded that I. scapularis and I. dammini were two 

species, which originated through geographic isolation possibly during the last glacial cycles 

(20,000-12,000 years ago). As the two species co-exist in many areas, either sympatrically or as 

a mosaic, they attributed this pattern to the invasion of southerly sites by the northern ticks (Rich 

et al., 1995). They disputed prior support for synonymizing I. dammini with I. scapularis (Oliver 

et al., 1993; Wesson et al., 1993), citing inadequate sampling and misinterpreted data. 

The same year McLain et al. (1995) evaluated genetic differentiation of ticks from the east coast 

with the internal transcribed spacer 1 (ITS-1) of nuclear ribosomal DNA. The results of their 

analyses did not support the existence of two distinct species. However, their data also suggest 

that gene flow between regions has been and possibly remains restricted. 
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A study by Norris et al. (1996) using both 16S and 12S mitochondrial rDNA sequences indicated 

the presence of at least two major mitochondrial lineages in I. scapularis: a strongly supported 

southern clade and a less well supported, broadly distributed American clade (Figure II), which is 

in agreement with the study of Rich et al. (1995). Shannon diversity analyses of tick collections 

indicated that haplotype diversity was least in the northeast and accounted for only 9.3% of the 

total. In addition, higher levels of genetic variation and basal rDNA lineages in the strictly 

southern population suggest that the species arose and diverged in the South (Norris et al., 1996). 

Since the American clade included specimens from the whole distribution area of I. scapularis, 

their conclusions were in agreement with those of Oliver et al. (1993). 

Further research by Qiu et al. (2002) investigating the evolutionary relationship between I. 

scapularis and B. burgdorferi found an even greater complexity (larger number of haplotypes) in 

I. scapularis. Using 16SrRNA mitochondrial DNA (mtDNA), they also found higher levels of 

heterogeneity in the south, with the American clade being genetically so homogeneous that it 

suggested the occurrence of a population bottleneck at its origin. Their results showed, again, 

that there are two main groups, one distributed throughout the I. scapularis distribution area and 

one only found in the South. Their study also addressed the possible role of migrating birds in 

transport of northern ticks to the south during the fall to account for the presence of northern 

haplotypes in the south. 

The studies of Rich et al. (1995), Norris et al. (1996), and Qiu et al. (2002) are consistent with 

each other, although they did not always reach similar conclusions. Their findings may explain 

the conclusions drawn from other publications. Oliver et al. (1993) and McLain et al. (1995), 

used colony ticks to study the difference between northern and southern populations, not 
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knowing that the southern colonies may have been a mixture of ticks from the southern and the 

American clades. 

A majority of the most recent molecular studies on the genetic diversity of I. scapularis were 

based on the analysis of mitochondrial gene sequences, which are maternally inherited. ITS 

sequences occur in several copies in individual genomes and are, therefore, difficult to sequence 

directly from a PCR product without undergoing lengthy cloning processes. There was, 

therefore, a need to develop alternative bi-parentally inherited markers, informative at the 

intraspecific level. In the past decade, several studies have shown that microsatellite markers 

were useful tools for unraveling genetic relationships within Ixodes uriae (McCoy and Tirard, 

2002; Kempf et al., 2009a), I. ricinus (Delaye et al., 1998; De Meeûs et al., 2004; Røed et al., 

2006; Hasle et al., 2008; Kempf et al., 2011), and Rhipicephalus (Boophilus) microplus 

populations (Chigagure et al., 2000; Cutullé et al., 2010).  

Research involving allozyme markers in I. ricinus revealed little polymorphism and were 

uninformative (Delaye et al., 1997). In order to provide more useful molecular tools to 

study the migratory capabilities and resulting gene flow in I. ricinus, Delaye et al. (1998) 

designed and tested several microsatellite primers. De Meeûs et al. (2002) examined 

population structure and dispersal behavior in I. ricinus using the microsatellite markers 

designed by Delaye et al. (1998). They found a significant geographic structure within 

their sample and sex-associated differences in dispersal ability (males being more 

genetically diverse at each given site, than females). They suggested a sex-associated 

difference in host preference, possibly favoring the dispersal of males. Additional 

markers were required for analysis of population genetics in I. ricinus because previously 

described markers (Delaye et al., 1998) had issues due to the possible presence of null 
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alleles related to DNA methylation (De Meeûs et al., 2002; De Meeûs et al., 2004). Røed 

et al. (2006) designed microsatellite primers for I. ricinus, of which, almost half were 

successfully amplified and polymorphic. However, not all loci conformed to Mendelian 

expectations. Kempf et al. (2009b) used microsatellite loci to investigate assortative 

mating in I. ricinus. In two out of four populations, they found a significant positive 

correlation between the mating status and the relatedness of pairs, implying the 

occurrence of assortative mating. Kempf et al. (2011) examined host-associated genetic 

structure in I. ricinus using microsatellite markers on ticks collected from wild animals at 

five sites in Europe. Their results showed genetic structure among individual hosts, 

among host types, and within local populations. 

Chigagure et al. (2000) designed the first set of microsatellite primers for use with R. (B.) 

microplus. De Meeûs et al. (2010) investigated the sympatric speciation of R. (B.) microplus on 

cattle (Bos taurus) and rusa deer (Cervus timorensis) in New Caledonia. Their study found that 

there are significant genetic differences between ticks found on cattle and those found on deer. 

Evidence was provided for adaptive divergence having occurred in approximately 244 tick 

generations (the date of introduction of the exotic rusa deer in New Caledonia is known). 

McCoy and Tirard (2002) used microsatellite primers to investigate the reproductive 

strategies of I. uriae. They were able to show that multiple mating can result in multiple 

paternities in each brood. Kempf et al. (2009a) examined host-associated divergence in I. 

uriae using both microsatellite and mitochondrial markers in order to address both recent 

and historical events in the species evolutionary history. Microsatellite markers were used 

to analyze host-associated population structure in four seabird colonies and the 

mitochondrial marker was used to establish a relationship between host association and 
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the phylogeographic relationships among ticks. They found significant evidence 

supporting the evolution of host-associated races in I. uriae. However, nested-clade 

analysis showed that mitochondrial genetic diversity was more readily explained by 

geography than by host.  

Although microsatellite loci had been detected in I. scapularis genomes, they had been deemed 

useless for population genetic analysis based on their alleged rarity within the I. scapularis 

genome (Fagerberg et al., 2001). Now that black legged tick genome has been sequenced and 

assembled (http://extension.entm.purdue .edu /igp/), we know that microsatellite loci are 

extremely frequent (Cat Hill, personal communication). Rosenthal and Spielman (2004) 

examined the genetic distribution of I. scapularis in eastern North America using a single 

microsatellite locus which had previously been developed for I. ricinus (IR27) by Delaye et al. 

(1998), to determine gene flow. Rosenthal and Spielman (2004) found the locus to be highly 

polymorphic for the 58 I. scapularis they tested. Their findings lead to the conclusion that I. 

scapularis found in the Northeast and Midwest were genetically isolated from those found in the 

Southeast and suggest that this homogeneity in the north is the result of a founder event. 

GOALS FOR THIS PROJECT 

The purpose of this project is to use samples collected from the different regions 

within the range of I. scapularis and do a comparative analysis of mitochondrial and 

microsatellite genes in order to investigate their differences and see whether both support 

similar population groupings. In studies similar to our own, researchers found that using 

only sequences of mtDNA was restrictive and failed to detect significant genetic 

differentiation between populations, most likely due to its depiction of only the maternal 

lineage (Brower and DeSalle, 1998; Brunner et al., 1998). By providing additional data 
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for analysis, results should generate a finer depiction of how, why, and where this 

differentiation is occurring. 

OBJECTIVES 

Objective 1- To gather a sampling of freshly collected I. scapularis from its whole 

distribution area. 

Objective 2- To compare evolutionary and demographic histories resulting from the 

analyses of the two mitochondrial datasets (compare to each other and to 

previously published data). 

Objective 3- Develop and characterize bi-parentally inherited informative molecular 

markers (microsatellite loci) for the analysis of the population structure of I. 

scapularis. 

Objective 4- Verify whether or not microsatellite genotyping and analysis support the 

same genetic structure revealed by mitochondrial gene sequence analysis. 
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CHAPTER 2 

Materials and methods 

Sample collection: Sampling of ticks was representative of locations throughout the 

distribution range of I. scapularis (Keirans et al., 1996; Dennis et al., 1998). This range was 

broken into four regions and ticks were sampled from localities within each region (Table I). 

Sites for personal collection were selected based on distance to other designated sampling areas, 

accessibility to the researcher, and predicted likelihood of tick availability (Diuk-Wasser et al., 

2010; Centers for Disease Control and Prevention website) (Figure I). Locations were visited in 

mid-October during anticipated periods of higher I. scapularis activity based on prior studies 

involving population density and seasonality (Falco et al., 1999; Brownstein et al., 2003). 

Personal field collection of ticks involved two methods: vegetation flagging and host surveys. 

Vegetation flagging required the use of a 1 m2 piece of white flannel fabric attached to a wooden 

dowel. This tool was swept across ground cover to collect active, questing ticks. Host surveys 

involved direct removal of ticks from white-tailed deer (O. virginianus) at a deer check station 

(David W. Force Park, Ellicott City, MD). Ticks were removed from the fabric and host using 

forceps and placed directly into vials containing ethanol, where they remained until DNA 

extraction. A total of 65 additional ticks (31 collected in the south and 34 collected in the north) 

was used as test sample for microsatellite characterization. 

DNA extraction: Specimens were identified using taxonomic keys for the genus Ixodes 

(Keirans and Clifford, 1978; Durden and Keirans, 1996; Kleinjan and Lane, 2008) and entered 

into a database prior to genetic analysis. The extraction method followed previously published 

protocols (Beati and Keirans, 2001; Beati et al., 2012). Qiagen DNeasy Blood and Tissue Kits 

(Qiagen Incorporated, Chatsworth, CA) supplemented with recombinant, PCR grade proteinase 
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K from Roche Applied Science (Roche Diagnostics Corporation, Indianapolis, IN) were used for 

DNA purification. Individual ticks were placed in separate, PCR grade, 2 mL Eppendorf vials 

and were set to dry in a vacuum dessicator for a minimum of ten minutes. A total of 180 µL of 

animal tissue lysis buffer (ATL) was added. Each tick was cut within the buffer with a flame-

sterilized scalpel by one of two methods: (1) adults and nymphs had a small portion of the 

idiosoma excised and (2) larvae were prepared by puncturing the cuticle with the sharp point of 

the blade. These techniques allowed for conservative disruption of the exoskeleton and 

preservation of the cuticle for possible future morphological assessment (Beati et al., 2012). 

After each specimen was cut, 40 µL of proteinase K (14.3mg/ml) were added to digest proteins. 

The vials were vortexed and placed in a dry bath at 56°C overnight. A total of 220 µL of AL 

lysis buffer was added to each vial; vials were vortexed, and incubated in a dry bath at 72°C for 

10 minutes. Molecular grade ethanol (250 µL) was added and the solution was mixed using a 

micropipette. All liquid contents of each vial were transferred to a DNA mini-spin column with 

an attached collection tube, while cuticles were left in their original vials and preserved in 70% 

ethanol. The columns were centrifuged for one minute at 12,000 rpm to bind the DNA to the spin 

column membrane and remove any of the unwanted digested material. The bottom of each vial 

was removed, discarded and replaced with a new collection tube. To remove denatured proteins, 

500 µL of AW1 washing buffer were added to each vial and centrifuged as in the previous step. 

The collection tube was removed, discarded and replaced. A total of 500 µL of AW2 wash buffer 

was added and each vial was centrifuged, to remove any salts present. In order to guarantee 

complete removal of buffer residues, empty columns were centrifuged again for an additional 

two minutes at 12,000 rpm. A total of 100 µL of molecular grade water at 72°C was added to 
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each column, which was spun for one minute at 12,000 rpm for final elution of DNA. The eluted 

DNA was stored at 4°C until needed. 

Characterization of microsatellite markers: Prior to this study, 67 primer pairs 

amplifying I. scapularis microsatellite loci were selected by examining parts of the I. scapularis 

genome (http://www.vectorbase.org/). PCR conditions were optimized through gradient testing 

and program modification. A total of 22 microsatellite loci was selected for further analyses, 

based on reliable amplification of the expected fragment length in I. scapularis and presence of 

polymorphism. In order to further characterize the set of 22 primer pairs, we evaluated them for 

cross-amplification of pooled DNA from three additional species belonging to the I. ricinus 

complex: I. pacificus, Ixodes persulcatus, I. ricinus, and I. scapularis (Keirans et al., 1999; Xu et 

al., 2003). In order to test for linkage disequilibrium (LD) and Hardy-Weinberg equilibrium 

(HWE), the 22 primer pairs were used to amplify DNA from our test sample.  LD between pairs 

of loci was tested by genotypic randomization test for linkage disequilibrium implemented in 

GenePop (Raymond and Rousset, 1995) with 10,000 iterations. HWE exact test for 

heterozygosity deficit was also performed in GenePop for each locus (10,000 iterations). In order 

to evaluate the importance of null allelles in our data, an estimation of genotype amplification 

failure rate was performed by a maximum likelihood expectation maximization test with 

GenePop. Eight loci were chosen to test our sample for genetic structure.  

PCR amplification and analysis: The DNA from each tick was amplified for two 

mitochondrial gene markers (12S small ribosomal subunit RNA gene (12SrRNA) and D-Loop, 

also called the control region) (Table II) and eight nuclear microsatellite loci (locus 1, 3, 11, 15, 

16, 17, 18 and 19) (Table III). PCR master mix preparation for each mitochondrial gene marker 

and microsatellite locus, as well as their corresponding thermocycler programs are listed in Table 
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IV. Forward primers for microsatellite loci were fluorescently tagged (Table III). Different 

colored custom-designed fluorescent tags from Applied Biosystems (Life Technologies 

Corporation, Carlsbad, CA) were used for different loci to allow for multiplexing. Agarose gel 

electrophoresis was used to confirm the presence of gene fragments of the desired size. 

Confirmation of 12SrRNA and D-Loop amplifications was done using 1% agarose gels in 0.5 x 

Tris Borate-EDTA (TBE) buffer, stained with ethidium bromide. Either 4% NuSieve agarose 

gels in 1.0 x lithium borate (LB) buffer, stained with ethidium bromide or 2-4% E-gel precast 

agarose gel cassettes prepared with molecular grade ethidium bromide from Invitrogen (Life 

Technologies Corporation, Carlsbad, CA) were used for the microsatellite loci. 

Sequencing: Each mitochondrial non-purified amplicon (approximately 16 µL) was 

diluted with 10 µL molecular grade water and aliquoted in identical volumes in two wells of a 

96-well plate. A total of 15 µl of each primer (2 pmole/µl) was placed in the corresponding wells 

of a second 96-well plate. The plates were sent to the University of Washington’s High-

Throughput Genomics Unit (UW HTSeq), Seattle, WA for sequencing. For each amplicon the 

two strands were assembled into a contig and verified for accuracy using Sequencher 4.10.1 

(Gene Codes Corporation, Ann Arbor, MI). Corresponding primer sequences were removed and 

necessary base calls were made. The contigs (unique sequences obtained after assembling 

complementary strands) were exported into FASTA format for further analyses.  

Alignment and phylogenetic analyses: Separate alignments of 12SrDNA and D-Loop 

gene sequences, and a concatenated alignment of 12SrDNA/D-Loop were prepared using 

MacClade 4.08 OSX (Sinauer Associates, Inc., Sunderland, MA). The uploaded sequences were 

first aligned automatically and the alignments were manually modified according to secondary 

structure (Hickson et al., 1996; Beati and Keirans, 2001). A total of five outgroup sequences was 
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used for 12SrDNA: I. pacificus, Ixodes affinis, I. persulcatus (Genbank accession #: JF758624), 

I. ricinus (Genbank accession #: AF150029), and Ixodes brunneus, all but the last species 

belonging to the I. ricinus complex. A total of four outgroup sequences was used for D-Loop: I. 

pacificus, I. affinis, I. persulcatus (Genbank accession #: NC004370), and I. ricinus (Genbank 

accession #: AY945473).  The 12SrDNA and the D-Loop sequences were also concatenated in a 

single matrix, for total evidence analysis. The concatenated 12SrDNA/D-Loop alignment 

included four outgroup sequences: I. pacificus, I. affinis, I. persulcatus (Genbank accession #s: 

JF758624/NC004370) and I. ricinus (Genbank accession #s: AF150029/AY945473). The 

individual 12SrDNA and D-Loop alignments were exported in Phylip 3.6 format for use in 

TCS1.21, a network estimation tool that uses statistical parsimony (Clement et al., 2000). The 

simple and concatenated matrices were also exported in Phylip 3.6 format for analysis with 

PhyML (http://phylogeny.lirmm.fr/ phylo_cgi/index.cgi), an online tool that estimates substitution 

models based on a neighbor-joining starting tree, generates maximum likelihood (ML) 

phylogenetic trees, and evaluates branch support through bootstrapping (100 replicates) 

(Guindon and Gascuel, 2003; Dereeper et al., 2008). 

Genotyping: Microsatellite non-purified amplicons were prepared for single or multiplex 

genotyping. Amplicons of the expected length were ranked according to a predetermined visual 

concentration scale. The strength of the band determined the amount of amplicon to be plated: 

strong band = 2.0 µL, medium band = 2.5 µL, and weak band = 3.0 µL. Using singleplexing, the 

determined amount of amplicon (1-3 µL) was then diluted with Hi-Di formamide (Applied 

Biosystems by Life Technologies Corporation, Carlsbad, CA) to a total of 10 µL and placed into 

a well of a 96-well plate. When multiplexing, the sum of the volume taken from each amplicon 

(up to three loci) would be diluted with enough Hi-Di formamide to a total of 10 µL or 15 µL, 
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depending on number and concentration of amplicons. The plates were sent to the Analysis 

Facility on Science Hill at Yale, New Haven, CT, where the samples were supplemented with 

molecular weight standards and genotyped with a capillary sequencer. Genotyping results 

received from Science Hill were reviewed using GeneMarker (SoftGenetics, LLC, State College, 

PA) version 2.2.0. Number of alleles and allele fragment lengths were recorded for each 

specimen at each locus. Data were standardized according to type of nucleotide repeat (di- or 

trinucleotide) in order to account for variability in base calls due to separate processing of plate 

batches. The Microsoft Excel add-in, Genetic Analysis in Excel (GenAlEx) (Peakall and 

Smouse, 2006) version 6.41, was used to export data into formats usable by Arlequin (Schneider 

et al., 2000; Excoffier and Lischer, 2010) version 3.5.1.3, and GenePop On The Web 

(http://genepop.curtin.edu.au/; Raymond and Rousset, 1995; Rousset, 2008). 

Haplotype statistical analyses: Individual sequence alignments for 12SrDNA and D-

Loop were imported into DnaSP (DNA Sequence Polymorphism) (Librado and Rozas, 2009) 

version 5.10.01 for analysis of nucleotide polymorphism. The program was used to calculate the 

haplotype diversity (Hd), number of segregating sites (S), average pairwise distance (π), 

population mutation rate (ϑ), and three neutrality tests: Tajima’s D Tajima, 1989, Ramos-

Onsin’s and Roza’s R2 (Ramos-Onsins and Rozas, 2002), and Fu’s FS (Fu and Li, 1993; Fu, 

1997). Graphs representing mismatch distribution (pairwise differences vs. haplotype 

frequencies) were also generated in DnaSP for the American (American I + II) and the southern 

(South I + II + III) clades (see phylogenetic analysis for clade designation) as was the 

Harpending’s raggedness index of mismatch distribution (r) (Rogers and Harpending, 1992; 

Harpending, 1994). Differentiation between populations (FST) was estimated and the value was 

used to infer Nm (number of migrant/generation) in order to estimate gene flow between 
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populations (Hudson et al., 1992). The statistical significances of all tests performed with DnaSP 

were estimated by the coalescent method (with 95% confidence interval) with 5000 

permutations.  

Microsatellite analysis of our populations: Genic and genotypic differentiations 

between populations and between groups of populations were evaluated in GenePop (10,000 

iterations). In addition, FST (genetic structure based on allele frequencies) and their significance 

values were also evaluated by using Arlequin 3.5 (Schneider et al., 2000; Excoffier and Lischer, 

2010).  



   

 21 

CHAPTER 3 

Results 

Sampling: A total of 323 ticks was collected from 20 locations among 15 states (Figure 

III, Table V). Regional distribution was as follows: north coastal (106), north inland (24), south 

coastal (125), and south inland (68). All ticks were identified as I. scapularis. The sampling 

included 24.5% of larvae, 10.5% of nymphs, 29.4% of males, and 35.6% of females (Table V).  

Microsatellite development: Of the 22 primer pairs selected prior to this study, 15 

successfully cross-amplified loci of at least one other species (Table III). All, but one of the 15 

primer sets, were able to amplify both I. scapularis and I. persulcatus DNA. In addition, more 

than half of these primer sets succeeded in amplifying DNA from I. pacificus (eight loci) or I. 

ricinus (nine loci). When used to amplify the corresponding loci in the 65-test sample, Genepop 

revealed the occurrence of significant (0.01 < p < 0.05) linkage disequilibrium between loci 1 

and 3, 3 and 16, 15 and 16, 16 and 17, and 15 and 19. Allele diversity was important in all loci 

and varied from 6 to 26 different alleles/loci (average of 14.91). No loci were at HWE as there 

was a significant heterozygous deficit encountered for each locus in the whole population and in 

the ticks belonging to the American clade. Within the southern clade there was a significant 

heterozygous deficit in all but locus 3 and locus 18. The estimation of genotype amplification 

failure rate was found to be non-significant. 

DNA extraction, PCR, sequencing, and genotyping: The DNA of 323 ticks was 

extracted and successfully PCR-amplified for 12SrDNA and D-Loop. Both strands of each 

amplicon were sequenced and assembled unambiguously into contigs. Success rate for 

genotyping of resulting amplicons for the eight selected microsatellite markers varied according 
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to locus (percent success): locus 1 (100%), locus 3 (100%), locus 11 (97.8%), locus 15 (96.6%), 

locus 16 (99.7%), locus 18 (99.1.%), and locus 19 (98.1%). 

Haplotype diversity:  

12SrDNA: The alignment of the 12SrDNA sequences (323 total) resulted in a matrix of 356 

characters. The matrix included a high proportion of sequences that differed from each other by 

single mutations (often indels). The alignment was reduced to a total of 104 unique haplotypes 

for phylogenetic analysis and 60 haplotypes for DnaSP analyses (gaps eliminated) (Table VI). 

The overall haplotype diversity was high (0.704 ± 0.03) as was the number of segregating sites 

(122). The average pairwise distance, however, was low (0.018). Appendix A shows the 

geographic distribution of the 12SrDNA haplotypes. Distribution of 12SrDNA haplotypes 

unique to each region is as follows: north coastal (33), north inland (6), south coastal (64), and 

south inland (21). Identical haplotypes found in multiple regions included: 7, 8, 15, 17, 22, 26, 

28, 37, 39, 40, 58, and 87. Only three haplotypes were found in all four regions: 17, 26, and 28. 

The two most common haplotypes were 28 and 16, with 56 sequences distributed among all four 

regions and 17 sequences from south coastal states, respectively. 

D-Loop: The alignment of the D-Loop sequences (323 total) resulted in a matrix of 521 

characters. The alignment was reduced to a total of 155 unique haplotypes for phylogenetic 

analysis and 110 haplotypes for DnaSP analyses (gaps eliminated) (Table VII). The overall 

haplotype diversity was high (0.973 ± 0.004), as was the number of segregating sites (110). The 

average pairwise distance was low (0.029), but higher than that found in 12SrDNA analyses. 

Appendix B shows the geographic distribution of the D-loop haplotypes. Distribution of 

haplotypes unique to each region is as follows: north coastal (32), north inland (11), south 

coastal (63), and south inland (34). Identical haplotypes found in multiple regions included: 7, 
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26, 29, 43, 45, 47, 49, 57, 65, 66, 83, 85, 95, and 104. Only haplotype 43 was found in ticks 

collected from all four regions. The two most common haplotypes were 29 and 139, with 28 

sequences from north coastal, north inland and south inland states and 14 sequences from south 

coastal states, respectively. 

Phylogenetic analyses:  

12SrDNA: Phylogenetic reconstructions were inferred by using ML (Figure IV). The 12SrDNA 

ML model best fitting the data selected by PhyML (Guindon and Gascuel, 2003) v3.0 was the 

Hasegawa-Kishino-Yano, 85 model (HKY85) with base frequencies of A = 0.40, C = 0.08, G = 

0.12, and T = 0.40; transition/transversion rate = 3.562; and the proportion of invariable sites was 

0.364, with equal rates. Among the outgroup taxa I. affinis appeared to be more closely related to 

I. persulcatus than to other species. All I. scapularis haplotypes were clustered in a well-

supported, polytomic clade (bootstrap value (BS) 98%). The four unranked clades arising from 

the polytomy were all monophyletic. Based on branch length, clade South III (BS 100%) can be 

considered basal and consisted of strictly south coastal sequences. Two other monophyletic 

strictly southern clades arose from the polytomy: South II (BS 90%) and South I (BS 98%). The 

remaining and most recently evolving lineage was monophyletic (96%), and included a number 

of unranked lineages. Nevertheless, one of the groups (American II), weakly supported, included 

samples that are exclusively southern, unlike the rest of the cluster represented by samples 

collected throughout the distribution area of I. scapularis. 

D-Loop: The D-Loop ML model best fitting the data by use of PhyML v3.0 (Guindon and 

Gascuel, 2003) was the generalised time reversable model (GTR) with base frequencies of A = 

0.39, C = 0.10, G = 0.08, and T = 0.43; and the proportion of invariable sites was 0.368, with 

equal rates. The relative rate parameters for substitution were: A⇔C (0.47089), A⇔G 
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(5.04877), A⇔T (1.38835), C⇔G (0.25987), C⇔T (4.23489), and G⇔T (1.00000). All I. 

scapularis haplotypes were clustered in a well-supported, monophyletic clade (BS 100%) 

(Figure V). Once again, the ingroup was a polytomy including 4 well-supported lineages. The 

three southern clades were well resolved with bootstrap values of 92 % (South I), 100% (South 

II), and 100% (South III). South III consisted of only south coastal ticks (BS 100%). South I 

consisted of only south coastal ticks, whereas South II contained both south coastal and south 

inland ticks. The American clade was supported by 84% bootstrap value. Within the lineage, 

samples from diverse geographic origins were paraphyletic, while one clade containing only 

southern ticks (American II) distinguished itself clearly from everything else (BS 95%). Overall, 

the topologies of the D-Loop and the 12SrDNA phylogenetic trees were very similar. Samples 

assigned to the three main southern clades by 12SrDNA analysis were identically separated into 

three well-supported lineages in the D-Loop reconstruction.  

Concatenated 12SrDNA and D-Loop sequences: The 12SrDNA/D-Loop matrix included 323 

sequences (865 bp) corresponding to 213 unique haplotypes. The 12SrDNA/D-Loop ML model 

best fitting the data by use of PhyML v3.0 (Guindon and Gascuel, 2003) was the HKY85 model 

with base frequencies of A = 0.40, C = 0.09, G = 0.10, and T = 0.42; transition/transversion rate 

= 4.110; and the proportion of invariable sites was 0.474, with equal rates. The total evidence 

tree (Figure VI) was characterized by overall better resolution than the trees generated by 

analyzing genes separately. The ingroup was clustered in a well-supported, monophyletic clade 

(BS 100%). This clade was divided into two monophyletic and well-resolved sister groups: a 

lineage clustering all southern clades (BS 90%) and one clustering both American clades (BS 

100%). South I, South II, and South III were all well supported, with BS values of 90%, 70%, 

and 100%, respectively. South I and South II were more closely related to each other than to 
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South III, and clustered in a monophyletic group (BS 80%). Within South III, a polytomic group 

characterized by short terminal branches diverges from the basal lineages. Within the American 

clade, American I was paraphyletic, while American II was placed in a basal position and 

supported by 100% BS. 

TCS1.21 analyses: 

12SrDNA: TCS1.21 generated four separate networks for 12SrDNA haplotypes (Figure VII): a 

combined American I and American II containing ticks from all four regions, South I containing 

ticks from the south coastal region, South II containing ticks from the south coastal and south 

inland regions, and South III containing ticks from the south coastal region. The networks 

remained separated even when the parsimony level cutoff was set to 90%, indicating that these 

lineages are distinct and that mitochondrial gene flow between them is reduced. The American I 

network was characterized by the presence of large loops connecting the predominant 

haplotypes. The number of mutations between most haplotypes was very low (1-2 bp, often 

represented by indels), particularly around the main haplotype (56 samples). Haplotypes were 

separated by a maximum of 17 steps. Only five specimens were represented in the South I 

network. The South II network had a linear structure, with haplotypes separated by up to 13 

mutations. The South III network was represented by a predominant haplotype (13 samples) 

linked to other haplotypes by a large loop, and by few mutation steps on each branch. 

D-Loop: TCS1.21 generated five phylogenetic networks for D-Loop haplotypes (Figure VIII): 

American I containing ticks from all four regions, American II containing ticks from south 

coastal, north inland, and south inland regions, Southern I containing ticks from the south coastal 

region, Southern II containing ticks from the south coastal and south inland regions, and South 

III containing ticks from the south coastal region. The D-Loop networks indicated a similar 
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pattern of relationships between individuals to that of 12SrDNA (Figure VII). However, with the 

D-Loop sequences, American II was separated from the American I network. The five networks 

remained separated even when the parsimony level cutoff was set to 90%, also indicating strong 

genetic differentiation and little genetic exchange. In addition, the American I network identified 

a number of clusters along its linear backbone. The number of mutations between most 

haplotypes in American I is higher for this mitochondrial marker than for 12SrDNA with up to 

35 mutation steps. The American II network consisted of a linear structure with haplotypes 

separated by up to 12 mutations. The South I network was represented by only six specimens yet, 

it exhibited a linear structure with haplotypes separated by up to ten mutations. The South II 

network also had a linear structure, with haplotypes separated by up to 12 mutations. The South 

III network had a linear structure with a star formation around its main haplotype (14 samples), 

and with a maximum of ten mutations between haplotypes.  

          Haplotype demographic parameters:  

12SrDNA: Overall the significant values revealed by all neutrality tests indicated that I. 

scapularis had undergone recent population growth (Table VI). When considering South I, South 

II, and combined South I + II + III separately, the non-significant neutrality tests are indications 

of relatively stable and older populations. South III, unlike the other southern populations, also 

showed signs of population growth. Not all neutrality tests reached the same conclusions about 

the American populations. Nevertheless, they consistently revealed population expansion for 

American I. Mismatch distribution (population expansion model) resulted in non-significant 

values for the raggedness index (r) for all populations. However, mismatch analysis graphs 

representing 12SrDNA haplotype frequency over pairwise differences, showed a unimodal 

distribution for the combined American populations consistent with population expansion 
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(Figure IXa) and a bimodal distribution for the combined southern populations (Figure IXb) 

which is indicative of older and stable populations.  

D-Loop: Neutrality tests for the DL gene gave contradicting evaluations of the demographic 

history of the different populations. Nevertheless, the tests were significant for American I and 

indicated, as with the 12SrRNA analysis, that this particular population underwent population 

expansion. Raggedness indices (r) were all non-significant. However, the mismatch distribution 

graphs showed that the American clade was unimodal (Figure IXc), although not as clearly as for 

12SrDNA, while the southern clade is markedly bimodal (Figure IXd).  

          Genetic differentiation: 

12SrDNA: Differentiations between all populations (FST) were highly significant (Table VIII). 

FST values ranged from 0.39 to 0.95. The lowest value (0.39) was observed between American I 

and American II. The number of migrants per generation (Nm) was consistently low (0.03 to 

0.78), with the highest value (0.78) found between American I and American II.  

D-Loop: Genetic differentiation (FST) was highly significant between all populations (Table IX). 

FST values varied between 0.62 and 0.86 and Nm values varied between 0.10 and 0.31. As for 

the 12SrDNA analysis, the lowest FST value (FST = 0.62) and the highest Nm (Nm = 0.31), were 

recorded between American I and American II. 

Microsatellites: Estimations of FST (Arlequin - Schneider et al., 2000; Excoffier and Lischer, 

2010) yielded significant values between American I and all other populations (Table X). 

Contradictory to our prior analyses there was a lack of significance in the differentiation between 

American II and South II, as well as, between all southern populations. 
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CHAPTER 4 

Conclusions 

 
The main focus of this study was to examine the genetic structure of I. scapularis through 

more extensive sampling of the distribution range and by using different molecular tools. We 

also wanted to compare our results to previously published data on genetic diversity of I. 

scapularis (Wesson et al., 1993; McLain et al., 1995; Rich et al., 1995; Norris et al., 1996; Qiu et 

al., 2002). A total of 15 states was included in our study, representing all four regions within the 

I. scapularis distribution. We were unable to collect ticks from the southwestern-most states 

(Texas and Oklahoma) but our sampling covered most of the other areas where the tick is known 

to occur. To account for within and between site genetic variability, adequate sampling was 

necessary. The number of ticks collected in previous studies varied in sample size: 18 (Wesson et 

al., 1993), 26 (Rich et al., 1995), 196 (Norris et al., 1996), and 650 (Qiu et al., 2002). Although 

we tried to include as many specimens from each state as possible, samplings of some locations 

were limited due to differences in population density of questing ticks and number of times 

visited. Nevertheless, our sample (323 ticks) was larger than any sample considered in previous 

publications, with the exception of Qiu’s (2002) study, which included 650 ticks. These, 

however, had been collected along the Atlantic coast and did not represent inland populations.  

From the 323 ticks sequenced, a total of 104 and 155 unique haplotypes (indels included), 

were identified for 12SrDNA and D-Loop, respectively. These numbers were higher than those 

found in previous studies of I. scapularis involving 16SrDNA, a gene located close to 12SrRNA 

on the mitochondrial genome (11 haplotypes from 198 ticks throughout the distribution, Norris et 

al., 1996; 10 haplotypes from 650 ticks along the Atlantic Coast, Qiu et al., 2002). This 

difference could be due to a variety of factors, including the fact that 16SrDNA gene sequences 
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have lower mutation rates than 12SrDNA sequences (Norris et al., 1996). Indels may have been 

eliminated in other studies, whereas we counted each nucleotide difference at least for 

phylogenetic and TCS analyses. Our sample covered geographic areas not included in some of 

the previous studies. Also, we also obtained ticks from different sources and collected at 

different times while other authors may have obtained genetically more homogeneous samples 

from identical localities. 

All of our ML phylogenetic reconstructions (12SrDNA, D-Loop, and concatenated 

12SrDNA/D-Loop) support prior findings that indicated the existence of a well-supported 

American and a well-supported southern clade in I. scapularis (Wesson et al., 1993; Rich et al., 

1995; Norris et al., 1996). The ML phylogenetic reconstruction for concatenated 12SrDNA/D-

Loop provided the best, overall lineage resolution in comparison to the separate gene analyses. 

The southern clades contained samples collected in the South only and were found in a basal 

position in all trees, confirming the hypothesis by Qiu et al. (2002) that I. scapularis originated 

in the South. Unlike previous reconstructions, our phylogenetic analyses showed that the two 

monophyletic groups were further subdivided in distinct clades, varying in haplotype 

composition and regional distribution. The monophyletic southern clade included three ranked 

and well-resolved lineages: South I, II, and III. South III also contained a polytomy of unranked 

branches, whereas South I and South II appeared to be more structured. In the TCS minimum 

spanning network of South III, the star-shaped cluster corresponds to the polytomy found in the 

phylogenetic analysis. This type of structure indicates events of rapid radiation and population 

expansion. The neutrality tests confirmed these finding by providing a clear signature for 

population growth in South III, while indicating a comparatively more stable demographic 

history for South II and South I which evolved neutrally. The subdivision within the American 
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clade consistently revealed the occurrence of a paraphyletic American I lineage, which included 

a very large number of genetically, relatively homogeneous haplotypes collected throughout the 

distribution range of I. scapularis. The 12SrDNA network structure of this group of sequences 

was characterized by large loops joining the same two haplotypes through alternative paths 

differing greatly in the number of steps, which is typical of a young and recently radiating 

population. In this case, most nucleotide mutations are not yet fixed and are mostly represented 

by non-informative unique character changes (singletons). The relatively small number of 

mutations separating most haplotypes was also typical of an evolutionarily young assemblage. 

Nevertheless, by using D-Loop sequence, the American I network appeared to be more 

structured with clearly identifiable groups of haplotypes. The clusters, however, did not 

correspond to any geographic subdivision, as each of them contained sequences from all sampled 

areas. Therefore, if the observed clusters correspond to sequential evolution of new haplotypes 

along the linear backbone of the network, responding to adaptation to new environments, the 

haplotypes must have been subsequently reshuffled by migratory events (carried by birds or on 

deer). The hypothesis that American I is a recently expanding population is further confirmed by 

all neutrality tests. Our study identified an additional lineage within the American clade, 

American II, which only included sequences from specimens collected in the south, and more 

specifically in Florida, South Carolina, and Alabama. The basal position of American II within 

the American cluster, particularly well supported in the total evidence analysis, would provide 

additional evidence for a southern origin for the American clade, as hypothesized by Qiu et al. 

(2002) Overall, our work is showing that genetic diversity in the South is more important than 

previously assumed (Wesson et al., 1993; Rich et al., 1995; Norris et al., 1996; Qiu et al., 2002). 

Our ingroup was also involved in population growth, probably spearheaded by American I. 
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Although, different neutrality tests reached different conclusions, it has been shown that Fu’s FS 

and R2 statistics are superior tests when compared to Tajima’s D (Ramos-Onsins and Rozas, 

2002). Furthermore, evidence has confirmed that Fu’s Fs test is more suitable for populations 

with large sample sizes, whereas R2 performs best when used to test for neutrality in smaller 

populations (Ramos-Onsins and Rozas, 2002). This is consistent with the fact that neutrality is 

rejected by R2, but not by Fu’s Fs in the combined American population (a comparatively large 

population). The mismatch distribution analyses of our 12S and D-Loop haplotypes also 

indicated that the combined American I + II clade is undergoing expansion, while the more 

genetically structured South I + II + III clade is older and more stable. Haplotype statistics on 

South I have to be considered very cautiously taking into account the very small sample size. 

FST evaluations based on mitochondrial gene sequences strongly support the conclusions 

drawn from phylogenetic and TCS analyses, revealing highly significant genetic differentiation 

between the five groups. Interestingly, FST values between American and southern populations 

(0.72-0.95 for 12SrDNA and 0.75-0.84 for D-Loop) are similar to those recorded between 

southern clades (0.83-0.92 for 12SrDNA and 0.78-0.86 for D-Loop). This indicates that southern 

clades are as different among one another as they are from American clades. Branch lengths in 

the phylogenetic concatenated reconstruction are also longer among southern lineages than 

among American lineages. 

In this study we also developed several polymorphic microsatellite primers for use in I. 

scapularis, some of which were also successful in amplifying the DNA of three other members 

of the I. ricinus complex (I. pacificus, I. persulcatus, and I. ricinus). The amplicons from the 

other taxa should be sequenced in order to verify whether or not they contain the same 

microsatellite locus. If the presence of microsatellite loci in the amplified fragments were 
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confirmed for all these additional species, these tools would show great potential for the study of 

their respective population structures. All loci were characterized by a large number of alleles 

indicating that all the markers were polymorphic. None of the 22 loci were at HWE and all 

showed a significant heterozygous deficit. Microsatellite homozygous excess has been observed 

in other tick species, and was usually explained by the occurrence of null alleles (De Meeûs et 

al., 2002; De Meeûs et al., 2004). In our case, homozygous excess is unlikely to be due to PCR 

issues such as the non-amplification of some alleles, because it is doubtful that all loci be 

diagnosed with from the same issue. Furthermore, an estimation of genotype amplification 

failure rate also confirmed that presence of null alleles was not the reason for homozygous 

excess. Homozygous excess can be interpreted in different ways, but usually it is an indication of 

either inbreeding or the Wahlund effect (Wahlund, 1928). The Wahlund effect (the occurrence of 

previously undetected genetically distinct sub-populations within a population) could apply to 

the southern clade, while inbreeding may be a more likely cause for homozygous excess in the 

American I population. The Wahlund effect was found to be responsible for homozygous excess 

in other tick species (Chevillon et al., 2007; Kempf et al., 2009a; Kempf et al., 2010). Additional 

tests will be needed to determine which of these may be at play in our populations. 

Our findings showed that when using mitochondrial genes, the phylogenetically 

identified clades are genetically strongly differentiated with very significant FST values. The 

southern lineages are as distinct from each other as from the American lineages. Nevertheless, 

microsatellite data did not fully agree with the mitochondrial results. Results from Wright’s F-

statistics showed no significant genetic differentiation between groups within the southern clade 

and significant differentiation between American and southern clades (with the exception of 

American II and South II). Therefore, it appeared that when using nuclear markers, the southern 
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lineages were more homogeneous than revealed by mitochondrial analysis. The American I 

group remained well separated from everything else, while American II seemed to maintain some 

gene flow, at least with South II.  

In summary, our study revealed the occurrence of important genetic structure within I. 

scapularis, a genetic structure maintained sympatrically in some southern localities where the 

five mitochondrial clades can be collected simultaneously. The reasons for this genetic 

subdivision may be found in host race formation or assortative mating, as was shown for other 

tick species (Oliver et al., 1993; McCoy and Tirard, 2002; Chevillon et al., 2007; Kempf et al., 

2009a; Kempf et al., 2009b; De Meeûs et al., 2010; Kempf et al., 2011). Nevertheless, as the 

mitochondrial and the nuclear analyses revealed slightly different patterns, further analyses will 

be needed in order to evaluate the extent of gene flow among all these populations. Even so, all 

analyses appeared to indicate that American I is distinct from everything else, which would 

indicate that the identification of I. dammini as a separate species from I. scapularis (Spielman et 

al., 1979; Wesson et al., 1993; Rich et al., 1995), albeit based on incomplete and incorrect 

geographic assumptions may actually have been valid. Laboratory colonies of each 

mitochondrial clade have now been established and will help to determine, through cross-

breeding experiments and morphological re-analysis, whether or not the American I population 

really corresponds to a separate species (I. dammini). 
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Figure I: Distribution of I. scapularis in the United States. Areas in brown represent counties where I. scapularis is 
either established or reported to occur <http://wildlifehealth.tennessee.edu/lyme_gradient> (September 2009). 
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Figure II: Phylogenetic tree produced from combined 16S and 12S mitochondrial sequence data. A phylogram 
derived from maximum parsimony analysis. Branch lengths are proportional to the number of substitutions. As 
adapted from the results of Norris et al. (1996). 
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Figure III: Map of tick collection locations used for this project depicted relative to a field sampling/climate-based 
model of nymphal population density (Diuk-Wasser et al., 2010). Created by Jamie M. Kass (2011).
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Figure IV: A phylogenetic tree inferred from maximum likelihood of the 12SrDNA gene fragments in studied 
populations of I. scapularis. Bootstrap values of significance are indicated to the left of branches.
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Figure V: Phylogenetic tree inferred from maximum likelihood of the D-loop gene fragments in studied populations 
of I. scapularis. Bootstrap values of significance are indicated to the left of branches. 
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Figure VI: Phylogenetic tree inferred from maximum likelihood of the concatenated 12SrDNA/D-loop gene 
fragments in studied populations of I. scapularis. Bootstrap values of significance are indicated to the left of 
branches.
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Figure VII: Unrooted minimum spanning networks with a 97% confidence interval of the I. scapularis 12SrDNA 
haplotypes, with numbers of identical sequences represented in each circle. Lines represent single mutations and 
dots represent unsampled intermediate haplotypes. Designations of clades are also noted.
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Figure VIII: Unrooted minimum spanning networks with a 95% confidence interval of the I. scapularis D-Loop 
haplotypes, with numbers of identical sequences represented in each circle. Lines represent single mutations and 
dots represent unsampled intermediate haplotypes. Designations of clades are also noted.
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Figure IX: Mismatch distributions obtained from 12SrDNA gene sequence data for the American clade (American I 
and American II) (a) and southern clade (South I, South II, and South III) (b); and D-Loop gene sequence data for the 
American clade (c) and the southern clade (d). Expected distribution under the sudden expansion model and 
observed pairwise differences are as noted.
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Table I: List of ticks used in this study, with locations of collection subdivided by: region, geographic coordinates of 
collection site, and source of ticks (✰ = obtained from researchers working together on NSF-EID Award EF-
0914476; △ = specifically collected for this study; ♣ = obtained from Jon Oliver, Iowa State University). 
 

Region Location/State Latitude Longitude No. of ticks Source 
Ice House/Old Tree Site, CT 41.27944 -72.81555 31 L. Beati 

Cape Cod National Seashore, MA 41.71583 -69.92778 23 ✰ 
David W. Force Park, MD 39.29403 -76.88291 13 △ 
William Floyd Estate, NY 40.76549 -72.83059 10 K. Kerr 

Hawk Mountain Sanctuary, PA 40.67023 -75.95793 3 △ 
Porcaro Estate, PA 40.50328 -40.50328 9 △ 
First Landing State Park, VA 36.90598 -76.01521 1 △ 

North coastal 

Shenandoah National Park, VA 38.29276 -38.29276 16 △ 
North inland Camp Ewalu, IA 42.67415 -91.59348 3 ♣ 

  Pleasant Creek SRA, IA 42.11906 -91.80589 3 ♣ 

  Upper Iowa Access Wildlife Area, IA 43.46802 -92.26184 10 ♣ 

  Yellow River State Forest, IA 43.17183 -91.25136 1 ♣ 

  Van Buren State Park, MI 42.33404 -86.30467 2 ✰ 

  Fort McCoy, WI 44.03907 -90.67662 5 ✰ 

South coastal Tall Timbers Research Station, FL 30.65389 -84.22389 10 ✰ 

  Beaver Pond, GA 32.44861 -81.78333 28 L. Durden 

  Shingletree Road Park, NC 33.91195 -78.39564 30 M. Toliver 

  Savannah River Site, SC 33.33223 -81.66362 57 ✰ 

Talladega National Forest, AL 33.24386 -86.13447 44 ✰ 
South inland 

Arnold Air Force Base, TN 35.37691 -86.07336 24 ✰ 

 
 
 
 
 
 
Table II: Primers used for the amplification of mitochondrial gene sequences (Beati and Keirans, 2001; Beati et al., 
2012). 

Gene Approx. length 
of PCR product Primer name Primer sequences (5' → 3') 

T2A F: AATGAGAGCGACGGGCGATGT 12SrRNA 357 bp 
T1B R: AAACTAGGATTAGATACCCT 

D-Loop 3, 1X F: TAACCGCTGCTGCTGGCACAA 
D-Loop 523 bp 

D-Loop 4, 1X R: TAACCCTTTATTCAGGCAT 
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Table III: List of microsatellite loci used including: repeated motif, primer names and sequences for each locus, 
fluorescent tag used for amplification and genotyping, approximate expected size of the amplicons, number of 
observed alleles, observed heterozygosity (HO), expected heterozygosity (HE), statistical significance of the 
difference between expected and observed heterozygosity (p< 0.001 = highly significant), and results of cross 
amplification testing (PAC = I. pacificus, PER= I. persulcatus, RIC = I. ricinus). 
 

Locus Repeat 
array 

Primer 
name Primer sequences (5' → 3') Dye Size range 

(bp) 
No. of 
alleles HO HE p value Cross-

amplification 

1 (AG)X Amy1-IsAG25a F: AAATGTCCGAACAGCCTTAT 
6 

FAM 93-193 17 25.00 58.92 < 0.001 PAC/PER/RIC 

   Amy2-IsAG25b R: GCCCTTGAGTCTACCCACTA         

3 (GTT)5 bac1d_a F: GCAGATCTCTTGGGCTAG VIC 76-100 7 29.00 38.72 < 0.001   

    bac1d_b R: AAGCTAAGGCGTTCGTTG               

4 (AT)21 bac1m_a F: TGTCGGTTTGATGCCAA VIC 88-126 17 15.00 33.3 < 0.001 PAC/PER/RIC 

   bac1m_b R: GGCTCCATTCACCAGTC         

5 (CA)9 bac3dh_a F: TGCCTGTGACGAAACCA NED 62-140 17 14.00 43.95 < 0.001   

    bac3dh_b R: TCTCCCAAGAGATCTAGGTA               

6 (TA)10 bac1j_a F: TCTCCCAAGAGATCTAGGTA VIC 100-186 13 27.00 52.72 < 0.001 PER 

   bac1j_b R: ATCTGTTCAGTGGGCACA         

7 (TA)11 bac1k_a F: GGGACTGGACACACGA VIC 48-170 26 29.00 47.53 < 0.001   

    bac1k_b R: CTAGGTGGCGCAAGTC                

8 (CA)14 bac3s_a F: CGTTTCAAAGTCGGAGA PET 96-194 11 16.00 40.81 < 0.001 PER 

   bac3s_b R: GATGTGAGGGCGTGGT         

9 (AAAC)5 bac4cef_a F: CGCCTTTTGTCCCAACC 
6 

FAM 85-125 12 20.00 41.88 < 0.001 PER 

    bac4cef_b R: GACTAACAGCATTGGAGCA               

10 (TTA)9 bac5cf_a F: TCCCCCAACAAGATTGATG 
6 

FAM 77-137 15 16.00 48.77 < 0.001   

   bac5cf_b R: GAGACGACGTAGATTCTTG          

11 (TTA)6 bac5g_a F: GCTTTAGCGGGCTGGT PET 81-165 12 26.00 58.39 < 0.001 PER 

    bac5g_b R:TACGTGAATACGTCCTTGG               

12 (TA)43 bac6a_a F: GCAAGCTTCGCTATTCTC 
6 

FAM 111-229 26 10.00 35.26 < 0.001   

   bac6a_b R: CAGTAATTTCGCATCGGTT         

13 (TA)22 bac6c_a F: TAGGTACAAGAAAACGTGCT NED 37-91 17 30.00 55.93 < 0.001   

    bac6c_b R: CAAGGTAATTGTTCTCGTCA               

14 (TA)5 bac6d_a F: CCTTGCCTTACATGGTT HEX 57-105 13 15.00 42.02 < 0.001 PAC/PER/RIC 

   bac6d_b R: CGTACCAAACCAAAGCAAG         

15 (AT)8 bac6e_a F: TATTGTAACCGACGCTAGG NED 79-125 18 20.00 61.21 < 0.001   

    bac6e_b R: GACAATCTCTACGCAAATCC               

16 (CA)8 bac6f_a F: CCCCCAAACACGCACA VIC 80-106 12 27.00 51.33 < 0.001 RIC 

   bac6f_b R: TTGCTTCATGCAGGGAAC         

17 (CA)6 bac7e_a F: CCAGCATTTAACCCTCAAG HEX 139-197 12 41.00 53.38 < 0.001 PER/RIC 

    bac7e_b R: TAGTGGGGTATGGCACTG               

18 (TG)6 bac8a_a F: GTAGGTACCCTAAGAAGGAT 
6 

FAM 75-195 16 46.00 59.08 < 0.001 PER/RIC 

   bac8a_b R: TTGAGGAAGCAGAATGTAGG         

19 (CT)7 bac9a_a F: AGAACCAGTTCAGCATTCC PET 94-166 6 14.00 29.58 < 0.001 PER 

    bac9a_b R: GAACATTTTCACGTGTTGC               

20 (GC)9 bac11a_a F: CGCTCCCTTCGAAGTTC HEX 76-106 13 55.00 47.64 < 0.001 PAC/PER/RIC 

   bac11a_b R: GAGAAGACAGTTTCCATCG         

21 (ACG)6 bac11c_a F: CGAATCGCGCACACTAG NED 109-251 14 40.00 49.21 < 0.001 PAC/PER 

    bac11c_b R: GCTGTGTTGCTGGTCAC               

22 (AC)9 ac18_a F: GATGAGTCCTGAGTAAAACACA VIC 110-136 12 25.00 43.65 < 0.001 PAC/PER/RIC 

   ac18_b R: CTTGCTGCGCCCATAGTCTC         

23 MIXED e215_a F: CCTTTCCTGGCCTTCTAATCC 
6 

FAM 76-121 22 24.00 55.09 < 0.001 PAC/PER 

    e215_b R: TCCTCTATGTCACCACCTAACCAG               
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Table IV: PCR master mix solutions and thermocycler conditions for each of the markers used in this study (Beati 
and Keirans, 2001; Beati et al., 2012). 
 

  12S D-Loop Microsatellite loci 

dH2O 10.3 µL dH2O 10.3 µL dH2O 5.2 µL 

Taq buffer 2.5 µL Taq buffer 2.5 µL Taq buffer 1.3 µL 

Taq master enhancer 5 µL Taq master enhancer 5 µL Taq master enhancer 2.5 µL 

MgCl2 1.5 µL MgCl2 1.5 µL MgCl2 7.5 µL 

Primer T2A 1.25 µL Primer DL3, 1X 1.25 µL Forward primer 6.3 µL 

Primer T1B 1.25 µL Primer DL4, 1X 1.25 µL Reverse primer 6.3 µL 

dNTPs 0.5 µL dNTPs 0.5 µL dNTPs 0.3 µL 

Taq DNA polymerase 0.2 µL Taq DNA polymerase 0.2 µL Taq DNA polymerase 0.1 µL 

PCR master 
mix 

DNA sample 2.5 µL DNA sample 2.5 µL DNA sample 0.3 µL 

5 Cycles of:    8 Cycles of:    5 Cycles of:    

     Denaturation for 25sec at 94ºC       Denaturation for 20sec at 93ºC      Denaturation for 20sec at 93ºC  

     Annealing for 35sec at 50ºC        Annealing for 25sec at 65ºC -1.5ºC/cycle      Annealing for 20sec at 60ºC  

     Elongation for 30sec at 68ºC       Elongation for 45sec at 72ºC       Elongation for 30sec at 72ºC  

30 Cycles of:    10 Cycles of:   30 Cycles of:    

     Denaturation for 25sec at 94ºC       Denaturation for 20sec at 93ºC      Denaturation for 20sec at 93ºC  

     Annealing for 30sec at 53ºC       Annealing for 30sec at 53ºC -0.4ºC/cycle      Annealing for 25sec at 50ºC  

     Elongation for 30sec at 70ºC       Elongation for 45sec at 70ºC -0.2ºC/cycle      Elongation for 30sec at 70ºC  

Final Elongation for 5min at 70ºC  17 Cycles of:   Final Elongation for 5min at 70ºC  

4ºC ? End         Denaturation for 20sec at 93ºC 4ºC ? End    

         Annealing for 35sec at 51ºC      

         Elongation for 40sec at 69ºC      

    Final Elongation for 5min at 69ºC      

Thermocycler 
program 

    4ºC ? End       
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Table V: Total number of ticks by stage/sex and by geographic area (L=larva, N=nymph, M=adult male, F=adult 
female). 

# OF TICKS 
STATE 

L N M F 
TOTAL/STATE 

AL 0 0 24 20 44 

CT 0 7 13 11 31 

FL 0 0 4 6 10 

GA 0 0 7 21 28 

IA 0 14 3 0 17 

MA 11 6 3 3 23 

MD 3 2 2 6 13 

MI 2 0 0 0 2 

NC 0 0 8 22 30 

NY 0 0 10 0 10 

PA 3 4 5 0 12 

SC 44 1 5 7 57 

TN 0 0 8 17 24 

VA 11 0 3 3 17 

WI 5 0 0 0 5 

TOTAL/LIFESTAGE 79 34 95 116 323 
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Table VI: Analyses of nucleotide polymorphism in 12SrDNA haplotype sequences (DnaSP - Rozas and Rozas, 1999; Librado and Rozas, 2009): n = number of 
samples, h = number of haplotypes, Hd = haplotype diversity, S = number of segregating sites, π = average pairwise distance, θ = population mutation rate, DT = 
Tajima's D, p (DT) = probability of DT, determined by coalescent simulation, p (FS) = probability of Fu's FS, r = Harpending's raggedness index for mismatch 
distribution, p (r) = probability of Harpending's raggedness index for mismatch distribution, R2 = Ramos-Onsin's & Rozas's R2, and p (R2) = probability of 
Ramos-Onsin's & Rozas's R2; significance levels: * = < 0.05; ** = < 0.01; *** = < 0.001 calculated by the coalescent method (95% confidence interval; 5000 
replicates). 
 

Population name n h Hd S π  θ DT p (DT) Fu's FS p Fu's FS r p (r)  R2 p (R2) 

AM I 233 33 0.452±0.04 29 0.029 0.015 -2.215 *** -42.677 *** 0.136 ns 0.017 *** 

AM II 23 6 0.395±0.13 87 0.023 0.071 -2.693 *** 5.439 ns 0.179 ns 0.194 ns 

AM I + AM II 256 39 0.541±0.04 107 0.006 0.056 -2.701 *** -30.696 ** 0.098 ns 0.046 ns 

SOUTH I 5 3 0.800±0.16 2 0.003 0.003 0.243 n/s -0.475 ns 0.36 ns 0.25 ns 

SOUTH II 21 10 0.886±0.05 10 0.008 0.008 -0.164 n/s -3.088 ns 0.4 ns 0.124 ns 

SOUTH III 42 8 0.452±0.09 7 0.002 0.005 -1.821 * -6.165 * 0.12 ns 0.051 * 

SOUTH I + II + III 68 21 0.773±0.05 27 0.016 0.017 -0.060 n/s -2.697 ns 0.068 ns 0.098 ns 

ALL 324 60 0.704±0.03 122 0.018 0.065 -2.075 *** -21.902 * 0.058 ns 0.041 * 

 
.



   

 48 

 
 
 
 
 
 
 
Table VII: Analyses of nucleotide polymorphism in D-Loop haplotype sequences (DnaSP - Rozas and Rozas, 1999; Librado and Rozas, 2009): n = number of 
samples, h = number of haplotypes, Hd = haplotype diversity, S = number of segregating sites, π = average pairwise distance, θ = population mutation rate, DT = 
Tajima's D, p (DT) = probability of DT, determined by coalescent simulation, p (FS) = probability of Fu's FS, r = Harpending's raggedness index for mismatch 
distribution, p (r) = probability of Harpending's raggedness index for mismatch distribution, R2 = Ramos-Onsin's & Rozas's R2, and p (R2) = probability of 
Ramos-Onsin's & Rozas's R2; significance levels: * = < 0.05; ** = < 0.01; *** = < 0.001 calculated by the coalescent method (95% confidence interval; 5000 
replicates). 
 
Population 

name 
n h Hd S π  θ DT p (DT) Fu's FS p Fu's FS r p (r)  R2 p (R2) 

AM I 232 85 0.955±0.007 89 0.013 0.031 -1.754 ** -75.671 *** 0.009 *0.04 0.0346 **0.006 

AM II 23 14 0.921±0.042 34 0.011 0.019 -1.551 * -3.473 ns 0.018 ns 0.074 *0.02 

AM I + AM II 255 99 0.962±0.006 98 0.016 0.033 -1.571 * -82.261 *** 0.007 *0.001 0.038 ns 

SOUTH I 5 4 0.900±0.161 8 0.090 0.008 0.661 ns 0.212 ns 0.270 ns 0.197 ns 

SOUTH II 21 15 0.952±0.032 31 0.011 0.018 -1.554 * -5.826 * (0.016) 0.027 ns 0.101 ns 

SOUTH III 42 18 0.962±0.060 42 0.010 0.020 -1.728 ** -4.288 ns 0.016 *0.04 0.055 **0.005 
SOUTH I + II + 
III 68 37 0.922±0.062 55 0.313 0.024 0.877 ns -4.799 ns 0.013 ns 0.128 ns 

ALL 323 136 0.973±0.004 110 0.029 0.042 -0.068 ns 
-

34.061 ** 0.004 **0.01 0.060 ns 
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Table VIII: Measure of population differentiation based on 12SrDNA haplotype frequencies (FST), with values 
approaching 0 = identical populations and 1 = different populations; *** represent significance of FST < 0.001; 
estimation of gene flow is represented by number of migrants/generation (Nm) (DnaSP - Rozas and Rozas, 1999; 
Librado and Rozas, 2009).  
 

FST(p)/Nm  AMI  AMII  SI   SII  ALLSOU 

AMII  0.39***/0.78             
SI  0.95***/0.03  0.74***/0.18          
SII  0.91***/0.05  0.72***/0.20  0.83***/0.10       
SIII  0.94***/0.03  0.72***/0.19  0.92***/0.04  0.85***/0.09    
ALL AM              0.73***/0.40 

 
 
 
 
Table IX: Measure of population differentiation based on D-Loop haplotype frequencies (FST), with values 
approaching 0 = identical populations and 1 = different populations; *** represent significance of FST < 0.001; 
estimation of gene flow is represented by number of migrants/generation (Nm) (DnaSP - Rozas and Rozas, 1999; 
Librado and Rozas, 2009). 
 

FST(p)/Nm  AMI  AMII  SI  SII  ALLSOU 

AMII  0.62***/0.31             
SI  0.82***/0.11  0.84***/0.10          
SII  0.75***/0.17  0.80***/0.12  0.78***/0.14       
SIII  0.79***/0.14  0.83***/0.10  0.86***/0.08  0.80***/0.13    
ALL AM              0.55***/0.40 

 
 
 
 
Table X: Measure of population differentiation based on microsatellite allele frequencies (FST), with values 
approaching 0 = identical populations and 1 = different populations; significance values of FST: 0.001<**<0.01, 
0.01<*<0.05. 
 

FST(p)  AMI  AMII  SI  SII 
AMII  0.021**          
SI  0.075**  0.068*       
SII  0.020*  0.015 ns  0.050 ns    
SIII  0.024***  0.024 **  0.051 ns  0.011 ns 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APPENDIX A:  

Designation of 12SrDNA haplotypes according to clade, with state association and regional distribution. 
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APPENDIX B:  

Designation of D-Loop haplotypes according to clade, with state association and regional distribution. 
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