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ABSTRACT

In this thesis we compare various potential operators for the two-dimensional (2D)

Gross-Pitaevskii equation (GPE) for Bose-Einstein condensates. Both the 2D and the

1D models are scaled to get a three parameter model. Smoothness of initial conditions

is considered and choice of method (Split-Step Fourier method with Strang Splitting)

is justified. Numerical simulations provide graphical evidence of properties of both
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CHAPTER 1

INTRODUCTION

1.1 Brief History of Bose-Einstein Condensation

In 1924, Satyendra Nath Bose published a paper describing the statistical nature of

light [7]. Using Bose’s paper, Albert Einstein predicted a phase transition in a gas

of noninteracting atoms could occur due to these quantum statistical effects. This

phase transition period, Bose-Einsten Condensation, would allow for a macroscopic

number of non-interacting bosons to simultaneously occupy the same quantum state

of lowest energy [9].

It wasn’t until 1938, with the discovery of superfluidity in liquid helium, that

F. London conjectured that this superfluidity may be one of the first manifestations

of BEC [13]. The real breakthrough came in 1995, when the Anderson group out

of the University of Colorado produced a Bose-Einstein condensate from a vapor of

rubidium atoms [2]. Their apparatus used a magnetic trap along with evaporative

cooling. Just four months later, Davis of the Massachusetts Institute of Technology

was able to produce the condensate from sodium atoms through the use of a similar

scheme [8]. In each of these experiments, the magnetic trap confined the atoms

cooling them down to a scale of microkelvins when velocity-distribution measurements

gave the first indications of the Bose-Einstein condensation. Once the magnetic trap

was turned of, the atoms expanded and then were optically cooled, producing the

signature spike in velocity of the condensate. For their work, Cornell and Wieman

out of Colorado and Ketterle of MIT were awarded the Nobel Prize in Physics.

The Gross-Pitaevskii equation (GPE), a nonlinear Schrödinger equation (NLSE)

for the macroscopic wave functions, governs the properties of a BEC at temperatures

T far below the critical condensation temperature Tc. The GPE includes a term for

the trap potential as well as the mean field interaction between atoms in the gas which
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manifests as a nonlinear term. Attractive interactions as well as repulsive interactions

are accounted for in the GPE through the use of a focussing constant which may be

positive (focussing) or negative (defocussing).

Numerical methods for solving the GPE are not new. Most methods involve

discretizing spacial dimensions and then advancing via a time step. Spectral and

pseudo-spectral methods were achieved by Bao, Jaksch, and Markowich [3], Bao and

Shen [5]. Ruprecht et. al [17] proposed a Crank-Nicholson method in 1995 (the same

year the first condensates were discovered.) Convergence analysis of these numerical

methods, however, is relatively new.

1.2 The Organization of the thesis

The thesis is organized as follows:

In Chapter 2, the time dependent Gross-Pitaevskii Equation is formally intro-

duced and derived. The GPE is converted into the dimensionless version through

introduction of three parameters.

In Chapter 3, the numerical methods the split step methods Lie Splitting and

Strang splitting are introduced. Stability and error parameters for the Lie Splitting

are proved for the linear Schrödinger equation based on [3] and [4]. Lubich’s error

estimates [14] for GPE (cubic NLS) are then provided, but not proven.

Chapter 4 presents numerical illustrations of the error estimates of Chapter 3 as

well as illustrations of the focusing effects of the BEC under certain conditions. Sev-

eral different harmonic potentials are provided as examples of the interaction between

attractive/repulsive potentials in addition to attractive/repulsive nonlinearities.

The final chapter serves as a conclusion with reference to potential future work.



CHAPTER 2

GROSS-PITAEVSKII EQUATION

First we derive the time independent Gross-Pitaevskii equation based on [16]. Recall

that effective interaction between two particles (here we are looking at bosons) at a low

energy is U0 = 4π~2a/m which corresponds to a contact interaction of U0δ(r−r′) with

r and r′ being the locations of the two particles. Due to the inherent complications

in dealing with a many-bodied system, a mean-field approach is used. At ultra low

temperatures, all bosons exist in the same single-particle state φ(r) and for this reason

we can write the wave function of the N -particle system as

Ψ(r1, r2, . . . , rN) =
N∏
i=1

φ(ri). (2.1)

with Ψ : Rn×N → R and φ : Rn → R. The single-particle wave function φ(r) obeys

the typical normalization condition:∫
R3

|φ(r)|2dr = 1 (2.2)

Due to the fact that we are dealing with dilute gases, the distances between the

particles is such that the only interaction term is the U0δ(r − r′) mentioned earlier.

Any other interactions are not accounted for in the mean-field theory. Thus the

Hamiltonian can be written as follows:

H =
N∑
i=1

[
p2
i

2m
+ V (ri)

]
+ U0

∑
i<j

δ(r− r′) (2.3)

with V (r) the external potential. The state (2.1) has energy

E = N

∫ [
~2

2m
|∇φ(r)|2 + V (r)|φ(r)|2 +

(N − 1)

2
U0|φ(r)|4

]
dr (2.4)

where U0 = 4π~2a
m

(a is the scattering length) is the effective interaction between

particles.
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Though the Hartree approximation considers all atoms in the BEC gas to be in

the state φ, in reality only a proportion of the total number are in this state due

to interactions between the atoms. The reduced particle density in the BEC state

governed by the GPE (Gross-Pitaevskii Equation) can be shown to be [16]

n =
1

(4π/3)r3
s

. (2.5)

Here, rs is the radius of the sphere having an equal volume to the that of the average

volume per particle.

Consider a uniform Bose gas in a volume V . In this system, the ground state

wave function would be 1/V 1/2 and thus the interaction energy for a pair of particles

is U0/V . Since all possible pairs of interactions between particles is N(N − 1)/2, the

energy becomes (with N � 1):

E =
N(N − 1)

2V
U0 ≈

1

2
V n2U0 (2.6)

where n = N/V . Here we introduce the wave function for the condensed state:

ψ(r) = N1/2φ(r) (2.7)

and the density of particles is

n(r) = |ψ(r)|2. (2.8)

This gives the energy of the particles in the condensed state as

E(ψ) =

∫ [
~2

2m
|∇ψ(r)|2 + V (r)|ψ(r)|2 +

1

2
U0|ψ(r)|4

]
dr (2.9)

The following condition of particle number conservation

N =

∫
|ψ|2dr = constant (2.10)

will be used in the last step. Finally we use the method of Lagrange multipliers where

we take δE = µδN = 0. The Lagrange multiplier µ guarantees that the number of
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particles remains constant and variations of ψ and ψ∗ are arbitrary. The variation of

E − µN is then set equal to zero with respect to ψ ∗ (r) gives us

− ~2

2m
∇2ψ(r) + V (r)ψ(r) + U0|ψ(r)|2ψ(r) = µψ(r) (2.11)

which is the time-independent Gross-Pitaevskii equation. Essentially the GPE is a

Schrödinger equation with a total potential energy consisting of an external potential

V (r) and also the additional nonlinear term U0|ψ(r)|2 which represents the mean field

produced by the interaction between the bosons.

2.1 Dimensionless Gross-Pitaevskii Equation

For the purposes of this thesis, we will use the following form of the GPE which has

a harmonic trap potential, V (x):

i~
∂ψ(x, t)

∂t
= − ~2

2m
∇2ψ(x, t)+

m

2

(
ω2
xx

2 + ω2
yy

2 + ω2
zz

2
)
ψ(x, t)+NU0|ψ(x, t)|2ψ(x, t)

(2.12)

To scale the GPE with harmonic trap (2.12) with the normalization condition from

earlier (2.2), the following parameters are introduced [3]:

t̃ = ωxt, x̃ =
x

xx
, ψ̃(x̃, t̃) = x3/2

s ψ(x, t). (2.13)

We consider xs to be the characteristic ’length’ of the condensate. Combining (2.13)

with (2.12), multiplying by 1

mω2
xx

1/2
s

and removing all ,̃ the dimensionless GPD is as

follows:

iε
∂ψ(x, t)

∂t
= −ε

2

2
∇2ψ(x, t) + V (x)ψ(x, t) + δε5/2|ψ(x, t)|2ψ(x, t) (2.14)

where

V (x) =
1

2

(
x2 + γ2

yy
2 + γ2

zz
2
)
,

ε =
~

ωxmx2
s

=

(
a0

xs

)2

, γy =
ωy
ωx
, γz =

ωz
ωx

δ =
U0N

a3
o~ωx

=
4πaN

a0

, a0 =

√
~

ωxm

(2.15)
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Here, a0 is the x-direction length of the harmonic oscillator ground state, γy, γz are

simply the ratios of the magnitudes of the frequency of the oscillator in the y-direction

and z-direction relative to the frequency in the x-direction. δε5/2 can be rewritten

and defined in the following way:

κ :=
4πaN

a0

(
a0

xs

)5

=
1

2

8πaN

x3
s

a4
0

x2
s

=
sgn(a)

2

a2
0

x2
h

a2
0

x2
s

=
sgn(a)

2

(
a0

xh

a2
0

xs

)2

(2.16)

with xh defined as the healing length [6]:

xh :=

(
8π|a|N
x3
s

)−1/2

(2.17)

2.2 Choice of Parameters

Given the previous definitions, the parameters ε and κ have special meaning. The

level of interaction in the condensate can be measured by these parameters. In the

case where xs = a0 (the characteristic length of the condensate is the same as the

length of the harmonic oscillator ground state) then ε = 1 by (2.14), and κ = δ

by (2.16). This combination of parameters is typical in the weak interaction regime

(4π|a|N � a0) and the moderate interaction regime (4π|a|N ≈ a0). The strong

interaction regime (4π|a|N � a0) might find a possible choice of parameters such

as [3] xs = (4π|a|Na4
0)1/5, giving |κ| = 1 and ε =

(
a0

4π|a|N

)1/5

� 1.

This gives us two extreme regimes, ε = O(1) which implies that a0 = O(xs)

and κ = δε5/2 = o(1) which implies that 4π|a|N � a0 which puts the interactions

in the weak regime and ε = o(1) which implies that xs � a0 and κ = δε5/2 =

O(1) which implies that 4π|a|N � a0 (in the case of our dimensionless GPE, ε = 1

and κ = δε5/2 = δ where δ � 1). In this thesis, we will be selecting ε = 1 with κ = 1

(defocusing case) as well as ε = 0.3 with κ = −1.9718.
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2.3 General Strang Splitting

In this section we describe the splitting method first arrived at by Strang in 1968 [18].

This section will begin by being based on the linear hyperbolic model problem

ut = Aux +Buy (2.18)

with A,B as operators which may be represented as matrices. In order to comment

on the accuracy of difference schemes in this section we will be using the following

notation:

U(t+ k, k) = SkU(t, k). (2.19)

Typically we use a weighted sum to calculate Sk

(Skf)(x, y) =
∑

Cijf(x+ ih, y + jh). (2.20)

The order of accuracy is determined by comparing the difference operator Sku to the

Taylor expansion of u(t+ k) as follows:

Sku = u+ kut +
k2

2
utt +O(k3) (2.21)

Using this expansion and the hyperbolic differential equation, we wish to achieve

second order accuracy by fulfilling the following condition

Skf ≈ f + k(Afx +Bfy) +
k2

2
(A2fxx + (AB +BA)fxy +B2fyy) (2.22)

with ≈ indicating equality up to O(k3). We define the Lax-Wendroff operator for one

space variable (B = 0):

Lxk = I + rA∆0
r2

2
A2∆+− (2.23)

which was first arrived at in [12] and is second order accurate given

∆0 =
1

2
(f(x+ h)− f(x− h)) ≈ hfx(x),

∆x−f(x) = f(x+ h)− 2f(x) + f(x− h) ≈ h2fxx(x).
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Stability in this section is tested by first applying the difference operator to exponen-

tials:

Lxke
iξxv =

(
I + irA sin(ξh) +

r2

2
A2(1− cos(ξh))

)
eiξxv

= Gx(ξh)eiξxv

then testing that the amplification matrices G have uniformly bounded powers:

|(Gx(ξh))nv| 5 const. |v| (2.24)

for all real ξh, all n > 0 and all vectors v. Another stability condition requires the

eigenvalues of the operator A of the Lax-Wendroff operator Lxk satisfy

max |λj(A)| 5 h

k
=

1

r
(2.25)

and thus implying Lxk dissipates energy:∫
|Lxkf(x)|2dx 5

∫
|f(x)|2dx.

The Strang Splitting method begins with the introduction of

S
(5)
k = Lxk/2L

y
kL

x
k/2 (2.26)

where

Lxk/2 = I +
k

2h
A∆x

0 +
1

2

(
k

2h

)2

A2∆x
+−.

Note that the operator Lxk/2 is strongly stable so long as |λj(A)| 5 2h/k and Lyk

is strongly stable so long as |µj(B)| 5 2h/k. Together, these two conditions met

simultaneously ensure that S
(5)
k is also stable. This splitting (2.26) is second order

accurate since

S
(5)
k ≈

(
I +

k

2
A∂x +

k2

8
A2∂2

x

)(
I + kB∂y +

k2

2
B2∂2

y

)(
I +

k

2
A∂x +

k2

8
A2∂2

x

)
f

≈ f + k(Afx +Bfy) +
k2

2
(A2fxx + (AB +BA)fxy +B2fyy)
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which is the condition previously mentioned (2.22). In the nonlinear case, notation

is introduced for a general system:

ut = c(Dαu,x, t) = a(Dαu,x, t) + b(Dαu,x, t).

Here, the splitting c = a + b is arbitrary. Dαu runs over all derivatives (mixed

or not) of the vector u with respect to the spatial variable x = (x1, x2, . . . , xd). This

splitting gives us the following two (potentially) nonlinear problems

vt = a(Dαu,x, t), wt = b(Dαu,x, t).

We refer to the difference operators for vt and wt as Mk(t) and Nk(t) respectively.

Both Mk(t) and Nk(t) are of second order accuracy. To show this, (in the case of

Nk(t)) wt is differentiated and then each Dα is commuted with ∂/∂t:

wtt =
∑
α

Bα
∂

∂t
(Dαw) + bt

=
∑
α

BαD
α[b(Dαw,x, t)] + bt(D

αw,x, t)

where Bα = Bαb(D
αw,x, t) is the Jacobian of b with respect to Dαw. Now all that

is necessary for Nk(t) is that for any smooth vector function f = f(x),

Nk(t)f ≈ f + kb+
k2

2

(∑
α

BαD
α[b(Dαf,x, t)] + bt

)
(2.27)

with b, bt, Bα evaluated at (Dαf,x, t).

Next the composite operator Sk(t) is defined as follows:

Sk(t) = Mk/2

(
t+

k

2

)
Nk(t)Mk/2(t)
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Its accuracy is now verified using (2.27)

g = Nk(t)Mk/2(t)f ≈Mk/2fkb(D
αMk/2f,x, t)

+
k2

2

(∑
BαD

α[b(DαMk/2f,x, t)] + bt

)
≈ f +

k

2
a+

k2

8

(∑
AαD

αa+ at

)
+ k

(
b+

∑
Bα

k

2
Dαa

)
+
k2

8

(∑
BαD

αb+ bt

)
(2.28)

Now we apply Mk/2(t) to this vector to get:

Sk(t)f ≈ g +
k

2
a

(
Dαg,x, t+

k

2

)
+
k2

8

(∑
AαD

αa+ at

)
≈ g +

k

2

[
a+

∑
Aα

(
k

2
Dαa+ kDαb

)
+
k

2
at

]
+
k2

8

(∑
AαD

αa+ at

)
≈ f + k(a+ b) +

k2

8

[∑
(Aα +Bα)Dα(a+ b) + (a+ b)t

]
.

(2.29)

Thus we have established the second order of accuracy of Sk(t) which was the Strang

Splitting in the nonlinear case.



CHAPTER 3

NUMERICAL METHOD

3.1 Numerical Method

In this section we present time-splitting trigonometric spectral approximations of the

problem, with periodic boundary conditions. The first sections, 3.1 - 3.6, will be

proofs of stability and error estimates in the linear case. The sections that follow are

error estimates from Lubich [14] for the Strang Splitting method in the nonlinear case

but without proof. The chapter concludes with a proof from For the simplicity of

notation we shall introduce the method for the case of one space dimension (d = 1).

The analysis in the next section will also focus on the case d = 1. Generalizations

to d > 1 are straightforward for tensor product grids and the results remain valid

without modifications. For d = 1, the problem becomes (with harmonic potential

V (x) and taking ε = 1):

iut = −uxx(x, t)
2

+
x2

2
u(x, t) + κ1|u(x, t)|2u(x, t), a < x < b, (3.1)

u(x, t = 0) = u0(x), a ≤ x ≤ b, (3.2)

u(a, t) = u(b, t), ux(a, t) = ux(b, t), t > 0 (3.3)

Since the Schrödinger equation is time reversible, we let t ∈ R for Eqs. (3.1) and

(3.2).

Spatial mesh size chosen is h = ∆x > 0 with h = (b − a)/M for M an even

positive integer and the time step k = ∆t > 0, and we let the grid points and the

time step be

xj := a+ jh, tn := nk, j = 0, 1, . . . ,M, n = 0, 1, 2, . . . ,

Let Un
j be the approximation of u(xj, tn) and un be the solution vector at time

t = tn = nk with components unj .
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3.2 Lie Splitting Method (LS)

From time t = tn to time t = tn+1, the Schrödinger equation (3.1) is solved in two

steps. One first solves:

iut = −uxx
2

(3.4)

for one step, followed by solving

iut =
x2

2
u(x, t) + κ1|u(x, t)|2u(x, t), (3.5)

again for one time step. Equation (3.4) is discretized in space by the spectral method

and will be integrated in time exactly. Equation (3.5) is simply an ODE that can be

solved exactly. The splitting method is completed as follows:

Û∗j =
1

M

M/2−1∑
l=−M/2

e−ikµ
2
l /2Ûn

l e
iµl(xj−a), j = 0, 1, 2, . . . ,M − 1

Un+1
n = e−iV (xj)kU∗j

(3.6)

where Û∗j , the Fourier coefficients of Un, are defined as

µl =
2πl

b− a
, Ûn

l =
M−1∑
j=0

Un
j e
−iµl(xj−1), l =

M

2
, . . . ,

M

2
− 1 (3.7)

with

U0
j = u(xj, 0) = u0(xj), j = 0, 1, 2, . . . ,M. (3.8)

For this method, it is important to note that the only time discretization error of this

method is the splitting error which is first order in k. For later proofs, we define the

trigonometric interpolant of a function f on the grid {x0, x1, . . . , xM}:

fl(x) =
1

M

M/2−1∑
l=−M/2

f̂ ∗l e
iµl(xj−a), f̂ =

M−1∑
j=0

f(xj)e
−iµl(xj−1), j = −M

2
, . . . ,

M

2
(3.9)
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3.3 The Strang Splitting Spectral Method (SS)

As in the previous method, eqn (3.1) will be split into two parts. This time, from time

t = tn to t = tn+1, we combine the splitting steps via the standard Strang splitting:

U∗j = e−i(V (x))k/2Un
j ,

U∗∗j =
1

M

M/2−1∑
l=−M/2

e−ikµ
2
l /2Û∗l e

iµl(xj−a), j = 0, 1, 2, . . . ,M − 1

Un+1
j = e−i(x

2
j/2+κ1|U∗∗j |2)k/2U∗∗j j = 0, 1, 2, . . . ,M − 1

(3.10)

where Û∗l , the Fourier coefficients of U∗, are defined as

Û∗l =
M−1∑
j=0

U∗j e
−iµl(xj−1), l =

M

2
, . . . ,

M

2
− 1 (3.11)

The overall time discretization error comes solely from the splitting, which is

second order in k. If V (x) ≡ V = constant, then we can combine all time steps in

both the Lie Splitting method and the Strang Splitting method into one method,

Un
j =

1

M

M/2−1∑
l=−M/2

e−i(µ
2
l /2+V )tnÛ0

l e
iµl(xj−a) (3.12)

where

Û0
l =

M−1∑
j=0

U0
j e
−iµl(xj−1), l =

M

2
, . . . ,

M

2
− 1 (3.13)

This is the same as descretizing the second order speace derivative in (3.1) by the

spectral method, then solving the ODE system that results exactly to t = tn. In this

case, no time discretization error is introduced. The only error is the spectral error

in the spatial derivative.

3.4 Error Estimates

First, stability of both methods, Lie Splitting and Strang Splitting, is proven. Then

an estimate for the Lie Splitting method is provided and proved. Finally, an error
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estimate is provided for the Strang Splitting method, however proof is withhold for

brevity purposes. Let u = (u0, . . . , uM−1)T . Let ‖ × ‖L2 and ‖ × ‖l2 be the L2-norm

and the usual discrete l2-norm respectively on the interval (a, b); i.e.,

‖u‖L2 =

√∫ b

a

|u(x)|2 dx, ‖u‖l2 =

√√√√b− a
M

M−1∑
j=0

|Uj|2. (3.14)

For the stability of the Lie Splitting and Strang Splitting methods, with variable

potential V (x) we prove the following lemma, which shows that the total charge is

conserved.

Lemma 3.4.1. The time-splitting spectral schemes LS and SS are unconditionally

stable. In fact,under any mesh size h and time step k,

‖un‖l2 = ‖u0‖l2 n = 1, 2, . . . , (3.15)

and consequently

‖unI ‖L2 = ‖u0
I‖L2 n = 1, 2, . . . , (3.16)

Here, unl stands for the trigonometric polynomial interpolating {(x0, u
n
0 ), (x1, u

,n
1 ), . . . , (xM , u

n
M)}.

Proof. First let us recall the following identities:

M−1∑
j=0

ei2π(k−l)j/M =

 0 k − l 6= mM,

M k − l = mM,
m integer (3.17)

and
M/2−1∑
l=−M/2

ei2π(k−j)l/M =

 0 k − j 6= mM,

M k − j = mM,
m integer. (3.18)
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For the scheme LS (3.6), noting (3.7) and (3.14), we have:

1

b− a
‖un+1‖2

l2 =
1

M

M−1∑
j=0

|Un+1
j |2 =

1

M

M−1∑
j=0

|e−iV (xj)kU∗j |2 =
1

M

M−1∑
j=0

|U∗j |2

=
1

M

M−1∑
j=0

∣∣∣∣∣∣ 1

M

M/2−1∑
l=−M/2

e−ikµ
2
l /2Ûn

l e
iµl(xj−a)

∣∣∣∣∣∣
2

=
1

M2

M/2−1∑
l=−M/2

|e−ikµ2l /2Ûn
l |2

=
1

M2

M/2−1∑
l=−M/2

|Ûn
l |2

=
1

M2

M/2−1∑
l=−M/2

∣∣∣∣∣
M−1∑
j=0

Un
j e
−iµl(xj−a)

∣∣∣∣∣
2

=
1

M

M−1∑
j=0

|Un
j |2

=
1

b− a
‖un‖2

l2 (3.19)

Now, for the Strang Splitting scheme (3.10), using (3.11), (3.14) and the identities

from above (3.17) and (3.18),
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1

b− a
‖un+1‖2

l2 =
1

M

M−1∑
j=0

|Un+1
j |2 =

1

M

M−1∑
j=0

|e−iV (xj)k/2U∗∗j |2 =
1

M

M−1∑
j=0

|U∗∗j |2

=
1

M

M−1∑
j=0

∣∣∣∣∣∣ 1

M

M/2−1∑
l=−M/2

e−ikµ
2
l /2Û∗l e

iµl(xj−a)

∣∣∣∣∣∣
2

=
1

M2

M/2−1∑
l=−M/2

|e−ikµ2l /2Û∗l |2

=
1

M2

M/2−1∑
l=−M/2

|Û∗l |2

=
1

M2

M/2−1∑
l=−M/2

∣∣∣∣∣
M−1∑
j=0

U∗j e
−iµl(xj−a)

∣∣∣∣∣
2

=
1

M

M−1∑
j=0

|U∗j |2

=
1

M

M/2−1∑
l=−M/2

|e−ikµ2l /2Un
j |2

=
1

M

M−1∑
j=0

|Un
j |2

=
1

b− a
‖un‖2

l2 (3.20)

Therefore, the stability condition (3.15) is proven from (3.19) for the Lie Splitting

and for the Strang Splitting by induction, from (3.20). Finally it is important to note

that for all periodic functions f , the following equality holds:

‖fI‖L2 = ‖f‖l2 =

√√√√b− a
M

M−1∑
j=0

|f(xj)|2 (3.21)

Here, fI stands for the trigonometric interpolant of f on {x0, x1, . . . , xM} that was

defined earlier (3.9). Therefore, combining (3.21) with (3.15) we arrive at (3.16).

In order to arrive at error estimates, it must be assumed that the initial condition

u0 in (3.1) is C∞ on R and periodic with period b− a. Also, it is assumed that there
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exist positive constants Cm > 0, for every integer m ≥ 0, such that:

(A)

∥∥∥∥ dmdxmu0

∥∥∥∥
L2(a,b)

≤ Cm, for all m ∈ N ∪ {0} (3.22)

The semiclassical WKB initial data

u(x, 0) =
√
n0(x)eiS0(x)

satisfies (3.22) so long as n0 and S0 are C∞ on R and are (b− a)-periodic.

3.5 Error Analysis for Constant Potentials for Lie Splitting

For constant potential V (x) ≡ V = constant, both the Lie Splitting and the Strang

Splitting reduce to (3.12).

Theorem 3.5.1. Let u be the exact solution of (3.1), (3.2), let V = constant, and let

uNI be the trigonometric interpolant of un = (Un
j )M−1

j=0 as obtained from (3.12). Under

assumption (A), we have for all integers m ≥ 1

‖unI − u(tn)‖L2 ≤ DCm

(
h

(b− a)

)m
, (3.23)

where D > 0 is a constant.

Proof. From Theorem 3 in [15]the following estimate is concluded:

‖u0
I − u0‖L2 ≤ D

(
h

b− a

)m ∥∥∥∥ dmdxmu0

∥∥∥∥
L2

≤ DCm

(
h

(b− a)

)m
, (3.24)

for m ≥ 1, where D > 0 depends only on (b − a). Since unI is the exact solution of

(3.1) (subject to periodic boundary conditions) with u0
I as intial datum, at t = tn,

and since the Schrödinger equation generates a unitary group on the space L2(a, b),

the estimate (3.23) follows.
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3.6 Error Analysis for Variable Potentials for Lie Splitting

In this section we provide error estimates for the Lie Splitting method for variable

potential V . It is assumed that the solution U = u(x, t) from (3.1) and (3.2) and

the potential V (x) in (3.1) are C∞(R) and (b − a)-periodic. In addition, there exist

positive constants Cm > 0, Dm > 0, independent of x, t such that

(B)

∥∥∥∥ ∂m1+m2

∂xm1∂tm2
u

∥∥∥∥
C([0,T ];L2(a,b))

≤ Cm1+m2 ,

∥∥∥∥ dmdxmV
∥∥∥∥
L∞(a,b)

≤ Dm,

for all m,m1,m2 ∈ N ∪ {0}
(3.25)

These conditions imply that the solution oscillates in space and time. With this

information we can prove the error estimate for the Lie Splitting in the case of a

potential that is not constant, namely V = V (x).

Theorem 3.6.1. Let u = u(x, t) be the exact solution of (3.1), (3.2) and un be the

discrete approximation of the Lie Splitting method given by (3.6). Under assumption

(B), and assumping h, k = O(1), we have for all positive integers m ≥ 1 and tn ∈

[0, T ] that

‖u(tn)− unI ‖L2 ≤ Gm
T

k

(
h

(b− a)

)m
+ CTk (3.26)

where C is a positive constant independent of h, k, and m and Gm is independent of

h, k.

Proof. First, the local splitting error in (3.4) and (3.5) for (3.1) is estimated. The

following operators will be used:

A =
ik

2
∂xx, B = −iV (x)k (3.27)

Let

w(x) = eBeAu(·, tn) (3.28)
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be the solution coming from the operator splitting method (without spatial discretiza-

tion) after one time step with exact initial data at tn. The exact solution u(x, tn+1)

is

u(x, tn+1) = eB+Au(·, tn) (3.29)

and all error in this classical analysis comes from the non-commutativity of the op-

erators A and B ([A,B] 6= 0). By (3.25)

(BA−AB)u(x, t) =
k2

2
∂xx(V u)− V k2

2
∂xxu

=
k2

2
u∂2

xV + k2∂xV ∂xu = O(k2) (3.30)

Now, if we perform a Taylor expansion of eA, eB and eA+B we get

‖u(tn+1)− w‖L2 = O(k2) (3.31)

This gives us

‖u(tn+1)− un+1
I ‖L2 ≤ ‖u(tn+1)− w‖L2 + ‖w − wI‖L2 + ‖wI − un+1

I ‖L2 (3.32)

and

‖wI − un+1
I ‖L2 = ‖w − un+1‖l2 = ‖eA(eBu(tn)− eAun)‖l2

= ‖u(tn) = un‖l2 = ‖u(tn)I − unI ‖L2

≤ ‖u(tn)I − u(tn)‖L2 + ‖u(tn)− unI ‖L2 (3.33)

The first and fourth equalities use ‖f‖l2 = ‖f‖L2 . The second equality uses the

definition of w and the fact that the computation of U∗j in the first step in (3.6) is the

same as the exact solution of the free Schrödinger equation (3.4) with unI for initial

data. The third equality comes from (3.15) (the conservation property). Therefore,

‖u(tn+1)− un+1
I ‖L2 ≤ ‖u(tn+1)− w‖L2 + ‖w − wI‖L2 + ‖u(tn)I − u(tn)‖L2

+‖u(tn)− unI ‖L2 (3.34)



20

From the proof of constant potential (3.24), we get

‖u(tn)I − u(tn)‖L2 ≤ D

(
h

b− a

)m ∥∥∥∥ dmdxmu(tn)

∥∥∥∥
L2

≤ DCm

(
h

(b− a)

)m
. (3.35)

where Assumption (B) (3.25) was used. Similarly,

‖w − wI‖L2 ≤ D

(
h

b− a

)m ∥∥∥∥ dmdxmw
∥∥∥∥
L2

≤ Em

(
h

(b− a)

)m
. (3.36)

so long as k, h
b−a = O(1). Here we used∥∥∥∥ dmdxmw

∥∥∥∥
L2

=

∥∥∥∥∥
m∑
j=0

(
m

j

)
(eB)(j)(eA)u(tn))(m−j)

∥∥∥∥∥
L2

≤
m∑
j=0

(
m

j

)
‖(eB)(j)‖L∞‖(eA)u(tn))(m−j)‖L2 (3.37)

Finally, we use (3.31) to obtain

‖u(tn+1)− un+1
I ‖L2 ≤ Fk2 + Em

(
h

(b− a)

)m
+DCm

(
h

(b− a)

)m
+ ‖u(tn)− unI ‖L2

(3.38)

where again it is assumed that k, h
b−a = O(1). Then by induction, (3.26) follows.

Thus we have proven the stability of both the Lie Splitting method and the

Strang Splitting method. The error estimates for both methods have been proven for

constant potentials V (x) ≡ V = constant.

3.7 Convergence for H4 Initial Conditions

The final section of this chapter is a presentation of convergence for initial condition

ψ0 ∈ H4 presented by Lubich [14]. First, we introduce a shorthand notation for the

Strang Splitting:

ψ−n+1/2 = e
i
2
τ∆ψn

ψ+
n+1/2 = e−iτV [ψ−

n+1/2
]ψ−n+1/2 (3.39)

ψn+1 = e
i
2
τ∆ψ+

n+1/2
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Next we suppose that the solution ψ(t) to the cubic nonlinear Schrödinger equation

(2.14) is in H4 for 0 ≤ t ≤ T , and set

m4 = max
0≤t≤T

‖ψ(t)‖H4

We will use the following

ψn+1 = Φr(ψn)

to represent a single step of the Strang Splitting.

The proofs of the following theorem and propositions will require the use of the

following two lemmas and these will be presented without proof.

Lemma 3.7.1. For u ∈ H1 and v, w ∈ L2,

‖∆−1(uv)w‖L2 ≤ K0‖u‖H1‖v‖L2‖w‖L2 (3.40)

and for u, v ∈ L2 and w ∈ H1,

‖∆−1(uv)w‖L2 ≤ K0‖u‖L2‖v‖L2‖w‖H1 (3.41)

Lemma 3.7.2. For u, v, w ∈ H1,

‖∆−1(uv)w‖H1 ≤ K0(‖u‖H1‖v‖H1‖w‖L2 + ‖u‖H1‖v‖L2‖w‖H1) (3.42)

and for u, v, w ∈ H2,

‖∆−1(uv)w‖H2 ≤ K0

∑
(k,l,m)

‖u‖Hk‖v‖Hl‖w‖Hm (3.43)

with the sum being over all permutations (k,l,m) of (0,1,2).

Theorem 3.7.3. The numerical solution ψn given by the Strang Splitting scheme

(3.39) for the cubic nonlinear Schrödinger equation with step size τ > 0 has a first-

order error bound in H2 and a second-order error bound in L2,

‖ψn − ψ(tn)‖H2 ≤ C(m4, T )τ

‖ψn − ψ(tn)‖L2 ≤ C(m4, T )τ 2
for tn = nτ ≤ T

.
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Proposition 1. (Stability) If ψ, φ ∈ H2 with

‖ψ‖H2 ≤M2 ‖φ‖H2 ≤M2

then

‖Φτ (ψ)− Φτ (φ)‖L2 ≤ ec0τ‖ψ − φ‖L2 ,

‖Φτ (ψ)− Φτ (φ)‖H1 ≤ ec1τ‖ψ − φ‖H1 ,

‖Φτ (ψ)− Φτ (φ)‖H1 ≤ ec2τ‖ψ − φ‖H2 ,

where c0, c1, c2 only depend on M2.

Proposition 2. (Local error in L2) If ψ0 ∈ H4 with ‖ψ0‖H4 ≤ M4 then the error

after one step of the method (3.39) is bounded in the L2 norm by

‖ψ1 − ψ(τ)‖L2 ≤ C4τ
2,

where C4 only depends on M4



CHAPTER 4

NUMERICAL SIMULATIONS

In this section we first look at the graphs of the solutions to the GPE at various times

and for various potentials. Then we analyze the error bounds that were discussed at

the end of the chapter 3 from [14]. First we will consider the case where V = 0 and

vary the step size dt = k and then vary the mesh factor h = 1
M

. All simulations will

be run in two dimensions.

4.1 Example 1: ψ0 as Gaussian

The first example will be a 2d defocusing case (κ > 0) with the initial condition

ψ(x, 0) =
1√
επ
e−(x2+y2)/2ε (4.1)

This initial data will be used for all simulations.

4.1.1 V = 0

For a matter of perspective, we will run simulations for the case of V = 0 in the cubic

nonlinear Schrödinger equation, i.e.

iε
∂ψ(x, t)

∂t
= −ε

2∇2

2
ψ(x, t) + κ|ψ(x, t)|2ψ(x, t) (4.2)

with ∆t = .01 the time step, h = 1
32

corresponding with a mesh size that has

M = 512 intervals, and x ∈ [−8, 8].
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(a) 3d View (b) Top View

Figure 4.1: Solution to cubic NLS with V = 0, t = 1, ∆t = .01, h = 1/32 and

(x, y) ∈ [−8, 8]2

(a) 3d View (b) Top View

Figure 4.2: Solution to cubic NLS with V = 0, t = 2, ∆t = .01, h = 1/32 and

(x, y) ∈ [−8, 8]2

The previous two figures 4.1 and 4.2 are the graphical representations of the

solutions to this initial value problem at t = 1 and t = 2, respectively. The following

figure represents a similar simulation where x ∈ [−16, 16] with ∆t = .01 and M = 512

corresponding to a mesh size of h = 1
32

.
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(a) 3d View (b) Top View

Figure 4.3: Solution to cubic NLS with V = 0, t = 1, ∆t = .01, h = 1/32 and

(x, y) ∈ [−16, 16]2

4.1.2 V = (x2+y2)
2

(a) 3d View (b) Top View

Figure 4.4: Solution to cubic NLS with V = x2+y2

2
, t = 1s, ∆t = .001, h = 1/16 and

(x, y) ∈ [−8, 8]2
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(a) 3d View (b) Top View

Figure 4.5: Solution to cubic NLS with V = x2+y2

2
, t = 5s, ∆t = .001, h = 1/16 and

(x, y) ∈ [−8, 8]2

(a) 3d View (b) Top View

Figure 4.6: Solution to cubic NLS with V = x2+y2

2
, t = 10, ∆t = .001, h = 1/16 and

(x, y) ∈ [−8, 8]2

4.1.3 V = (x2+4y2)
2

A slight variation on the isotropic harmonic potential is the anisotropic potential:

V =
(x2 + 4y2)

2
(4.3)

The following represent the solutions to the anisotropic GPE at time t = 1 then t = 2.
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(a) 3d View (b) Top View

Figure 4.7: Solution to cubic NLS with V = x2+4y2

2
, t = 1, ∆t = .01, h = 1/32 and

(x, y) ∈ [−8, 8]2

(a) 3d View (b) Top View

Figure 4.8: Solution to cubic NLS with V = x2+4y2

2
, t = 2, ∆t = .01, h = 1/32 and

(x, y) ∈ [−8, 8]2
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4.1.4 V = (x2−y2)
2

(a) 3d View (b) Top View

Figure 4.9: Solution to cubic NLS with V = x2−y2
2

, t = 1s, ∆t = .001, h = 1/16 and

(x, y) ∈ [−8, 8]2

(a) 3d View (b) Top View

Figure 4.10: Solution to cubic NLS with V = x2−y2
2

, t = 5s, ∆t = .01, h = 1/16 and

(x, y) ∈ [−8, 8]2
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(a) 3d View (b) Top View

Figure 4.11: Solution to cubic NLS with V = x2−y2
2

, t = 10, ∆t = .001, h = 1/16 and

(x, y) ∈ [−8, 8]2

4.1.5 V = −(x2+y2)
2

(a) 3d View (b) Top View

Figure 4.12: Solution to cubic NLS with V = −(x2+y2)
2

, t = 1s, ∆t = .001, h = 1/16

and (x, y) ∈ [−8, 8]2
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(a) 3d View (b) Top View

Figure 4.13: Solution to cubic NLS with V = −(x2+y2)
2

, t = 5s, ∆t = .01, h = 1/16

and (x, y) ∈ [−8, 8]2

(a) 3d View (b) Top View

Figure 4.14: Solution to cubic NLS with V = −(x2+y2)
2

, t = 10, ∆t = .001, h = 1/16

and (x, y) ∈ [−8, 8]2
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4.1.6 V = −(x2+400y2)
2

(a) 3d View (b) Top View

Figure 4.15: Solution to cubic NLS with V = −(x2+400y2)
2

, t = 1s, ∆t = .001, h = 1/16

and (x, y) ∈ [−8, 8]2

(a) 3d View (b) Top View

Figure 4.16: Solution to cubic NLS with V = −(x2+400y2)
2

, t = 5s, ∆t = .01, h = 1/16

and (x, y) ∈ [−8, 8]2
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(a) 3d View (b) Top View

Figure 4.17: Solution to cubic NLS with V = −(x2+400y2)
2

, t = 10, ∆t = .001, h = 1/16

and (x, y) ∈ [−8, 8]2

4.2 Focusing case: κ < 0

Recall equation (3.1)

iut = −uxx(x, t)
2

+
x2

2
u(x, t) + κ1|u(x, t)|2u(x, t), a < x < b,

It is also relevant to analyze a situation where κ < 0 (the focusing case). Here we

wish to only look at the visual realization of the solution and not analyze the error.

We will continue to use the same initial condition as in previous sections (4.1).

The physics of the problem dictates that a positive harmonic potential is an

attractive presence and will ”trap” the BEC similarly to how the κ < 0 condition

focuses the BEC. What we’d like to find out is if it’s possible to flip the potential (i.e.

a negative V (x) which would attempt to disperse the solution to the wave equation)

and offset the impact of the focusing κ.

The following simulations vary the magnitude of the negative coefficient of x2+y2

2

and graphs the impact of the time of blow-up.
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4.2.1 κ = −1.9718

(a) 3d View (b) Top View

Figure 4.18: Solution to cubic NLS with V = 0, t = 1, ∆t = .01, h = 1/32,

κ = −1.9718, and (x, y) ∈ [−8, 8]2

This graphic represents the square of the wave function (position density) for the case

κ = −1.9718 at time t = 1. Clearly, the singularity effect has happened in this case

where V = 0.

For the remaining simulations, we vary the magnitude of the coefficient of the

inverted harmonic potential to see the effects on the blow up time for the solution of

the cubic NLS.
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(a) V = (x2+y2)
2ε
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(b) Maximum Value of |ψ|2 vs time

Figure 4.19: Focusing case for V = (x2+y2)
2ε

, ε = 0.3, t = 1s

Here we have a positive coefficient for the harmonic potential. A blow up time

of approximately 0.3 seconds is observed. Wild oscillations follow the blow up time.
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(a) V = −(x2+y2)
2ε
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(b) Maximum Value of |ψ|2 vs time

Figure 4.20: Focusing case for V = −(x2+y2)
2ε

, ε = 0.3, t = 1s

Now we see from the left figure that the harmonic potential has been flipped

upside down with a negative coefficient, V = −(x2+y2)
2ε

, and upon close observation,

the blow up time has been delayed slightly between 0.3s and 0.4s. With a coefficient

of -1, the slope of the quadratic is identical to the initial potential,
(
V = (x2+y2)

2ε

)
,

except negative.
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(a) V = −5(x2+y2)
2ε
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(b) Maximum Value of |ψ|2 vs time

Figure 4.21: Focusing case for V = −5(x2+y2)
2ε

, ε = 0.3, t = 1s

Now, we increase the magnitude of the slope of the quadratic potential with the

intent of increasing the effect. Note the blow up time has been increased to after 0.4

seconds.
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(a) V = −10(x2+y2)
2ε
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(b) Maximum Value of |ψ|2 vs time

Figure 4.22: Focusing case for V = −10(x2+y2)
2ε

, ε = 0.3, t = 1s

Here, with the coefficient of the harmonic potential being -10, it appears as

though the blow up time is completely gone. However it is important to note the

time frame of the second graphic, t ∈ [0, 1]. Later, we will stretch that window to see

if we can find the spike in magnitude of the position density.
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(a) V = −20(x2+y2)
2ε
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(b) Maximum Value of |ψ|2 vs time

Figure 4.23: Focusing case for V = −20(x2+y2)
2ε

, ε = 0.3, t = 1s

As before, it appears as though the blow up of the position density has been

eliminated but on the [0,1] interval only.
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(a) V = −50(x2+y2)
2ε
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Figure 4.24: Focusing case for V = −50(x2+y2)
2ε

, ε = 0.3, t = 1s

Again, no blow up but note the increase in the high end of the position density.

Also there are wild oscillations in this [0,1] time window.
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(a) V = −100(x2+y2)
2ε
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Figure 4.25: Focusing case for V = −100(x2+y2)
2ε

, ε = 0.3, t = 1s

The final simulation on the [0,1] time interval. As compared to V (x) = −50(x2+y2)
2ε

,

this potential causes the solution position density to vary wildly within the 0 to 4.5

range. Next we observe the time interval t ∈ [0, 5] to see the impact of the greater

slope on the quadratic potential.
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(a) V = −10(x2+y2)
2ε
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Figure 4.26: Focusing case for V = −10(x2+y2)
2ε

, ε = 0.3, t = 5s

For this scenario we return to the potential V = −10(x2+y2)
2ε

and extend the time

window to t ∈ [0, 5]. Note for this case, there still does not appear to be a spike in

the position density. We will return to this again on a longer interval later.
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(a) V = −20(x2+y2)
2ε
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Figure 4.27: Focusing case for V = −20(x2+y2)
2ε

, ε = 0.3, t = 5s

Finally when we expand the time window for V = −20(x2+y2)
2ε

we find the blow

up at just prior to 2 seconds. Wild oscillations in the max of the position density are

found following this time.
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(a) V = −50(x2+y2)
2ε
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Figure 4.28: Focusing case for V = −50(x2+y2)
2ε

, ε = 0.3, t = 5s

Here we see the blow up occurence pushed to approximately 3.5 seconds in the

t ∈ [0, 5] window. In the case of V = −100(x2+y2)
2ε

, on the next page, the blow up time

is roughly 2.5 seconds.



44

(a) V = −100(x2+y2)
2ε
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Figure 4.29: Focusing case for V = −100(x2+y2)
2ε

, ε = 0.3, t = 5s
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(a) V = −10(x2+y2)
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Figure 4.30: Focusing case for V = −10(x2+y2)
2ε

, ε = 0.3, t = 20s

Finally we attempt to see the blow up for the case of V = −10(x2+y2)
2ε

by expanding

the time frame to [0,20], but do not see any.

4.3 Error Testing

In this section we will analyze the errors in space and time and compare to Lubich [14].

4.3.1 Spatialization Errors

Here we analyze errors in the discretization of the space variable. A very small

time step is chosen (∆t = .0001) for the Gaussian initial condition from earlier (4.1)

and the spatial discretization is taken as a progressively finer and finer mesh in two

dimensions. The discretization as well as the boundaries for the x and y directions

will be taken to be equal.
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Potential h = 1
4

h = 1
8

h = 1
16

h = 1
32

0 2.5353e-05 1.2107e-11 3.4148e-12 1.3345e-11

(x2+y2)
2ε

1.8215e-05 4.0089e-10 1.7532e-10 8.5637e-11

10 (x2+y2)
2ε

1.7633e-01 2.3737e-03 2.8753e-09 6.9805e-12

−1 (x2+y2)
2ε

8.7515e-04 9.0129e-06 3.3705e-06 1.5221e-06

(10x2+y2)
2ε

1.7456e-01 1.3289e-03 7.5564e-10 7.9029e-11

(x2+10y2)
2ε

1.7456e-01 1.3289e-03 7.5563e-10 7.9029e-11

(x2−10y2)
2ε

2.7557e+00 4.8414e+00 3.5978e+00 5.0977e-02

Table 4.1: Spatial discretization error analysis ‖ψ−ψh,k‖l2 at t = 1 on [a, b] = [−8, 8]

with ∆t = .00005

4.3.2 Temporal Errors

In this section we analyze the error in the time stepping. We choose a particular

spatial discretization (M = 512, h = 1
32

) and then vary the size of the time step. The

following data represents this test for both V = 0 and for the harmonic potential

V = (x2+y2)
2
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Potential ∆t = 0.01 ∆t = 0.005 ∆t = 0.0025 ∆t = 0.00125 ∆t = 0.000625

0 2.5615e-03 6.3592e-04 1.5871e-04 3.9662e-05 9.9139e-06

(x2+y2)
2ε

1.3647e-02 3.4068e-03 8.5140e-04 2.1283e-04 5.3203e-05

10 (x2+y2)
2ε

5.4547e-01 1.2043e-01 2.9065e-02 7.2394e-03 1.8082e-03

−1 (x2+y2)
2ε

4.9640e-02 1.2426e-02 3.1075e-03 7.7695e-04 1.9425e-04

(10x2+y2)
2ε

2.7675e-01 6.7647e-02 1.6747e-02 4.1805e-03 1.0447e-03

(x2+10y2)
2ε

2.7675e-01 6.7647e-02 1.6747e-02 4.1805e-03 1.0447e-03

(x2−10y2)
2ε

1.3843e+01 4.1819e+00 1.1328e+00 3.1327e-01 5.5413e-02

Table 4.2: Temporal discretization error analysis ‖ψ − ψh,k‖l2 at t = 1 on [a, b] =

[−8, 8] with h = 1
64



CHAPTER 5

CONCLUSION

In the study of Bose-Einstein Condensation, the Gross-Pitaevskii yields solutions

which are not analytic and thus must be solved numerically. Many methods have been

proposed in order to solve this nonlinear Schrödinger equation, but in particular the

Strang Splitting method has been shown to be very accurate and not very taxing on

the computer systems that utilize it. Bao, et al [4] showed that this spectral splitting

method is found to be more accurate and faster than both the Crank-Nicolson Finite

Difference method and the Crank-Nicolson spectral method when solving the linear

Schrödinger equation numerically.

Lubich [14] proved error bounds in H2 and L2 for the Strang Splitting method for

cubic nonlinear Schrödinger equations with initial data ψ0 ∈ H4. In the simulations

run in this thesis, the choice of initial data is

ψ0 =
1√
π
e
−(x2+y2)

2 .

Clearly ψ0 ∈ H4 and thus we verified Lubich’s error bounds with different potentials

V (x, y) in Tables (4.1), and (4.2)

Next the graphs of solutions for V (x, y) = 0 were shown to agree with the physical

theory. In the presence of no trapping potential (attractive) a cubic nonlinearity with

a positive interaction coefficient (κ > 0, defocusing) will cause the wave to dissipate as

was seen in fig. (4.1) and fig (4.2). When an isotropic harmonic potential ( (x2+y2)
2ε

) was

turned on, we find the condensate will oscillate based on the attractive characteristics

of the quadratic potential with the repulsive characteristics of the cubic nonlinearity.

This is verified, although not easy to see, by figs (4.4), (4.5), (4.6). The center of

the solution does slightly widen, then shrink again and the center darkest part does

change size, only to oscillate.

Figures (4.7) through (4.17) represent varying forms of the harmonic potential
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(isotropic, anisotropic, negative coefficient). The outcome of the simulation is a solu-

tion which again agree with the physics of the BEC. Recalling the scaling parameters

(2.15) introduced in order to make the GPE dimensionless, we can see that the dif-

ferences in frequencies in the x and y domains would cause the oscillations of the

condensates to be different in the corresponding x and y directions (cf. Figures (4.7)

and (4.8)). In the cases where negative frequencies (ratios, again see (2.15)) are used

in either the x-direction, the y-direction (or both) we would expect to see a dissipative

pattern over time (in addition to the dissipative quality of the cubic nonlinearity in

the defocusing case) and we do. For γy < 0 with γx > 0 we see dissipation in only the

y-direction (cf. Figures (4.9) - (4.11)). When the coefficient of the entire potential

is negative, (i.e. repulsive in both the x- and y-direction) the entire wave function

dissipates at rates that we would expect [10], [11].

Finally the case of the focusing Bose Einstein Condensate was analyzed. The

focusing nonlinearity causes an attractive effect on the condensate that can cause it

to ”blow up” in finite time (4.18). The simulations run were intended to counteract

this effect through a harmonic potential that was now switched to negative frequency

i.e. repulsive. The graphs of solutions show that blow up time would be impacted

by the magnitude of the coefficient of the potential in addition to the sign change.

Simply changing the sign alone and keeping the magnitude of the coefficient as 1 in

the first simulation figs (4.19) and (4.20). Potentials with a greater magnitude (slope)

tended to push the blow up time even further (cf. (4.30), (4.27), and (4.28))
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GPE SOLVING CODE

In this section the MATLAB code is presented that was used to solve the GPE.

Initially, this code was used, but special thanks is given to Xavier Antoine and Romain

Duboscq for GPELab [1], an open source MATLAB package that greatly sped up the

simulation process.

f unc t i on s o l u t i o n = gpeso lve (Lx , Nx, t f , dt , eps , K, Vi )

% s e t up g r i d t t o t a l =2; % t o t a l time in seconds

% time step

Nt= t f /dt ;% number o f time s l i c e s

Ny=Nx ;

Ly=Lx ;

% i n i t i a l i s e v a r i a b l e s

x = (−Lx :2∗Lx/Nx : Lx−2∗Lx/Nx ) ’ ; % x coord inate

kx = pi ∗ [ 0 : Nx/2−1 0 −Nx/2+1:−1] ’/(Lx ) ; % wave vec to r

y = (−Ly :2∗Ly/Ny : Ly−2∗Ly/Ny ) ’ ; % y coord inate

ky = pi ∗ [ 0 : Ny/2−1 0 −Ny/2+1:−1] ’/(Ly ) ; % wave vec to r

[ xx , yy]= meshgrid (x , y ) ;

[ k2xm , k2ym]= meshgrid ( kx . ˆ 2 , ky . ˆ 2 ) ;

% i n i t i a l c o n d i t i o n s

u =(1/ s q r t ( p i ∗ eps ) )∗ exp ((− .5/ eps )∗ ( xx .ˆ2+yy . ˆ 2 ) ) ;

%u = ((2ˆ (1/4 ) ) / s q r t ( p i ∗ eps ) )∗ exp ((− .5/ eps )∗ ( xx .ˆ2+2∗yy . ˆ 2 ) ) . ∗ exp ((1/ eps )∗1 i ∗ cosh ( s q r t ( xx .ˆ2 + 2∗yy . ˆ 2 ) ) ) ;

%v=f f t 2 (u ( : , : , 1 ) ) ;

i f Vi == 1

V = ( xx .ˆ2 + 4∗yy . ˆ 2 ) / 2 ;
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e l s e i f Vi==2

V = ( xx .ˆ2 + yy . ˆ 2 ) / 2 ;

e l s e

V=ze ro s (Nx ) ;

end

% s o l v e pde and p lo t r e s u l t s

f o r n =2:Nt+1

pot1=V + K∗( abs (u ) ) . ˆ 2 ;

unb=exp(−1 i ∗( dt /(2∗ eps ) )∗ pot1 ) . ∗ u ;

vnb=f f t 2 (unb ) ;

vna=exp (−.5∗1 i ∗ eps∗dt ∗(k2xm + k2ym ) ) . ∗ vnb ;

una=i f f t 2 ( vna ) ;

pot2=V + K∗( abs ( una ) ) . ˆ 2 ;

u=exp(−1 i ∗( dt /(2∗ eps ) )∗ pot2 ) . ∗ una ;

maximum(n−1)= max(max( abs (u ) . ˆ 2 ) ) ;

i f (mod(n−1,10)==0) %%Plot s o l u t i o n s f o r each time i n t e r v a l

f i g u r e ( 2 ) ; c l f ; s u r f ( xx , yy , abs (u ) . ˆ 2 , ’ EdgeColor ’ , ’ none ’ ) ; t i t l e ( num2str ( ( n−1)∗dt ) ) ;

drawnow ;

end

end

s o l u t i o n = u ;



Appendix B

TESTING THE GPE SOLVER

This code calls the previous gpesolve.m function and stores the output as N matrices

where N =
tf
dt

. Files were created and saved with names based on the specification

of the problem. For example ”V0M32dt000188” represents a potential V (x) = 0, a

spatial mesh size of 32, a time step of 0.0001 seconds and the interval is (x, y) ∈

[−8, 8]2

%%%%%%%%%%% S p a t i a l i z a t i o n Error Tests V=0 t =1,dt =.0001 %%%%%%%%%%%

V0M32dt000188 = gpeso lve ( 8 , 3 2 , 1 , . 0 0 0 1 , 1 , 1 , 0 ) ;

save V0M32dt000188 V0M32dt000188 ;

V0M64dt000188 = gpeso lve ( 8 , 6 4 , 1 , . 0 0 0 1 , 1 , 1 , 0 ) ;

save V0M64dt000188 V0M64dt000188 ;

V0M128dt000188 = gpeso lve ( 8 , 1 2 8 , 1 , . 0 0 0 1 , 1 , 1 , 0 ) ;

save V0M128dt000188 V0M128dt000188 ;

V0M256dt000188 = gpeso lve ( 8 , 2 5 6 , 1 , . 0 0 0 1 , 1 , 1 , 0 ) ;

save V0M256dt000188 V0M256dt000188 ;

V0M512dt000188 = gpeso lve ( 8 , 5 1 2 , 1 , . 0 0 0 1 , 1 , 1 , 0 ) ;

save V0M512dt000188 V0M512dt000188 ;

V0M2048dt0001EXACT88 = gpeso lve ( 8 , 2 0 4 8 , 1 , . 0 0 0 1 , 1 , 1 , 0 ) ;
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save V0M2048dt0001EXACT88 V0M2048dt0001EXACT88 ;

%%%%%%%%%%%%%%%%%%Time Tests f o r V=0, M=512 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%

V0M512dt0188 = gpeso lve ( 8 , 5 1 2 , 1 , . 0 1 , 1 , 1 , 0 ) ;

save V0M512dt0188 V0M512dt0188 ;

V0M512dt00588 = gpeso lve ( 8 , 5 1 2 , 1 , . 0 0 5 , 1 , 1 , 0 ) ;

save V0M512dt00588 V0M512dt00588 ;

V0M512dt002588 = gpeso lve ( 8 , 5 1 2 , 1 , . 0 0 2 5 , 1 , 1 , 0 ) ;

save V0M512dt002588 V0M512dt002588 ;

V0M512dt0012588 = gpeso lve ( 8 , 5 1 2 , 1 , . 0 0 1 2 5 , 1 , 1 , 0 ) ;

save V0M512dt0012588 V0M512dt0012588 ;

V0M512dt00062588 = gpeso lve ( 8 , 5 1 2 , 1 , . 0 0 0 6 2 5 , 1 , 1 , 0 ) ;

save V0M512dt00062588 V0M512dt00062588 ;

V0M512dt000001EXACT88 = gpeso lve ( 8 , 5 1 2 , 1 , . 0 0 0 0 0 1 , 1 , 1 , 0 ) ;

save V0M512dt000001EXACT88 V0M512dt000001EXACT88 ;

%%%%%%%%%%% S p a t i a l i z a t i o n Error Tests V=1 t =1,dt =.0001 %%%%%%%%%%%

V1M32dt000188 = gpeso lve ( 8 , 3 2 , 1 , . 0 0 0 1 , 1 , 1 , 1 ) ;

save V1M32dt000188 V1M32dt000188 ;
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V1M64dt000188 = gpeso lve ( 8 , 6 4 , 1 , . 0 0 0 1 , 1 , 1 , 1 ) ;

save V1M64dt000188 V1M64dt000188 ;

V1M128dt000188 = gpeso lve ( 8 , 1 2 8 , 1 , . 0 0 0 1 , 1 , 1 , 1 ) ;

save V1M128dt000188 V1M128dt000188 ;

V1M256dt000188 = gpeso lve ( 8 , 2 5 6 , 1 , . 0 0 0 1 , 1 , 1 , 1 ) ;

save V1M256dt000188 V1M256dt000188 ;

V1M512dt000188 = gpeso lve ( 8 , 5 1 2 , 1 , . 0 0 0 1 , 1 , 1 , 1 ) ;

save V1M512dt000188 V1M512dt000188 ;

V1M2048dt0001EXACT88 = gpeso lve ( 8 , 2 0 4 8 , 1 , . 0 0 0 1 , 1 , 1 , 1 ) ;

save V1M2048dt0001EXACT88 V1M2048dt0001EXACT88 ;

%%%%%%%%%%%%%%%%%%Time Tests f o r V=1, M=512 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%

V1M512dt0188 = gpeso lve ( 8 , 5 1 2 , 1 , . 0 1 , 1 , 1 , 1 ) ;

save V1M512dt0188 V1M512dt0188 ;

V1M512dt00588 = gpeso lve ( 8 , 5 1 2 , 1 , . 0 0 5 , 1 , 1 , 1 ) ;

save V1M512dt00588 V1M512dt00588 ;

V1M512dt002588 = gpeso lve ( 8 , 5 1 2 , 1 , . 0 0 2 5 , 1 , 1 , 1 ) ;

save V1M512dt002588 V1M512dt002588 ;
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V1M512dt0012588 = gpeso lve ( 8 , 5 1 2 , 1 , . 0 0 1 2 5 , 1 , 1 , 1 ) ;

save V1M512dt0012588 V1M512dt0012588 ;

V1M512dt00062588 = gpeso lve ( 8 , 5 1 2 , 1 , . 0 0 0 6 2 5 , 1 , 1 , 1 ) ;

save V1M512dt00062588 V1M512dt00062588 ;

V1M512dt000001EXACT88 = gpeso lve ( 8 , 5 1 2 , 1 , . 0 0 0 0 0 1 , 1 , 1 , 1 ) ;

save V1M512dt000001EXACT88 V1M512dt000001EXACT88 ;

%%%%%%%%%% S p a t i a l i z a t i o n Error Tests V=1 t =1,dt =.0001 %%%%%%%%%%%

V2M32dt000188 = gpeso lve ( 8 , 3 2 , 1 , . 0 0 0 1 , 1 , 1 , 2 ) ;

save V2M32dt000188 V2M32dt000188 ;

V2M64dt000188 = gpeso lve ( 8 , 6 4 , 1 , . 0 0 0 1 , 1 , 1 , 2 ) ;

save V2M64dt000188 V2M64dt000188 ;

V2M128dt000188 = gpeso lve ( 8 , 1 2 8 , 1 , . 0 0 0 1 , 1 , 1 , 2 ) ;

save V2M128dt000188 V2M128dt000188 ;

V2M256dt000188 = gpeso lve ( 8 , 2 5 6 , 1 , . 0 0 0 1 , 1 , 1 , 2 ) ;

save V2M256dt000188 V2M256dt000188 ;

V2M512dt000188 = gpeso lve ( 8 , 5 1 2 , 1 , . 0 0 0 1 , 1 , 1 , 2 ) ;

save V2M512dt000188 V2M512dt000188 ;
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V2M2048dt0001EXACT88 = gpeso lve ( 8 , 2 0 4 8 , 1 , . 0 0 0 1 , 1 , 1 , 2 ) ;

save V2M2048dt0001EXACT88 V2M2048dt0001EXACT88 ;

%%%%%%%%%%%%%%%%%Time Tests f o r V=1, M=512 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%

V2M512dt0188 = gpeso lve ( 8 , 5 1 2 , 1 , . 0 1 , 1 , 1 , 2 ) ;

save V2M512dt0188 V2M512dt0188 ;

V2M512dt00588 = gpeso lve ( 8 , 5 1 2 , 1 , . 0 0 5 , 1 , 1 , 2 ) ;

save V2M512dt00588 V2M512dt00588 ;

V2M512dt002588 = gpeso lve ( 8 , 5 1 2 , 1 , . 0 0 2 5 , 1 , 1 , 2 ) ;

save V2M512dt002588 V2M512dt002588 ;

V2M512dt0012588 = gpeso lve ( 8 , 5 1 2 , 1 , . 0 0 1 2 5 , 1 , 1 , 2 ) ;

save V2M512dt0012588 V2M512dt0012588 ;

V2M512dt00062588 = gpeso lve ( 8 , 5 1 2 , 1 , . 0 0 0 6 2 5 , 1 , 1 , 2 ) ;

save V2M512dt00062588 V2M512dt00062588 ;

V2M512dt000001EXACT88 = gpeso lve ( 8 , 5 1 2 , 1 , . 0 0 0 0 0 1 , 1 , 1 , 2 ) ;

save V2M512dt000001EXACT88 V2M512dt000001EXACT88 ;

%%%%%%%%%%% S p a t i a l i z a t i o n Error Tests V=0 t =1,dt =.0001 %%%%%%%%%%%

V0M32dt000116 = gpeso lve ( 1 6 , 3 2 , 1 , . 0 0 0 1 , 1 , 1 , 0 ) ;

save V0M32dt000116 V0M32dt000116 ;
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V0M64dt000116 = gpeso lve ( 1 6 , 6 4 , 1 , . 0 0 0 1 , 1 , 1 , 0 ) ;

save V0M64dt000116 V0M64dt000116 ;

V0M128dt000116 = gpeso lve ( 1 6 , 1 2 8 , 1 , . 0 0 0 1 , 1 , 1 , 0 ) ;

save V0M128dt000116 V0M128dt000116 ;

V0M256dt000116 = gpeso lve ( 1 6 , 2 5 6 , 1 , . 0 0 0 1 , 1 , 1 , 0 ) ;

save V0M256dt000116 V0M256dt000116 ;

V0M512dt000116 = gpeso lve ( 1 6 , 5 1 2 , 1 , . 0 0 0 1 , 1 , 1 , 0 ) ;

save V0M512dt000116 V0M512dt000116 ;

V0M2048dt000001EXACT16 = gpeso lve ( 1 6 , 2 0 4 8 , 1 , . 0 0 0 1 , 1 , 1 , 0 ) ;

save V0M2048dt000001EXACT16 V0M2048dt000001EXACT16 ;

%%%%%%%%%%%%%%%%%%Time Tests f o r V=0, M=512 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%

V0M512dt0116 = gpeso lve ( 1 6 , 5 1 2 , 1 , . 0 1 , 1 , 1 , 0 ) ;

save V0M512dt0116 V0M512dt0116 ;

V0M512dt00516 = gpeso lve ( 1 6 , 5 1 2 , 1 , . 0 0 5 , 1 , 1 , 0 ) ;

save V0M512dt00516 V0M512dt00516 ;

V0M512dt002516 = gpeso lve ( 1 6 , 5 1 2 , 1 , . 0 0 2 5 , 1 , 1 , 0 ) ;

save V0M512dt002516 V0M512dt002516 ;
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V0M512dt0012516 = gpeso lve ( 1 6 , 5 1 2 , 1 , . 0 0 1 2 5 , 1 , 1 , 0 ) ;

save V0M512dt0012516 V0M512dt0012516 ;

V0M512dt00062516 = gpeso lve ( 1 6 , 5 1 2 , 1 , . 0 0 0 6 2 5 , 1 , 1 , 0 ) ;

save V0M512dt00062516 V0M512dt00062516 ;

V0M512dt000001EXACT16 = gpeso lve ( 1 6 , 5 1 2 , 1 , . 0 0 0 0 0 1 , 1 , 1 , 0 ) ;

save V0M512dt000001EXACT16 V0M512dt000001EXACT16 ;

%%%%%%%%%%% S p a t i a l i z a t i o n Error Tests V=1 t =1,dt =.0001 %%%%%%%%%%%

V1M32dt000116 = gpeso lve ( 8 , 3 2 , 1 , . 0 0 0 1 , 1 , 1 , 1 ) ;

save V1M32dt000116 V1M32dt000116 ;

V1M64dt000116 = gpeso lve ( 1 6 , 6 4 , 1 , . 0 0 0 1 , 1 , 1 , 1 ) ;

save V1M64dt000116 V1M64dt000116 ;

V1M128dt000116 = gpeso lve ( 1 6 , 1 2 8 , 1 , . 0 0 0 1 , 1 , 1 , 1 ) ;

save V1M128dt000116 V1M128dt000116 ;

V1M256dt000116 = gpeso lve ( 1 6 , 2 5 6 , 1 , . 0 0 0 1 , 1 , 1 , 1 ) ;

save V1M256dt000116 V1M256dt000116 ;

V1M512dt000116 = gpeso lve ( 1 6 , 5 1 2 , 1 , . 0 0 0 1 , 1 , 1 , 1 ) ;

save V1M512dt000116 V1M512dt000116 ;
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V1M2048dt000001EXACT16 = gpeso lve ( 1 6 , 2 0 4 8 , 1 , . 0 0 0 1 , 1 , 1 , 1 ) ;

save V1M2048dt000001EXACT16 V1M2048dt000001EXACT16 ;

%%%%%%%%%%%%%%%%%%Time Tests f o r V=1, M=512 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%

V1M512dt0116 = gpeso lve ( 1 6 , 5 1 2 , 1 , . 0 1 , 1 , 1 , 1 ) ;

save V1M512dt0116 V1M512dt0116 ;

V1M512dt00516 = gpeso lve ( 1 6 , 5 1 2 , 1 , . 0 0 5 , 1 , 1 , 1 ) ;

save V1M512dt00516 V1M512dt00516 ;

V1M512dt002516 = gpeso lve ( 1 6 , 5 1 2 , 1 , . 0 0 2 5 , 1 , 1 , 1 ) ;

save V1M512dt002516 V1M512dt002516 ;

V1M512dt0012516 = gpeso lve ( 1 6 , 5 1 2 , 1 , . 0 0 1 2 5 , 1 , 1 , 1 ) ;

save V1M512dt0012516 V1M512dt0012516 ;

V1M512dt00062516 = gpeso lve ( 1 6 , 5 1 2 , 1 , . 0 0 0 6 2 5 , 1 , 1 , 1 ) ;

save V1M512dt00062516 V1M512dt00062516 ;

V1M512dt000001EXACT16 = gpeso lve ( 1 6 , 5 1 2 , 1 , . 0 0 0 0 0 1 , 1 , 1 , 1 ) ;

save V1M512dt000001EXACT16 V1M512dt000001EXACT16 ;
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ERROR TESTING

Files in this section were named similarly as before, but these files store the value of

the error between the ”exact” solution (very fine mesh, small dt) and the approximate

solution.

%%%%%%%%%%% S p a t i a l i z a t i o n Error Tests V=0 t =1,dt =.0001 %%%%%%%%%%%

V0M32dt000188 = gpeso lve ( 8 , 3 2 , 1 , . 0 0 0 1 , 1 , 1 , 0 ) ;

save V0M32dt000188 V0M32dt000188 ;

V0M64dt000188 = gpeso lve ( 8 , 6 4 , 1 , . 0 0 0 1 , 1 , 1 , 0 ) ;

save V0M64dt000188 V0M64dt000188 ;

V0M128dt000188 = gpeso lve ( 8 , 1 2 8 , 1 , . 0 0 0 1 , 1 , 1 , 0 ) ;

save V0M128dt000188 V0M128dt000188 ;

V0M256dt000188 = gpeso lve ( 8 , 2 5 6 , 1 , . 0 0 0 1 , 1 , 1 , 0 ) ;

save V0M256dt000188 V0M256dt000188 ;

V0M512dt000188 = gpeso lve ( 8 , 5 1 2 , 1 , . 0 0 0 1 , 1 , 1 , 0 ) ;

save V0M512dt000188 V0M512dt000188 ;

V0M2048dt0001EXACT88 = gpeso lve ( 8 , 2 0 4 8 , 1 , . 0 0 0 1 , 1 , 1 , 0 ) ;

save V0M2048dt0001EXACT88 V0M2048dt0001EXACT88 ;
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%%%%%%%%%%%%%%%%%%Time Tests f o r V=0, M=512 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%

V0M512dt0188 = gpeso lve ( 8 , 5 1 2 , 1 , . 0 1 , 1 , 1 , 0 ) ;

save V0M512dt0188 V0M512dt0188 ;

V0M512dt00588 = gpeso lve ( 8 , 5 1 2 , 1 , . 0 0 5 , 1 , 1 , 0 ) ;

save V0M512dt00588 V0M512dt00588 ;

V0M512dt002588 = gpeso lve ( 8 , 5 1 2 , 1 , . 0 0 2 5 , 1 , 1 , 0 ) ;

save V0M512dt002588 V0M512dt002588 ;

V0M512dt0012588 = gpeso lve ( 8 , 5 1 2 , 1 , . 0 0 1 2 5 , 1 , 1 , 0 ) ;

save V0M512dt0012588 V0M512dt0012588 ;

V0M512dt00062588 = gpeso lve ( 8 , 5 1 2 , 1 , . 0 0 0 6 2 5 , 1 , 1 , 0 ) ;

save V0M512dt00062588 V0M512dt00062588 ;

V0M512dt000001EXACT88 = gpeso lve ( 8 , 5 1 2 , 1 , . 0 0 0 0 0 1 , 1 , 1 , 0 ) ;

save V0M512dt000001EXACT88 V0M512dt000001EXACT88 ;

%%%%%%%%%%% S p a t i a l i z a t i o n Error Tests V=1 t =1,dt =.0001 %%%%%%%%%%%

V1M32dt000188 = gpeso lve ( 8 , 3 2 , 1 , . 0 0 0 1 , 1 , 1 , 1 ) ;

save V1M32dt000188 V1M32dt000188 ;

V1M64dt000188 = gpeso lve ( 8 , 6 4 , 1 , . 0 0 0 1 , 1 , 1 , 1 ) ;
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save V1M64dt000188 V1M64dt000188 ;

V1M128dt000188 = gpeso lve ( 8 , 1 2 8 , 1 , . 0 0 0 1 , 1 , 1 , 1 ) ;

save V1M128dt000188 V1M128dt000188 ;

V1M256dt000188 = gpeso lve ( 8 , 2 5 6 , 1 , . 0 0 0 1 , 1 , 1 , 1 ) ;

save V1M256dt000188 V1M256dt000188 ;

V1M512dt000188 = gpeso lve ( 8 , 5 1 2 , 1 , . 0 0 0 1 , 1 , 1 , 1 ) ;

save V1M512dt000188 V1M512dt000188 ;

V1M2048dt0001EXACT88 = gpeso lve ( 8 , 2 0 4 8 , 1 , . 0 0 0 1 , 1 , 1 , 1 ) ;

save V1M2048dt0001EXACT88 V1M2048dt0001EXACT88 ;

%%%%%%%%%%%%%%%%%%Time Tests f o r V=1, M=512 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%

V1M512dt0188 = gpeso lve ( 8 , 5 1 2 , 1 , . 0 1 , 1 , 1 , 1 ) ;

save V1M512dt0188 V1M512dt0188 ;

V1M512dt00588 = gpeso lve ( 8 , 5 1 2 , 1 , . 0 0 5 , 1 , 1 , 1 ) ;

save V1M512dt00588 V1M512dt00588 ;

V1M512dt002588 = gpeso lve ( 8 , 5 1 2 , 1 , . 0 0 2 5 , 1 , 1 , 1 ) ;

save V1M512dt002588 V1M512dt002588 ;

V1M512dt0012588 = gpeso lve ( 8 , 5 1 2 , 1 , . 0 0 1 2 5 , 1 , 1 , 1 ) ;
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save V1M512dt0012588 V1M512dt0012588 ;

V1M512dt00062588 = gpeso lve ( 8 , 5 1 2 , 1 , . 0 0 0 6 2 5 , 1 , 1 , 1 ) ;

save V1M512dt00062588 V1M512dt00062588 ;

V1M512dt000001EXACT88 = gpeso lve ( 8 , 5 1 2 , 1 , . 0 0 0 0 0 1 , 1 , 1 , 1 ) ;

save V1M512dt000001EXACT88 V1M512dt000001EXACT88 ;

%%%%%%%%%% S p a t i a l i z a t i o n Error Tests V=1 t =1,dt =.0001 %%%%%%%%%%%

V2M32dt000188 = gpeso lve ( 8 , 3 2 , 1 , . 0 0 0 1 , 1 , 1 , 2 ) ;

save V2M32dt000188 V2M32dt000188 ;

V2M64dt000188 = gpeso lve ( 8 , 6 4 , 1 , . 0 0 0 1 , 1 , 1 , 2 ) ;

save V2M64dt000188 V2M64dt000188 ;

V2M128dt000188 = gpeso lve ( 8 , 1 2 8 , 1 , . 0 0 0 1 , 1 , 1 , 2 ) ;

save V2M128dt000188 V2M128dt000188 ;

V2M256dt000188 = gpeso lve ( 8 , 2 5 6 , 1 , . 0 0 0 1 , 1 , 1 , 2 ) ;

save V2M256dt000188 V2M256dt000188 ;

V2M512dt000188 = gpeso lve ( 8 , 5 1 2 , 1 , . 0 0 0 1 , 1 , 1 , 2 ) ;

save V2M512dt000188 V2M512dt000188 ;

V2M2048dt0001EXACT88 = gpeso lve ( 8 , 2 0 4 8 , 1 , . 0 0 0 1 , 1 , 1 , 2 ) ;

save V2M2048dt0001EXACT88 V2M2048dt0001EXACT88 ;
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%%%%%%%%%%%%%%%%%Time Tests f o r V=1, M=512 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%

V2M512dt0188 = gpeso lve ( 8 , 5 1 2 , 1 , . 0 1 , 1 , 1 , 2 ) ;

save V2M512dt0188 V2M512dt0188 ;

V2M512dt00588 = gpeso lve ( 8 , 5 1 2 , 1 , . 0 0 5 , 1 , 1 , 2 ) ;

save V2M512dt00588 V2M512dt00588 ;

V2M512dt002588 = gpeso lve ( 8 , 5 1 2 , 1 , . 0 0 2 5 , 1 , 1 , 2 ) ;

save V2M512dt002588 V2M512dt002588 ;

V2M512dt0012588 = gpeso lve ( 8 , 5 1 2 , 1 , . 0 0 1 2 5 , 1 , 1 , 2 ) ;

save V2M512dt0012588 V2M512dt0012588 ;

V2M512dt00062588 = gpeso lve ( 8 , 5 1 2 , 1 , . 0 0 0 6 2 5 , 1 , 1 , 2 ) ;

save V2M512dt00062588 V2M512dt00062588 ;

V2M512dt000001EXACT88 = gpeso lve ( 8 , 5 1 2 , 1 , . 0 0 0 0 0 1 , 1 , 1 , 2 ) ;

save V2M512dt000001EXACT88 V2M512dt000001EXACT88 ;

%%%%%%%%%%% S p a t i a l i z a t i o n Error Tests V=0 t =1,dt =.0001 %%%%%%%%%%%

V0M32dt000116 = gpeso lve ( 1 6 , 3 2 , 1 , . 0 0 0 1 , 1 , 1 , 0 ) ;

save V0M32dt000116 V0M32dt000116 ;

V0M64dt000116 = gpeso lve ( 1 6 , 6 4 , 1 , . 0 0 0 1 , 1 , 1 , 0 ) ;
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save V0M64dt000116 V0M64dt000116 ;

V0M128dt000116 = gpeso lve ( 1 6 , 1 2 8 , 1 , . 0 0 0 1 , 1 , 1 , 0 ) ;

save V0M128dt000116 V0M128dt000116 ;

V0M256dt000116 = gpeso lve ( 1 6 , 2 5 6 , 1 , . 0 0 0 1 , 1 , 1 , 0 ) ;

save V0M256dt000116 V0M256dt000116 ;

V0M512dt000116 = gpeso lve ( 1 6 , 5 1 2 , 1 , . 0 0 0 1 , 1 , 1 , 0 ) ;

save V0M512dt000116 V0M512dt000116 ;

V0M2048dt000001EXACT16 = gpeso lve ( 1 6 , 2 0 4 8 , 1 , . 0 0 0 1 , 1 , 1 , 0 ) ;

save V0M2048dt000001EXACT16 V0M2048dt000001EXACT16 ;

%%%%%%%%%%%%%%%%%%Time Tests f o r V=0, M=512 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%

V0M512dt0116 = gpeso lve ( 1 6 , 5 1 2 , 1 , . 0 1 , 1 , 1 , 0 ) ;

save V0M512dt0116 V0M512dt0116 ;

V0M512dt00516 = gpeso lve ( 1 6 , 5 1 2 , 1 , . 0 0 5 , 1 , 1 , 0 ) ;

save V0M512dt00516 V0M512dt00516 ;

V0M512dt002516 = gpeso lve ( 1 6 , 5 1 2 , 1 , . 0 0 2 5 , 1 , 1 , 0 ) ;

save V0M512dt002516 V0M512dt002516 ;

V0M512dt0012516 = gpeso lve ( 1 6 , 5 1 2 , 1 , . 0 0 1 2 5 , 1 , 1 , 0 ) ;
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save V0M512dt0012516 V0M512dt0012516 ;

V0M512dt00062516 = gpeso lve ( 1 6 , 5 1 2 , 1 , . 0 0 0 6 2 5 , 1 , 1 , 0 ) ;

save V0M512dt00062516 V0M512dt00062516 ;

V0M512dt000001EXACT16 = gpeso lve ( 1 6 , 5 1 2 , 1 , . 0 0 0 0 0 1 , 1 , 1 , 0 ) ;

save V0M512dt000001EXACT16 V0M512dt000001EXACT16 ;

%%%%%%%%%%% S p a t i a l i z a t i o n Error Tests V=1 t =1,dt =.0001 %%%%%%%%%%%

V1M32dt000116 = gpeso lve ( 8 , 3 2 , 1 , . 0 0 0 1 , 1 , 1 , 1 ) ;

save V1M32dt000116 V1M32dt000116 ;

V1M64dt000116 = gpeso lve ( 1 6 , 6 4 , 1 , . 0 0 0 1 , 1 , 1 , 1 ) ;

save V1M64dt000116 V1M64dt000116 ;

V1M128dt000116 = gpeso lve ( 1 6 , 1 2 8 , 1 , . 0 0 0 1 , 1 , 1 , 1 ) ;

save V1M128dt000116 V1M128dt000116 ;

V1M256dt000116 = gpeso lve ( 1 6 , 2 5 6 , 1 , . 0 0 0 1 , 1 , 1 , 1 ) ;

save V1M256dt000116 V1M256dt000116 ;

V1M512dt000116 = gpeso lve ( 1 6 , 5 1 2 , 1 , . 0 0 0 1 , 1 , 1 , 1 ) ;

save V1M512dt000116 V1M512dt000116 ;

V1M2048dt000001EXACT16 = gpeso lve ( 1 6 , 2 0 4 8 , 1 , . 0 0 0 1 , 1 , 1 , 1 ) ;
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save V1M2048dt000001EXACT16 V1M2048dt000001EXACT16 ;

%%%%%%%%%%%%%%%%%%Time Tests f o r V=1, M=512 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%

V1M512dt0116 = gpeso lve ( 1 6 , 5 1 2 , 1 , . 0 1 , 1 , 1 , 1 ) ;

save V1M512dt0116 V1M512dt0116 ;

V1M512dt00516 = gpeso lve ( 1 6 , 5 1 2 , 1 , . 0 0 5 , 1 , 1 , 1 ) ;

save V1M512dt00516 V1M512dt00516 ;

V1M512dt002516 = gpeso lve ( 1 6 , 5 1 2 , 1 , . 0 0 2 5 , 1 , 1 , 1 ) ;

save V1M512dt002516 V1M512dt002516 ;

V1M512dt0012516 = gpeso lve ( 1 6 , 5 1 2 , 1 , . 0 0 1 2 5 , 1 , 1 , 1 ) ;

save V1M512dt0012516 V1M512dt0012516 ;

V1M512dt00062516 = gpeso lve ( 1 6 , 5 1 2 , 1 , . 0 0 0 6 2 5 , 1 , 1 , 1 ) ;

save V1M512dt00062516 V1M512dt00062516 ;

V1M512dt000001EXACT16 = gpeso lve ( 1 6 , 5 1 2 , 1 , . 0 0 0 0 0 1 , 1 , 1 , 1 ) ;

save V1M512dt000001EXACT16 V1M512dt000001EXACT16 ;



Appendix D

CHANGE OF MATRIX FOR COMPUTING NORMS

In order to compute the error, the norm must be calculated and this can only be

done if the matrices being compared have the same dimensions. The method I used

to compare the ”exact” matrix with it’s estimate when those matrices were of different

dimensions was to compare the corresponding parts of the exact matrix with their

smaller counterparts which is straightforward since all dimensions were powers of 2.

For example, if:

ψapprox =

 1 4

2 8

 ψapprox =



1 4 3 7

2 6 8 1

1 4 3 6

2 4 4 2


then the norm to be calculated would be

∥∥∥∥∥∥∥
 1 4

2 8

 −

 1 3

1 3


∥∥∥∥∥∥∥
l2

f unc t i on exact = changeexact ( Exact , e s t imate )

[ ˜ , mex]= s i z e ( Exact ) ;

[ ˜ ,m]= s i z e ( e s t imate ) ;

exact = ze ro s (m) ;

f o r i =0:m−1

f o r j =0:m−1

exact ( i +1, j+1)=Exact ( i ∗2ˆ( log2 (mex)− l og2 (m))+1 , j ∗2ˆ( log2 (mex)− l og2 (m))+1) ;

end

end
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