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Abstract: The successful reduction in prevalence rates of HIV in many countries is attributed
to control measures such as information and education campaigns (IEC), antiretroviral therapy
(ART), and national, multinational and multilateral support providing official developmental assistance
(ODAs) to combat HIV. However, control of HIV epidemics can be interrupted by limited random
supply of ODAs, high poverty rates and low living standards. This study presents a stochastic
HIV/AIDS model with treatment assessing the roles of IEC, the supply of ODAs and early treatment in
HIV epidemics. The supply of ODAs is assessed via the availability of medical and financial resources
leading more people to get tested and begin early ART. The basic reproduction number (R0) for the
dynamics is obtained, and other results for HIV control are obtained by conducting stability analysis
for the stochastic SITRZ disease dynamics. Moreover, the model is applied to Uganda HIV/AIDS data,
wherein linear regression is applied to predict the R0 over time, and to determine the importance of
ART treatment in the dynamics.

Keywords: HIV/AIDS education campaigns; supply of HIV/AIDS aids; basic reproduction number;
stochastic stability; linear regression; delayed ART treatment

1. Introduction

HIV (human immunodeficiency virus) is the agent that causes AIDS (acquired immunodeficiency
syndrome). HIV weakens the human immune system by attacking the body’s special defensive cells,
CD4 cells (T cells), against infection. With the depletion of the T-cells in the body, the human being
becomes vulnerable to secondary infections or infection related cancers [1]. There is no cure for HIV,
and infected persons live with the virus for life. According to the WHO [2], nearly 37.9 million people
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live with HIV by the end of 2018.
While over two thirds of the infected population lives in sub-Saharan Africa, the most affected sub-

populations globally are men who have sex with men (MSM), drug users, prisoners and people living
in closed settings, sex workers and their clients, and transgender people.

There is biomedical treatment available against HIV. The main treatment used to control HIV
infection is called antiretroviral therapy or ART [1]. With proper ART, the viral load is reduced and
may become undetectable. People treated properly with ART, and with undetectable viral loads, live
healthy long lives, and exhibit effectively no risks of transmitting the virus to HIV-negative
persons [1]. Moreover, if HIV is diagnosed early and properly treated, the individuals live nearly
natural lives as uninfected individuals. However, without proper treatment, or in the absence of
treatment, the infected persons progress to AIDS, and this can occur in 2 to 15 years [2]. Thus, there
is a critical time delay τ2 [3] to diagnosis and the onset of proper treatment necessary for a healthy
longer lifespan; there is also the natural time delay of 2 to 15 years, τ1, until the onset of AIDS.

As remarked by WHO [2], between 2000 and 2018, 13.6 million lives were saved due to ART.
Moreover, new HIV infections decreased by 37%, and HIV related deaths also decreased by 45%.
And these achievements were the result of national HIV programs supported by civil society and
international organizations and partners. National and multinational campaigns against HIV have a
history of success in many communities. For example, the success of Uganda in reducing the
prevalence of HIV since the late 1980s is attributed to governmental information, education and
treatment campaigns against HIV [4–6]. Several other studies have investigated the role of
information and education campaigns (IEC) on the prevalence of HIV/AIDS [7, 8].

Other forms of national, multinational and multilateral assistance in combating HIV/AIDS have
been in the form of aids. Top multilateral organizations fighting against HIV/AIDS such as Global
Fund [9], and PEPFAR [10] provide official development assistance (ODA)∗ [11], funding and
supporting large and small scale projects globally designed to prevent and treat HIV/AIDS. Such
assistance in treatment or prevention has saved many lives against the disease [9–12]. On the
downside, the supply of ODAs are sometimes sporadic and random, and this can upset disease
control. For instance, recently, the American government discussed options to cut back funds and
spending on ODAs against HIV/AIDS [13]. This announcement led to some studies [14] to forecast
long-term effects of such policy change on global HIV/AIDS prevalence. These studies have
projected insignificant monetary savings by the US government, and rather devastating clinical and
epidemiological impacts on the global spread of HIV/AIDS. Thus, it may be helpful to
mathematically explore the effects of either cutting back funds on ODAs, or randomly supplying
ODAs such as national, multinational and multilateral assistantships, to fight against the prevalence of
HIV/AIDS.

HIV/AIDS prevalence is also strongly associated with poverty. As clearly remarked by ILOAIDS
[15], HIV/AIDS is at the same time the cause and an outcome of poverty, and poverty is both a cause
and an outcome of HIV/AIDS. Indeed, HIV/AIDS impoverishes poor households that expend savings
and assets to afford medical care; HIV/AIDS retards economic growth, and saps out the vitality of
healthy economies through a weakened labor force, as the skilled, and experienced are killed by the
disease.

On the other hand, poverty drives and exposes the poor and unemployed into unhealthy
∗All forms of domestic or foreign monetary support and other aids provided to combat HIV are referred to as ODAs in this paper.
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employment situations, such as, migratory manual laborers who are in pursuit of temporary or
seasonal migratory work, and because of challenges in daily living and basic accommodations, they
may secure accommodations with sex workers, who are HIV positive [16]. Poverty also drives and
exposes the poor and unemployed into risky sexual behaviors and practices such as prostitution,
especially among women who may exchange sex for food [15, 16], or women who are economically
dependent on their partners and are more susceptible to risky sexual favors in order to please their
partners [15, 17]. Thus, a suitable HIV/AIDS model should account for the effects of poverty and
living standards either explicitly or implicitly.

Mathematical models have certainly advanced understanding about the dynamics of HIV/AIDS
epidemics [4, 7, 8, 18–20]. Mathematical epidemic models with information intervention also advance
understanding about the role of information and education in changing attitudes and behavior that
lead to disease control [4, 7, 8, 21, 22]. Joshi et. al. [4] studied a SIRE model for HIV/AIDS epidemic
in Uganda. Two susceptible classes with change of behavior namely- practicing abstinence or condom
use, emerge from a general uneducated susceptible class via interaction with information in the
community, from information and education campaigns (IEC). The three susceptible classes
nevertheless experience the disease from interactions with infected persons, but with different per
capital disease transmission rates. In their model, the density of education in the community has a
separate dynamics. Huo et.al. [18] also studied a HIV/AIDS epidemic model with a treatment class
with ART. The treated class does not transmit the disease, and it can either relapse to the active
infectious class, if treatment is discontinued, or progress into full blown AIDS.

Employing similar reasoning in the studies [4, 18], a more generalized HIV/AIDS epidemic model
is studied in this paper. It is assumed that the IECs in the community educate the adult population
with multiple preventive measures (more than the two in [4]) against HIV. Moreover, the response
to the education results in multiple distinct behaviorial changes that can be visibly characterized into
distinct sub-susceptible classes S j, j = 0, 1, . . . , n, n ∈ N, exhibiting lowered disease vulnerabilities.
Furthermore, the density of information or education, Z(t), at any time t has a separate dynamics. In
this model, sporadic random supply of ODA and varying poverty levels in the population are also
studied. Adding randomness in the supply of ODAs and poverty rates leads to a stochastic differential
equation model for HIV/AIDS with treatment, multiple behaviorial changes, and time delays to onset
of treatment and full blown AIDS.

In this paper, the impacts of IECs, the random supply of ODAs and delayed ART treatment on
HIV/AIDS control are investigated via conducting a stochastic stability analysis of the system of
differential equations for the HIV/AIDS epidemic. Moreover, a theoretical exploration of these
HIV/AIDS epidemic factors is conducted via applying the epidemic model to Uganda HIV/AIDS
data, wherein a multiple linear regression model for the incidence rate of the disease is derived, and
utilized to simulate the disease dynamics.

This paper is organized as follows. In Sections 2–4, the stochastic epidemic model is derived.
In Section 5 model validation results are presented. In section 6, stochastic stability of the model is
conducted, sensitivity analysis of the BRN R0 and discussion of the disease control conditions are
given. Numerical simulation results for Uganda HIV/AIDS epidemic are presented in Section 7.
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2. Description of model

The HIV/AIDS epidemic model is based on the following assumptions summarized into definitions.

Model-Assumption 2.1. Notations and abbreviations
(A). The notation I(k, n), k ≥ 0 represents the set of consecutive natural numbers between k and n.
E.g. I(0, n) = {0, 1, 2, . . . , n}.
(B). The following abbreviations are used: information and education campaigns: IECs; official
development assistance: ODA; antiretroviral therapy: ART; disease free equilibrium: DFE;
stochastic solution process: SSP; basic reproduction number: BRN R0; Pre-exposure prophylaxis:
PrEP.

Model-Assumption 2.2. Population structures and human behavioral categories:
(A) Sexually active adults in a community are considered. The primary means of HIV transmission

is sexual contact. Vertical transmission is not considered, and alternative means of transmission such
as contact with infected needles are not considered. The IECs are designed to change adult sexual
behaviors, especially of the susceptible population.

It is assumed that the IECs lead to n ∈ N>1 distinct behavioral categories based on safe-sex
measures that are taught and learnt via the IECs [6, 23–26]. Examples of the safe-sex behavioral
categories include preventive measures such as: abstinence, mutually monogamous relationships (i.e.
be faithful to partners), condom use, use of lubricants, voluntary medical male circumcision,
counseling, harm reduction interventions for people who use drugs and all other distinct preventive
measures that reduce vulnerability and transmission rates of HIV. For a comprehensive WHO
recommended HIV prevention package and other HIV preventive measures, see [6, 23–26]. It is
assumed that nearly all adults learn and actively practice at most one distinct measure at a time. That
is, everyone practices a jth measure, j ∈ I(0, n), where the category j = 0 represents the state of
”naivety”, where no safe-sex measure is practiced. All persons who practice at least two measures at
a time are collectively grouped into one of the (n + 1) behaviorial categories j ∈ I(0, n).

The total sexually active human population N(t) is decomposed into five major states namely: the
susceptible state S (t), which is vulnerable to HIV infection; the HIV infected individuals not receiving
ART I(t); the treatment state T (t), representing all HIV infected individuals receiving ART treatment;
the AIDS state A(t), representing all HIV infected persons in the advanced stages of their HIV
infection, and experiencing full symptoms of AIDS; the removed state R(t), representing all those who
practice safer sexual behavior, and fully protected from HIV infection. The removed state can consist
of individuals who are adhering to HIV prevention measures such as PrEP (see
Model-Assumption 2.3). The susceptible state S (t) is further decomposed into (n + 1) distinct
susceptible states S j(t), j ∈ I(0, n), based on the n + 1 IECs behavioral categories above. Hence,

N(t) = S (t) + I(t) + T (t) + A(t) + R(t), (2.1)

where

S (t) =

n∑
j=0

S j(t). (2.2)

Indeed, the state S 0(t) represents all susceptible individuals at time t, who do not practice any HIV
preventive measures, either due to negligence or limited knowledge about HIV preventive measures.
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The states S j(t), j ∈ I(1, n) represent all susceptible individuals who through the IECs, learn and
actively practice the jth major HIV/AIDS preventive measure, where j ∈ I(1, n). Note that for obvious
reasons, it is not necessary to decompose the other states I,T, A,R into the (n + 1) behaviorial
categories.

It is also assumed that there is a constant influx B per unit time of susceptible adults in the
population. Moreover, all new individuals into the population are susceptible of type S 0.

Model-Assumption 2.3. Information density and interaction rates:
(B) The density of information at anytime t is denoted Z(t). The ”naive” susceptible individuals

S 0(t) modify their behavior to become at most one of S j(t), j ∈ I(1, n) after receiving education, Z(t),
about the disease at time t, at the effective response rate γ j ≡ γS 0S j , j ∈ I(1, n).

The rate per unit time at which the susceptible individuals in class S 0(t) change their behavior into
class S j(t) is given by the expression γ jS 0(t)H j(Z(t)), where H j, j ∈ (1, n) is a nonlinear function
describing the response of the susceptible class S 0(t) to the density of information Z(t) in the
population.

It is also assumed that some individuals in the susceptible class S 0(t) experience the highest
impacts of the IECs after interacting with information Z(t) at effective contact rate γ0 ≡ γS 0R. The
impacts of the education obtained from the IECs result to reform their sexual behavior, and produce
actions all through their lives that never result in contracting the disease. In other words, these
individuals are considered to be immune to the disease and removed, R(t), at time t. Indeed,
according to WHO and CDC [24–26], proper training in the use of HIV preventive medications such
as Pre-exposure prophylaxis (PrEP), leads to reduction of HIV infection risk by 99%. Thus,
individuals in the population who are properly trained and adhere to correct daily use of PrEP can be
considered into the removal class R(t).

Thus, γ0S 0(t)H0(Z(t)) is the rate per unit time at which S 0(t) individuals are removed (R), by fully
reforming their sexual behaviors and attitudes via interacting with information Z(t), and practicing
safe-sex measures that will never lead to HIV infection.

Indeed, it is assumed that the effects of the content of the information related to HIV prevention
measures from the IECs, initially rises in susceptible individuals who have not heard it, due to
excitement about knowledge of new preventive measures, then saturates due to familiarity with the
content of the information. The properties of H j are given in Assumption 2.1. Using ideas in [27–29]
we adopt assumptions for the nonlinear function H j, j ∈ I(0, n).

Assumption 2.1. A1 : H j(0) = 0; A2: H j(Z) is strictly monotonic on [0,∞); A3 : H j ∈ C
2(R+,R+)

and H
′′

j (Z) < 0; A4 : limZ→∞ H j(Z) = C1, 0 ≤ C1 < ∞; and A5 : H j(Z) ≤ Z,∀Z > 0.

In addition, using ideas from [22], the rate γ j can be expressed as γ j = ν ja j, where a j is the
interaction rate by which individuals of type S j change their behavior, and ν j ∈ [0, 1] is the response
intensity.

The density of information in the population Z(t) at time t from the IECs is assumed to grow at a
rate that is proportional to the number of infected individuals I(t),T (t), A(t) in the population.
Furthermore, the growth rate exhibits nonlinear character in response to the number of infected
individuals of all states I(t),T (t), A(t) in the system. This growth rate per unit time is represented by
the function FZ(I(t),T (t), A(t)).
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Apparently, the content of information in the IECs relates to the infected classes I(t),T (t), A(t),
as preventive measures are taught against these states. Moreover, the rate of supply of information,
FZ(I(t),T (t), A(t)), saturates over time with increase in I(t),T (t), A(t) (see B). Also, it is assumed that
the effectiveness or strength of the content of the information in the IECs degrades at the rate µZ. A
special form for the function FZ(I(t),T (t), A(t)) is given in (3.10).

Note that there are several different ways to quantity HIV information density Z(t) in the population
over time. For instance, in [4], the amount of information present at anytime is a function of the number
of national, international, governmental and non-governmental organizations involved in IECs against
HIV in Uganda at any time.

Model-Assumption 2.4. Disease transmission and generalized standard incidence rates of the
disease:

(C) The active HIV infectious class I(t) passes infection to all susceptible states S j, j ∈ I(0, n).
However, because of preventive measures learnt from the IECs, the sub-classes S j, j ∈ I(1, n)
experience a reduced rate of transmission from I, than the class S 0. That is, at the rate
β j ≡ βS j , j ∈ I(0, n), the interaction between the susceptible state S j and infectious state I(t) results in
HIV transmission. The rate β j ≡ βS j , j ∈ I(0, n) represents the average number of effective contacts
(i.e. sufficient contacts to transmit disease) per person per unit time. Moreover, β0 ≥ β j, j ∈ I(1, n). In
Section 7, multiple linear regression is applied to model the disease transmission rates
β j ≡ βS j , j ∈ I(0, n) over time, for a given HIV/AIDS data for Uganda.

Recognizing the viewpoints regarding the incidence rates of human epidemics [30], a nonlinear
generalization of the standard incidence rate β jS j(t)I(t)

N(t) = β jS j(t)i(t), i(t) =
I(t)
N(t) is considered, where N(t)

is the total population at time t.
Indeed, i(t) =

I(t)
N(t) is the fraction of the HIV infectious persons in the population at time t. Observe

that when N(t) is a constant, then β jS j(t)I(t)
N(t) = β jS j(t)i(t) = θ(t)β jS j(t)I(t), where the fraction 0 <

θ(t) = 1
N(t) < 1, reflects that the incidence rate rises linearly with respect to the infectious state I,

and this pattern is unsuitable for most human epidemics [31]. Also, when the total population size
N(t) grows or declines proportionately with a rise or a drop in disease transmission in the population,
respectively, i.e. N(t) and the infectious state I(t) both change (increase or decrease) proportionately,
then the fraction i(t) =

I(t)
N(t) is constant overtime, and the standard incidence rate β jS j(t)I(t)

N(t) = β jS j(t)i(t)
no longer reflects the true incidence rate of the disease in the population.

Thus, to increase flexibility in the standard incidence rate to represent more real life scenarios, a
nonlinear incidence function G j is introduced with assumptions in Assumption 2.2. The properties of
the nonlinear function G j in Assumption 2.2 signify a psychological response from the susceptible
classes S j, j ∈ I(0, n), where more susceptibles apply more appropriate preventive measures and
actions that limit contacts with infectious persons, as the HIV infectious state I(t) increases in the
community over time.

The modified nonlinear incidence rate of HIV in the state S j, is given by the expression
β jS j(t)G j(i(t)), j ∈ I(0, n). The function G j satisfies the assumptions in Assumption 2.2.

Using ideas in [27–29] we adopt assumptions for the nonlinear function G j, j ∈ I(0, n).

Assumption 2.2. A1 : G j([0, 1]) ⊆ R+, G j(0) = 0; A2: G j(I) is strictly monotonic on [0, 1]; A3:
G j ∈ C

2([0, 1],R+) and G
′′

j (i) ≤ 0; A4 : limi→∞G j(i) = C2, 0 ≤ C2 < ∞; and A5: G j(i) ≤ i,∀i > 0.

An example of a function in the G-family in Assumption 2.2 is G(x) = ax
1+bx , x ≥ 0. Indeed, to
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illustrate further, Figure 1 depicts the behaviors of the standard incidence function i(t) = I(t)/N(t),
and a modified standard incidence function G(i(t)) =

ai(t)
1+bi(t) , as the number of infectives increase,

where I(t) ∈ [0, 1000000] and a = 0.05, b = 10.

Figure 1. Shows the behaviors of the modified standard incidence and the ordinary standard
incidence rates as the number of infectives continually increase over time. Clearly, the
modified standard incidence is more suitable for many real life scenarios where the incidence
rate of the disease saturates over time as the number of infections increase in the population.

Note that disease transmission from the AIDS state A(t) and from treatment state T (t) are not
considered [4, 18]. Indeed, it is assumed that individuals in the AIDS stage of their HIV infection
exhibit the typical visible symptoms of the disease [32], and as a result they are either aware of their
disease status and take precautionary measures via abstinence to not infect others, or they are unwell
due to symptoms of the disease.

Model-Assumption 2.5. Random supply of ODAs and delays in the disease dynamics:
(D) The effects of randomness in the supply of ODAs will be assessed through the parameters

ε j ∈ (0, 1), and ε̄ j ≡ 1 − ε j ∈ (0, 1), where ε j ∈ (0, 1), j ∈ I(0, n) represents the proportion per unit
time of newly infected individuals from the class S j, j ∈ I(0, n) who do not receive ART treatment, and
consequently progress to the AIDS state A(t) after the time delay τ1, and ε̄ j ≡ 1− ε j ∈ (0, 1), j ∈ I(0, n)
is the other proportion per unit time of the newly infected from the class S j, j ∈ I(0, n), who after a
time delay τ2 following exposure to HIV, proceed to be tested, begins ART treatment and become the
state T (t), respectively.

In the absence of noise in the proportions ε j ∈ (0, 1), and ε̄ j ≡ 1 − ε j ∈ (0, 1), it is expected that
a constant significant supply of ODAs in a community enables more people to be easily tested and to
afford ART. And as a result, the proportion ε̄ j ≡ 1 − ε j ∈ (0, 1) increases, and the delay until ART
begins, τ2, decreases on average. Also, if there is little or no supply of ODAs in the community, then
more people cannot afford testing and ART, and consequently the proportion ε j ∈ (0, 1) increases.

Mathematical Biosciences and Engineering Volume 17, Issue 6, 6791–6837.
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The question of how random and sporadic supplies of ODAs in the community affect the HIV/AIDS
epidemic dynamics will be answered by introducing white noise into the parameters ε j ∈ (0, 1), and
ε̄ j ≡ 1 − ε j ∈ (0, 1) (see (4.2)).

Clearly, the time delay until the onset of ART, τ2, varies with available resources from ODAs, and
also varies with the attitudes of newly exposed individuals in the population. Indeed, some communities
attach huge social stigmas to HIV/AIDS, and as a result many people are dissuaded by such stigmas
from testing and beginning early ART. Sometimes late commencing of ART may be the result of simple
ignorance about the benefits of early testing and ART. These combinations of attitudes towards HIV can
delay testing and diagnosis of HIV, and consequently, lead to delayed ART. Also, as remarked earlier,
progression from HIV without treatment to full-blown AIDS can occur after time delay τ1 varying
between 2 to 15 years. Therefore, distributed time delays τ1 and τ2 are considered to represent the
variabilities in the delays, with probability density functions fτ1 , t0 ≤ τ1 ≤ h1 and fτ2 , t0 ≤ τ2 ≤ h2.

Model-Assumption 2.6. Withdrawal from treatment and developing full-blown AIDS:
(E) The only form of treatment considered is ART. In the advanced stages of HIV without treatment,

the infectious individual I(t) develops full-blown AIDS A(t) after the natural incubation period τ1.
Individuals who begin treatment T (t) in the advanced stages of HIV, where considerable damage to
T-cells has occurred, can still progress to full-blown AIDS A(t) at the per capita rate αT A, as treatment
fails. Individuals diagnosed early with HIV, and receiving treatment can discontinue ART due to a
random sporadic limited supply of ODAs in the community, or due to personal self-limiting factors
against the ART. Such individuals in the state T (t) relapse to the active infectious state I(t) at the rate
αT I .

Model-Assumption 2.7. The per capita death rates:
(F) All individuals of all states in the population die naturally at the per capita rate

µk, k ∈
{
S j, I,T, A,R

}
, j ∈ I(0, n), while the infected classes-I,T, A die from the disease at the rate

dk, k ∈ {I,T, A}. Since in most natural settings the natural death causes are uniform across all disease
states, then µk = µ, k ∈

{
S j, I,T, A,R

}
, j ∈ I(0, n), where µ is a constant. However, the distinct

notation for the natural deathrates µk, k ∈
{
S j, I,T, A,R

}
, j ∈ I(0, n) will be used.

Model-Assumption 2.8. poverty indicators in the disease dynamics:
(G) The effects of poverty in the HIV/AIDS epidemic dynamics are implicitly assessed through the

per capita natural deathrates µk, k ∈
{
S j, I,T, A,R

}
, j ∈ I(0, n). Indeed, it is apparent that a major

indicator of the living standards of a community is the life expectancy, and assuming that natura
deaths occur independently with homogenous Poisson rates µk, k ∈

{
S j, I,T, A,R

}
, j ∈ I(0, n), then

the average life expectancy is related to natural death rate by 1
µk
, k ∈

{
S j, I,T, A,R

}
, j ∈ I(0, n).

Furthermore, higher living standards correlate with richer economies, and small values for µk, k ∈{
S j, I,T, A,R

}
, j ∈ I(0, n), and vice versa. Moreover, even within a given geographical region, the life

expectancy varies. In this paper, the random poverty rates within the community over time are assessed
by introducing independent white noises into the natural death rates µk, k ∈

{
S j, I,T, A,R

}
, j ∈ I(0, n).

3. Derivation of the epidemic model in the absence of noise

It follows from the assumptions (A)–(G) in Model-Assumptions 2.1-2.8 above that a compartmental
framework depicting the transitions between the different states of the population is given in Figure 2,
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and the deterministic HIV/AIDS epidemic dynamic model with treatment and information intervention
follows immediately.

Figure 2. shows the different states of the population in the HIV/AIDS epidemic, and the
transition rates between the states.

dS 0(t) =

B − n∑
j=1

γ jS 0(t)H j(Z(t)) − β0S 0(t)G0(i(t)) − γ0S 0(t)H0(Z(t)) − µS 0S 0(t)

 dt, (3.1)

dS j(t) =
[
γ jS 0H j (Z(t)) − β jS jG j(i(t)) − µS jS j(t)

]
dt, (3.2)

j ∈ I(1, n),

dI(t) =

β0S 0(t)G0(i(t)) +

n∑
j=1

β jS j(t)G j(i(t))

−

n∑
j=0

∫ h1

t0
ε jβ jS j(t − r)G j(i(t − r))e−µIr fτ1(r)dr

−

n∑
j=0

∫ h2

t0

(
1 − ε j

)
β jS j(t − u)e−µT u fτ2(u)du
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−µI I(t) − dI I(t) + αT IT (t)
]
dt, (3.3)

dT (t) =

 n∑
j=0

∫ h2

t0

(
1 − ε j

)
β jS j(t − u)G j(i(t − u))e−µIu fτ2(u)du

−αT IT (t) − µT T (t) − dT T (t) − αT AT (t)
]
dt, (3.4)

dA(t) =

 n∑
j=0

∫ h1

t0
ε jβ jS j(t − r)G j(i(t − r))e−µIr fτ1(r)dr

−µAA(t) − dAA(t) + αT AT (t)
]
dt, (3.5)

dR(t) =
[
γ0S 0(t)H0 (Z(t)) − µRR(t)

]
dt, (3.6)

and
dZ(t) =

[
FZ(I(t),T (t), A(t)) − µZZ(t)

]
dt, (3.7)

where the initial conditions are given in the following: define h = max (h1, h2),(
S j(t), I(t),T (t), A(t),R(t),Z(t)

)
=

(
ϑ j(t), ϕ1(t), ϕ2(t), ϕ3(t), ϕ4(t), ϕ5(t)

)
, t ∈ (t0 − h, t0],

ϑ j(t), ϕk ∈ C((−h, t0],R+),∀ j ∈ I(0, n), k ∈ I(1, 5) = {I,T, A,R,Z},

ϑ j(t0), ϕk(t0) > 0,∀ j ∈ I(0, n), k ∈ I(1, 5),
(3.8)

where C((−∞, t0],R+) is a Banach space of continuous functions endowed with the uniform norm

||ϕ||∞ = sup
t≤t0
|ϕ(t)|. (3.9)

The reader is directed to 9, for the detailed derivation and interpretation of the distributed delay terms
of the epidemic model (3.1)–(3.7).

To complete the model formulation, applying some ideas in [22] to Model-Assumption 2.3, we take
the function

FZ(I(t),T (t), A(t)) =
φI I(t) + φT T (t) + φAA(t)

1 + φ̂I I(t) + φ̂T T (t) + φ̂AA(t)
, (3.10)

where φi is the growth rate of the information and φ̂i is the saturation constant owing to the ith class
i ∈ {I,T, A}.

Observe from Eq (3.10) that for I(t),T (t), A(t) ∈ R+,

φmin(I(t) + T (t) + A(t))
1 + φ̂max(I(t) + T (t) + A(t))

≤ FZ(I(t),T (t), A(t)) ≤
φmax(I(t) + T (t) + A(t))

1 + φ̂min(I(t) + T (t) + A(t))
, (3.11)

where φ̂min = min (φk), k ∈ {I,T, A}, and φmax = max (φk), k ∈ {I,T, A}.
The form for FZ in Eqs (3.10) and (3.11) signifies that the growth rate of the information in the

population saturates as the infected population increases. Furthermore, it is assumed that there is
relatively more preventive information related to getting infected (becoming (I) state) and getting
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treatment (becoming T state) than progressing from HIV infectious (I) state into full-blown AIDS
(A). That is,

φA ≈ 0 and φ̂A ≈ 0. (3.12)

Note that the family of epidemic models in Eqs (3.1)–(3.7) contains an interesting sub-family of
models describing the dynamics of HIV/AIDS in the population, with information intervention, but in
the absence of treatment (ART). This sub-family of models is obtained from Eqs (3.1)–(3.7) easily by
deleting all treatment related parameters, leading to the system

dS 0(t) =

B − n∑
j=1

γ jS 0(t)H j(Z(t)) − β0S 0(t)G0(i(t)) − γ0S 0(t)H0(Z(t)) − µS 0S 0(t)

 dt

dS j(t) =
[
γ jS 0H j(Z(t)) − β jS jG j(i(t)) − µS jS j(t)

]
dt − σS jS jdwS j(t), j ∈ I(1, n)

dI(t) =

β0S 0(t)G0(i(t)) +

n∑
j=1

β jS j(t)G j(i(t))

−

n∑
j=0

∫ h1

t0
β jS j(t − r)G j(i(t − r))e−µIr fτ1(r)dr − µI I(t) − dI I(t)

 dt

dA(t) =

 n∑
j=0

∫ h1

t0
β jS j(t − r)G j(i(t − r))e−µIr fτ1(r)dr − µAA(t) − dAA(t)

 dt

dR(t) =
[
γ0S 0(t)H0(Z(t)) − µRR(t)

]
dt

dZ(t) =
[
FZ(I(t),T (t), A(t)) − µZZ(t)

]
dt,

(3.13)

with initial conditions in Eqs (3.8) and (3.9). Observe that the model (3.13) is a generalization of the
model by Joshi et. al [4], that would be used to investigate the impacts of information intervention in
changing human behavior in HIV/AIDS epidemics, whenever ART treatment is not available.

4. Derivation of the stochastic HIV/AIDS model

From Assumptions (D) and (G) in Model-Assumptions 2.1–2.8, it is assumed there are noises in the
HIV/AIDS dynamics from the random supply of ODAs and random poverty levels/living standards in
the community reflected by life expectancy. That is, the proportions per unit time ε̄ j = 1−ε j and ε j, j ∈
I(0, n) are random variables, and likewise the natural death rates µk, k ∈

{
S j, I,T, A,R

}
, j ∈ I(0, n) are

random variables per unit time. Denote these random variables, respectively, by ˜̄ε j, ε̃ j, j ∈ I(0, n) and
µ̃k, k ∈

{
S j, I,T, A,R

}
, j ∈ I(0, n). We represent the environmental variabilities as independent white

noise processes applying similar techniques in the earlier studies [27, 28].
For t ≥ t0, let (Ω,F, P) be a complete probability space, and Ft be a filtration (that is, sub σ- algebra

Ft that satisfies the following: given t1 ≤ t2 ⇒ Ft1 ⊂ Ft2; E ∈ Ft and P(E) = 0 ⇒ E ∈ F0 ). The
variabilities in ˜̄ε j, ε̃ j, j ∈ I(0, n) and µ̃k, k ∈

{
S j, I,T, A,R

}
, j ∈ I(0, n) in any small time interval of

length dt are represented by independent white noise processes as follows:

µ̃kdt = µkdt + σkdwk(t), k ∈
{
S j, I,T, A,R

}
, j ∈ I(0, n) (4.1)
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˜̄ε jdt = (1 − ε̃ j)dt = (1 − ε j)dt + σε̄ jdwε j(t), and

ε̃ jdt = ε jdt + σε jdwε j(t), j ∈ I(0, n), where σε j = σε̄ j , (4.2)

and the wk(t)’s are the normalized Wiener processes for the kth state at time t (k ∈
{
S j, I,T, A,R

}
, j ∈

I(0, n)), with the following properties: wk(0) = 0, E(wk(t)) = 0,Var(wk(t)) = t. Note from Eqs (4.1) and
(4.2) that the random variables ˜̄ε j ∈ R, ε̃ j ∈ R, j ∈ I(0, n) and their means E[ ˜̄ε j] = ε̄ j = 1 − ε j ∈ (0, 1)
and E[ε̃ j] = ε j ∈ (0, 1).

Also, for each k ∈
{
S j, I,T, A,R

}
, j ∈ I(0, n), it is easy to see from Eqs (4.1) and (4.2) that

Var[µ̃kdt] = σ2
kdt, where σ2

k is the intensity of the noise in the natural death rate of the kth state;
Var[(1 − ε̃ j)dt] = Var[ε̃ jdt] = σ2

ε j
dt ≡ σ2

ε̄ j
dt, where σ2

ε j
≡ σ2

ε̄ j
is the intensity of the noise in the

random variable ε̃ j, j ∈ I(0, n). Note, σε j and σε̄ j are identical, however, the distinct notations are
utilized to emphasize the origins of the noises. The reader should see 10 for further discussion of the
sub-models and white noise processes in Eqs (4.1) and (4.2).

Substituting Eqs (4.1), (4.2) and (10.4) into the deterministic systems (3.1)–(3.7) leads to the
following generalized system of Ito-Doob stochastic differential equations.

dS 0(t) =

B − n∑
j=1

γ jS 0(t)H j(Z(t)) − β0S 0(t)G0(i(t)) − γ0S 0(t)H0(Z(t)) − µS 0S 0(t)

 dt

−σS 0S 0dwS 0(t), (4.3)

dS j(t) =
[
γ jS 0H j (Z(t)) − β jS jG j(i(t)) − µS jS j(t)

]
dt − σS jS jdwS j(t), (4.4)

j ∈ I(1, n),

dI(t) =

β0S 0(t)G0(i(t)) +

n∑
j=1

β jS j(t)G j(i(t))

−

n∑
j=0

∫ h1

t0
ε jβ jS j(t − r)G j(i(t − r))e−µIr fτ1(r)dr

−

n∑
j=0

∫ h2

t0

(
1 − ε j

)
β jS j(t − u)e−µT u fτ2(u)du

−µI I(t) − dI I(t) + αT IT (t)
]
dt −

n∑
j=0

(σε j)
∫ h1

t0
β jS j(t − r)G j(i(t − r))e−µIr fτ1(r)drdwε j(t)

−

n∑
j=0

(σε̄ j)
∫ h2

t0
β jS j(t − u)G j(i(t − u))e−µIu fτ2(u)dudwε j(t)

−σI I(t)dwI(t), (4.5)

dT (t) =

 n∑
j=0

∫ h2

t0

(
1 − ε j

)
β jS j(t − u)G j(i(t − u))e−µIu fτ2(u)du
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−αT IT (t) − µT T (t) − dT T (t) − αT AT (t)
]
dt

+

n∑
j=0

σε̄ j

∫ h2

t0
β jS j(t − u)G j(i(t − u))e−µIu fτ2(u)dudwε j(t) − σT T (t)dwT (t),

(4.6)

dA(t) =

 n∑
j=0

∫ h1

t0
ε jβ jS j(t − r)G j(i(t − r))e−µIr fτ1(r)dr

−µAA(t) − dAA(t) + αT AT (t)
]
dt +

n∑
j=0

σε j

∫ h1

t0
β jS j(t − r)G j(i(t − r))e−µIr fτ1(r)drdwε j(t)

−σAA(t)dwA(t), (4.7)

dR(t) =
[
γ0S 0(t)H0 (Z(t)) − µRR(t)

]
dt − σRR(t)dwR(t), (4.8)

and
dZ(t) =

[
FZ(I(t),T (t), A(t)) − µZZ(t)

]
dt, (4.9)

where the initial conditions are given in the following: define h = max (h1, h2),(
S j(t), I(t),T (t), A(t),R(t),Z(t)

)
=

(
ϑ j(t), ϕ1(t), ϕ2(t), ϕ3(t), ϕ4(t), ϕ5(t)

)
, t ∈ (t0 − h, t0],

ϑ j(t), ϕk ∈ C((−h, t0],R+),∀ j ∈ I(0, n), k ∈ I(1, 5) = {I,T, A,R,Z},

ϑ j(t0), ϕk(t0) > 0,∀ j ∈ I(0, n), k ∈ I(1, 5),
(4.10)

and C((−∞, t0],R+) is a Banach space of continuous functions endowed with the uniform norm

||ϕ||∞ = sup
t≤t0
|ϕ(t)|. (4.11)

Furthermore, the random continuous functions ϑ j(t), ϕk(t) > 0,∀ j ∈ I(0, n), k ∈ I(1, 5), are F0 −

measurable, or independent of w(t) for all t ≥ t0.
Observe that for FZ in Eqs (3.10) with (3.12), the Eqs (4.7) and (4.8) decouple from the stochastic

systems (4.3 )–(4.9). The following vectors defined below, will be used.

Y(t) = (S 0(t), . . . , S n(t), I(t),T (t), A(t),R(t),Z(t))T ∈ Rn+6
+ ,

X(t) = (S 0(t), . . . , S n(t), I(t),T (t),Z(t))T ∈ Rn+4
+ ,

N(t) =

n∑
j=0

S j(t) + I(t) + T (t) + A(t) + R(t). (4.12)

5. Model validation results

Applying standard techniques in [27,28,33], it is proven that there exists a unique positive stochastic
solution process {Y(t), t ≥ t0} that satisfies Eqs (4.3)–(4.9).

It becomes apparent that the existence and behavior of the paths of the solution process for Eqs
(4.3)–(4.9) depend on the sources and magnitudes of the intensities σk, k ∈

{
S j, I,T, A,R

}
, j ∈ I(0, n)

of the noises in the system. The results are given below.
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Theorem 5.1. Define a closed ball in Rn+6
+ , centered at the origin and radius r > 0 in Eq (5.2) as

follows:
D(∞) = B̄Rn+6

+
(0, r) =

{
Y(t) ∈ Rn+6

+ |N(t) + Z(t) = ||Y(t)||1 ≤ r
}
, (5.1)

where

r =
B
µmin

+
1
µZ

φmax

min (1, φ̂min)
B
µmin

. (5.2)

Given the initial conditions (4.10) and (4.11), there exists a unique positive stochastic solution
process (SSP) {Y(t,w), t ≥ t0,w ∈ Ω} for the systems (4.3)–(4.9). That is, S j(t,w) > 0, I(t,w) >

0,T (t,w) > 0, A(t,w) > 0,R(t,w) > 0, and Z(t,w) > 0, t ≥ t0,w ∈ Ω, almost surely. Moreover, the
following hold:

a. If the intensities in Eqs (4.3)–(4.9) satisfy σε̄ j ≡ σε j = 0, σS j = 0,∀ j ∈ I(0, n) and σk = 0,∀k ∈
{I,T, A,R}, then the solution of the ensuing deterministic systems (3.1)–(3.7) lies in a positive self-
invariant space B̄Rn+6(0, r) in (5.1).

b. If the intensities satisfy σε̄ j ≡ σε j > 0, σS j = 0,∀ j ∈ I(0, n) and σk = 0,∀k ∈ {I,T, A,R}, then
the solution of the ensuing stochastic systems (4.3)–(4.9) almost surely lies in a positive self-invariant
space B̄Rn+6(0, r) in Eq (5.1).

c. If at least one of σk > 0, k ∈ {S j, I,T, A,R}, and j ∈ I(0, n), then the solution of the ensuing
stochastic systems (4.3)–(4.9), almost surely lies in the unbounded space Rn+6

+ , for all time t ≥ t0,
regardless whether σε̄ j ≡ σε j ≥ 0.

Proof. See 11 for the complete proof of Theorem 5.1. In addition, an interpretation of the results is
given in Remark 11.1.

�

6. Stochastic Stability of the disease-free steady state

Denote by E = X∗ = (S ∗0, . . . , S
∗
n, I
∗,T ∗,Z∗)T the steady states of the systems (3.1)–(3.7) and (4.3)–

(4.9). Similarly to Theorem 5.1, the existence of a disease-free equilibrium (DFE) of Eqs (4.3)–(4.9)
depends on the intensities of the noises in the system.

Theorem 6.1. Let Theorem 5.1 hold. The following are true about the DFE E0:

(a.) When Theorem 5.1(a.) holds, the systems (4.3)–(4.9) and (3.1)–(3.7) are equivalent and the DFE
is given by

E0 = X∗0 = (S ∗0, . . . , S
∗
n, I
∗,T ∗,Z∗) = (

B
µS 0

, 0 . . . , 0, 0, 0, 0). (6.1)

(b.) When Theorem 5.1(b.) holds, the stochastic systems (4.3)–(4.9) has a DFE given by (6.1).

(c.) When part of Theorem 5.1(c.) holds, i.e. σS 0 = 0, σS j > 0,∀ j ∈ I(1, n) and σk > 0,∀k ∈ {I,T, A,R},
and σε̄ j ≡ σε j > 0, then the DFE exists and is given by Eq (6.1).

(d.) When σS 0 > 0 in Eqs (4.3)–(4.9), the systems (4.3)–(4.9) no longer has a DFE.

Proof. The proof of Theorem 6.1 is given in 12. In addition, the interpretation of the theorem in relation
to the disease dynamics is given in Remark 12.1. �
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The next result presents the basic reproduction numbers (BRN R0) of the two families of
deterministic models (3.1)–(3.7) and (3.13).

Theorem 6.2. Define

R1 = β0S ∗0
1

µI + dI
, (6.2)

P(1) = 1[
ε0R1E(e−µIτ1 )+(1−ε0)R1E(e−µIτ2 )−αT I (1−ε0)R1E(e−µIτ2 ) 1

(αT I +µT +dT +αT A) + 1
G′ (0)

] ,
P1(1) = 1[

R1E(e−µIτ1 )+ 1
G′ (0)

] . (6.3)

(a.) The BRN of the deterministic models (3.1)–(3.7) is given by

R0 = R1P(1) = P(1)β0S ∗0
1

µI + dI
. (6.4)

(b.) The BRN of the deterministic model (3.13) is given by

RnoTr
0 = R1P1(1) = P1(1)β0S ∗0

1
µI + dI

. (6.5)

Proof. The proof is easily obtained by applying the method of next generation matrix. �

Remark 6.1.

(1.) The BRN R0 in (6.4) is interpreted in the following. Indeed, given one infectious individual placed
in the disease free population E0, the term ε0R1E(e−µIτ1) represents all newly infected individuals who
fail to receive treatment and just turn into full-blown AIDS after the period τ1; the term
(1 − ε0)R1E(e−µIτ2) − αT I(1 − ε0)R1E(e−µIτ2) 1

(αT I+µT +dT +αT A) represents the net number of newly infected
individuals who remain in treatment ( note that αT I(1 − ε0)R1E(e−µIτ2) 1

(αT I+µT +dT +αT A) represents all
newly infected individuals who have either stopped treatment and currently returning to the infectious
state, or those in whom treatment fails, and they are currently changing into full-blown AIDS ); the
term 1

G′ (0) is the effect of nonlinearity in the incidence rate of the disease. Therefore, P(1) is
approximately the probability of finding an infectious individual who would either become infectious,
receive treatment and remain treated, or progress without treatment into full-blown AIDS.

Thus, the basic reproduction number R0 in (6.4) is the average number of secondary infections in
the complete disease free population E0, that would proceed to the treatment class or to the full-blown
AIDS class, over the average lifespan of 1

µI+dI
of an infectious person in the population. Note that the

BRN R0 in (6.5) is interpreted similarly for the system (3.13) without ART treatment.

(2.) Observe from (6.4) and (6.5) that R0 < RnoTr
0 . Which implies that R0 → 0 faster than RnoTr

0 → 0,
and R0 → 1 at a slower rate than RnoTr

0 → 1. This observation suggests that the disease is more easily
eradicated when there is ART treatment and behavioral modification via information intervention, than
when there is only behavioral change without ART treatment.

The following lemmas will be used to show the stochastic stability results for the DFE E0 = X∗0 =

(S ∗0, . . . , S
∗
n, I
∗,T ∗,Z∗) = ( B

µS 0
, 0 . . . , 0, 0, 0, 0) of the system (4.3)-(4.9). The decoupled system with

positive solution X(t), t ≥ t0 in (4.12) is utilized. Observe that the HIV positive states in X(t) are I and
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T . Also observe from Assumptions 2.1&2.2 that for each j ∈ I(0, n), H j and G j are continuous and
bounded over their domains. Moreover, denote by

H∗j = sup
Z(t)≥0

H j(Z(t)) and G∗j = max
i(t)∈[0,1]

G j(i(t)). (6.6)

Clearly, from Assumption 2.1 (A5) and Assumption 2.2(A5), it is easy to see that for any t ≥ t0,

H j(Z(t)) ≤ min (H∗j ,Z(t)),∀Z(t) ≥ 0 and G j(i(t)) ≤ min (G∗j, i(t)) ≤ min (G∗j, 1),∀i(t) ∈ [0, 1],
G j(i(t)) ≤ i(t) ≤ min (1, I(t)),∀I(t) ≥ 0. (6.7)

Lemma 6.1. Let Theorem 5.1 hold, and define the C2,1-function V : Rn+4
+ × R+ → R+, where

V(t) = V1(t) + V2(t) + V3(t) + V4(t), (6.8)

and

V1(t) = (S 0(t) − S ∗0)2, V2(t) =

n∑
j=1

S 2
j(t), (6.9)

V3(t) = (I(t) + T (t))2, V4(t) = Z2(t). (6.10)

Also, let φ j, j ∈ I(0, n) and ϕk, k ∈ {I,T,Z} be defined as follows:

φ0 = 2µS 0 −

 n∑
j=0

γ j(1 + (H∗j )
2) +

n∑
j=0

γ jS ∗0 + β0S ∗0 + 2β0 + 2β0
1
λ(µ)

+ 2σ2
S 0

 , (6.11)

φ j = 2µS j −

[
γ j(1 + (H∗j )

2) + γ jS ∗0 + 2β j + 2β j
1
λ(µ)

+ σ2
S j

]
, j ∈ I(1, n), (6.12)

and

ϕI = (1 −
1
2
λ2(µ))(µI + dI) −

[
β0S ∗0(1 + 2

1
λ(µ)

+ λ(µ)) + σ2
I

]
+(1 −

1
2
λ2(µ))(µI + dI) −

 n∑
j=0

(1 + ε j)β jλ(µ) + φIλ(µ) + (µT + dT + αT A)
1

λ2(µ)

 .
(6.13)

ϕT = (2 − λ2(µ))(µT + dT + αT A)

−

 n∑
j=0

(1 + ε j)β jλ(µ) + β0S ∗0λ(µ) + φTλ(µ) + (µI + dI)
1

λ2(µ)
+ σ2

T

 . (6.14)

ϕZ = 2µZ −

γ0S ∗0 +

n∑
j=0

γ jS ∗0 + (φI + φT )
1
λ(µ)

 . (6.15)

The differential operator dV applied to V(t) with respect to the stochastic system (4.3)-(4.9) satisfies
the following:

dV(t) = [LV(t)] dt + −→g (X(t))d
−−→
w(t), (6.16)
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where
−−→
w(t) = (wε0 ,wε1 , . . . ,wεn ,wS 0 , . . . ,wS n ,wI ,wT )T ,

−→g (X(t))d
−−→
w(t) = −2(S 0(t) − S ∗0)S 0(t)dwS 0(t) −

n∑
j=1

2σS jS
2
j(t)dwS j(t)

−2(I(t) + T (t))
n∑

j=1

σε jβ jEτ1

[
S j(t − τ1)G j(i(t − τ1))e−µIτ1

]
dwε j(t)

−2(I(t) + T (t))σI I(t)dwI(t) − 2(I(t) + T (t))σT T (t)dwT (t). (6.17)

In addition,

LV(t) ≤ −

φ0(S 0(t) − S ∗0)2 +

n∑
j=1

φ jS 2
j(t) + ϕI I2(t) + ϕT T 2(t) + ϕZZ2(t)

 + 2σ2
S 0

(S ∗0)2

+

n∑
j=0

(
2ε jβ j

1
λ(µ)

+ σ2
ε j
β2

j

)
Eτ1

[
S 2

j(t − τ1)G2
j(i(t − τ1))e−2µIτ1

]
, (6.18)

where Eτ1 is the expectation operator with respect to the random variable τ1.

Proof. The complete proof of Lemma 6.1 is given in 13. Furthermore, an estimate for the term∑n
j=0

(
2ε jβ j

1
λ(µ) + σ2

ε j
β2

j

)
Eτ1

[
e−2µIτ1

]
S 2

j(t)G
2
j(i(t)) in (6.18) used in the proof of Lemma 6.2 is given in

Note 13.1. �

In the next subsection, we examine stochastic stability of the DFE E0 in D(∞).

6.1. Stochastic Stability in probability of the DFE in D(∞)

The next result presents conditions for stochastic stability results in probability for the DFE E0,
when Theorem 5.1(b) and Theorem 6.1(b) hold and the basic reproduction number R0 < 1.

Lemma 6.2. Let the assumptions for Lemma 6.1 be satisfied and let R0 denote the BRN in (6.4). Also,
let Theorem 6.1(b.) hold, i.e. the intensities of (4.3)-(4.9) satisfy σε̄ j ≡ σε j > 0, σS j = 0,∀ j ∈ I(0, n)
and σk = 0,∀k ∈ {I,T, A,R}, then the DFE, given by (6.1), for the system (4.3)-(4.9) exists in the
positive-self invariant space D(∞). Moreover, in D(∞) let V(t) be as defined in (6.8) and define the
functional

V5(t) =

n∑
j=0

(
2ε jβ j

1
λ(µ)

+ σ2
ε j
β2

j

)
Eτ1

[∫ t

t−τ1

S 2
j(θ)G

2(i(θ))e−2µIτ1dθ
]
. (6.19)

Also define the following

R0,σε = R0 +
r2Eτ1

[
e−2µIτ1

](
1 − 1

2λ2(µ)
)

(µI + dI)

n∑
j=0

β2
jσ

2
ε j
, (6.20)

and

R1(µ) =

∑n
j=0

(
1 + ε j

)
β jλ(µ) + φIλ(µ) + (µT + dT + αT A) 1

λ2(µ) + r2Eτ1

[
e−2µIτ1

]∑n
j=0 2ε jβ j

1
λ(µ)(

1 − 1
2λ2(µ)

)
(µI + dI)

. (6.21)
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Furthermore, let

U0 =

∑n
j=0 γ j

(
1 +

(
H∗j

)2
)

+
∑n

j=0 γ jS ∗0 + β0S ∗0 + 2β0 + 2β0
1
λ(µ)

2µS 0

(6.22)

and for each j ∈ I(1, n),

U j =
1

2µS j

[
γ j

(
1 +

(
H∗j

)2
)

+ γ jS ∗0 + 2β j + 2β j
1
λ(µ)

]
. (6.23)

Define

V0 =
1

(2 − λ2(µ)) (µT + dT + αT A)

 n∑
j=0

(1 + ε j)β jλ(µ) + β0S ∗0λ(µ) + φTλ(µ) + (µI + dI)
1

λ2(µ)

 ,
(6.24)

and

W0 =
1

2µZ

γ0S ∗0 + 2
n∑

j=1

γ jS ∗0 + (φI + φT )
1
λ(µ)

 . (6.25)

It follows that in D(∞), there exists positive constants φ j > 0, j ∈ I(0, n) and ϕk > 0, k ∈ {I,T,Z}, such
that the drift part of d(V(t) + V5(t)) satisfies

L(V + V5)(t) ≤ −

φ0(S 0(t) − S ∗0)2 +

n∑
j=1

φ jS 2
j(t) + ϕI,1I2(t) + ϕT T 2(t) + ϕZZ2(t)

 , (6.26)

whenever R0,σε < 1, R1(µ) < 1 + (1 − R0,σε), max (U j) j∈I(0,n) < 1, and max (V0,W0) < 1.

Proof. The complete proof of Lemma 6.2 is given in 14. �

Theorem 6.3. Suppose the conditions of Lemma 6.2 are satisfied, then it follows that the DFE E0 of
the stochastic systems (4.3)–(4.9) is stochastically asymptotically stable in the large in D(∞). That
is, the disease is eliminated from the population asymptotically, whenever the conditions R0,σε < 1,
R1(µ) < 1 + (1 − R0,σε), max (U j) j∈I(0,n) < 1, and max (V0,W0) < 1 in Lemma 6.2 are satisfied.

Proof. When the conditions of Lemma 6.2 are satisfied, then from Eq (6.26), the drift part of d(V(t) +

V5(t)) is negative definite. Hence, applying Theorem 5 in [28], the result follows immediately [28, 33,
34]. �

6.2. Persistence of the susceptible state S (t) =
∑n

j=0 S j(t) in D(∞)

Since from Eq (6.1) the DFE for the susceptible states S j, j ∈ I(1, n) are 0, and only the DFE
of S 0 is positive, it is necessary to emphasize that the paths of the combined susceptible population
S (t) =

∑n
j=0 S j(t) will persist for all time, and never completely die out over time.

Indeed, it is shown that S (t) will persist and approach the DFE S ∗0 = B
µS 0

, whenever the stochastic
stability conditions for the DFE in Lemma 6.2 and Theorem 6.3 hold.

Recall [27], the following definition of the persistence of a species denoted by the process y(t), t ≥ t0

in a stochastic dynamic system:
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Definition 6.1.
(1.) y(t) is said to be stable in the mean if limt→∞

1
t

∫ t

t0
y(s)ds = c > 0, a.s.

(2.) y(t) is said to be weakly persistent in the mean, if lim supt→∞
1
t

∫ t

t0
y(s)ds > 0, a.s., and strongly

persistent in the mean, if lim inft→∞
1
t

∫ t

t0
y(s)ds > 0, a.s.

Theorem 6.4. Suppose the conditions of Lemma 6.2 and Theorem 6.3 are satisfied, then for S (t) =∑n
j=0 S j(t)

lim sup
t→∞

1
t

(∫ t

t0
S (ζ,w)dζ

)
= S ∗0,∀w ∈ Ω, a.s. (6.27)

That is, all paths of the combined susceptible state S (t) are persistent and stable in the mean, almost
surely, and converge to the DFE S ∗0 = B

µS 0 .

Proof. The complete proof of Theorem 6.4 is given in 15. �

6.3. Discussions of the stability results and sensitivity analysis of the BRN R0

Remark 6.2. Interpreting the stochastic stability results in D(∞)

(a.) Probabilistically, Theorem 6.3 and Lemma 6.2 signify that when the conditions of Lemma 6.2 hold,
then all paths of the SSP {Y(t), t ≥ t0} of Eqs (4.3)–(4.9) originate, oscillate and remain bounded in the
closed ball D(∞), a.s. Moreover, there exists a DFE E0 for the system, and any path that starts near E0

has a high chance to continue oscillating near E0, and over time, the path certainly converges to E0.
Biologically, these results suggest that the maximum spread of the disease can not exceed the bounds

of D(∞), regardless of the intensity of the fluctuations in the supply of ODAs. Furthermore, the disease
can be eliminated, whenever the conditions in Theorem 6.3 and Lemma 6.2 hold.

Also, note from Theorem 6.3 and Lemma 6.2 that the new BRN R0 that is modified by the noise
in the system is R0,σε in Eq (6.20). And when R0,σε < 1, and the other threshold conditions R1(µ) <
1 + (1 − R0,σε), max (U j) j∈I(0,n) < 1, and max (V0,W0) < 1 are satisfied, the disease is eliminated.

Remark 6.3. Sensitivity of the BRN R0 to the supply of ODAs, delayed ART treatment and relapse
from treatment

(b.) Recall assumptions (A)-(G) in Model-Assumptions 2.1–2.8, the effects of the random supply of
ODAs, poverty levels, IECs and delayed ART treatment are assessed via the parameters ε j, ε̄ j, j ∈
I(0, n), µk, k ∈

{
S j, I,T, A,R

}
, j ∈ I(0, n), γ j ≡ γS 0S j , j ∈ I(1, n), and τ2, respectively. The effects of

continuous changes in these parameters on the new BRN in Eq (6.20) are examined below.
First, observe from Eqs (6.3) and (6.4) that the magnitude of the probability value P(1) determines

the magnitude of the BRN R0 in absence of noise in the system. Furthermore,

∂P(1)
∂ε̄0

= (−1)
(a2 − a1 − a3)(

a1 + ε̄0(a2 − a1 − a3) + 1
G′ (0)

)2 , (6.28)

where

a1 = R1E(e−µIτ1), a2 = R1E(e−µIτ2), a3 = αT IR1E(e−µIτ2)
1

(αT I + µT + dT + αT A)
. (6.29)
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It is easy to see that ∂P(1)
∂ε̄0

< 0, if

E(e−µIτ2)
(
1 − αT I

1
(αT I + µT + dT + αT A)

)
> E(e−µIτ1), (6.30)

and ∂P(1)
∂ε̄0

> 0, otherwise.
In other words, when Eq (6.30) holds, then P(1) continuously decreases to zero (i.e. 0 < P(1) << 1)

as ε̄0 → 1, and consequently the BRN R0 continuously decreases to zero (i.e. 0 < R0 << 1), as ε̄0 → 1,
and vice versa. This fact is exhibited in an Figure 7.

Note from Eq (6.30), the left-hand side (LHS) given by E(e−µIτ2)
(
1 − αT I

1
(αT I+µT +dT +αT A)

)
, is the

expected conditional probability that a newly exposed HIV person, survives natural death (with
probability E(e−µIτ2)) and remains in ART treatment without relapsing to infectiousness (with
probability

(
1 − αT I

1
(αT I+µT +dT +αT A)

)
), given that the infected person is tested and begins ART treatment

after τ2 time units. In other words, the LHS is the expected probability that an individual infected with
HIV will remain healthy, and alive during the ART treatment.

The term, E(e−µIτ1), on the right-hand side (RHS) of Eq (6.30) is clearly the expected conditional
probability that an exposed person will progress into full-blown AIDS after τ1 time units, given that the
person fails to be tested and get ART treatment.

Thus, Eqs (6.28)–(6.30) suggest that when ODAs are readily available, and more people tend to get
ART treatment (i.e. ε̄0 → 1), then the BRN R0 << 1 and the disease is more easily eliminated.

Also, observe from Eq (6.30) that when either τ2 is small (i.e. τ2 → 0), or αT I is small (i.e.
0 < αT I << 1), then LHS >> RHS , assuming all other constants are fixed. This implies that when
either τ2 → 0, or 0 < αT I << 1, then P(1) → 0, and consequently R0 << 1. In other words, when
newly infected people get tested soon after infection, and begin early ART treatment (i.e. τ2 → 0 ),
then increasing the supply of ODAs (i.e. ε̄0 → 1) will result in more people getting tested and paying
for ART treatment, which makes the disease eradication process easier. This fact is illustrates in the
example in Figure 8.

The alternative when αT I is small and R0 << 1 signifies that when fewer number of people who are
receiving ART treatment relapse from treatment into the infectious state, then increasing the supply of
ODAs (i.e. ε̄0 → 1), so that more people get tested and pay for ART treatment, will make the disease
eradication process easier.

Remark 6.4. Sensitivity of R0 to the distribution of the delays:
(c.) Some information is known about the delay, τ1, after infection until full-blown AIDS occurs [1, 2].
In fact, over 2 to 15 years, untreated HIV individuals develop full-blown AIDS [1,2]. Using Eq (6.30),
more specific sufficient conditions for τ2 leading to R0 << 1 are derived, whenever the distributions of
the random delays τ1 and τ2 are specified. Recall, the delays τ1 and τ2 are distributed with densities
fτ1 , fτ2 . One example is considered below, whenere the delays τ1 and τ2 have exponential distribution.

Delays τ1 and τ2 have exponential distributions:
Assuming that those who are newly infected proceed into the ART class or AIDS class independently
at constant rates θ2 and θ1, respectively, then the time until treatment begins τ2, and the time until
full-blown AIDS develops τ1, follow exponential distributions with means E[τ2] = 1

θ2
time units, and

E[τ1] = 1
θ1

time units, respectively. In this scenario, two independent Poisson processes describe the
number of people getting ART treatment and developing full-blown AIDS over time.
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It is easy to see that Eq (6.30) becomes

θ2
1
µ

θ2
1
µ

+ µ 1
µ

(
1 − αT I

1
(αT I + µT + dT + αT A)

)
>

θ1
1
µ

θ1
1
µ

+ µ 1
µ

, (6.31)

where given that a newly infected person will begin ART treatment,
θ2

1
µ

θ2
1
µ+µ 1

µ

is the conditional fraction of

the newly infected population that successfully gets into ART treatment. This implies that the fraction

1 −
θ2

1
µ

θ2
1
µ+µ 1

µ

will die naturally.

Also,
θ1

1
µ

θ1
1
µ+µ 1

µ

is the conditional fraction of those who will turn into full-blown AIDS, given that they

do not receive ART, and do not die naturally. Therefore, the LHS of Eq (6.31) is the fraction of the
newly infected population that survives natural death, gets ART treatment, and does not relapse from
treatment. The RHS is the fraction of the newly infected population that fails to get ART treatment, and
develops full-blown AIDS.

This special example confirms the observation that, when more newly infected people are likely to
get tested, begin early ART treatment and do not relapse from treatment, then increasing the supply of
ODAs (i.e. ε̄0 → 1) so that more people are able to afford ART treatment, makes it easier to control
the disease.

Remark 6.5. Sensitivity of the BRN R0 to the delays when the supply of ODAs is fixed

(d) Now assuming the supply of ODAs is fixed (i.e. ε̄0 and ε0 are fixed), to examine the direct effects of
τ1 or τ2 on the BRN R0, it is easy to see from (6.4)-(6.3) that ∂R0

∂E[e−µIτ1 ] < 0 and ∂R0
∂E[e−µIτ2 ] < 0. That is, the

BRN R0 decreases as τ1 and τ2 decrease.
One plausible reason why the BRN R0 decreases with decrease in τ1, the time until full-blown AIDS

occurs for those who are not receiving ART, is because the AIDS population in this model is not an
active spreader of the disease. Thus, when the incubation period of HIV without treatment τ1 is shorter,
then more people not receiving treatment quickly proceed into the non-spreading infected state A(t).

Similarly, the decrease in the BRN R0 with τ2 is plausible because when all newly infected persons
who are able to afford ART treatment begin early treatment, then there will be reduced spread of the
disease, since the model does not allow spread between the treated state T (t), and other states in the
population. An example of this scenario is exhibited in Figure 8.

Remark 6.6. Sensitivity of the BRN R0 to the noises in the supply of ODAs

(e) Introducing noise into the disease dynamics by making the supply of ODAs random over time, it
follows that the random effect of the supply of the ODAs inflates the BRN R0, leading to the new BRN
R0,σε in (6.20), where the term

r2Eτ1[e−2µIτ1]
(1− 1

2λ2(µ))(µI+dI )

∑n
j=0 β

2
jσ

2
ε j

is the increment that depends on the intensities
of the noises, whenever the ODA parameters ε j, ε̄ j, j ∈ I(0, n) become random variables over time.

Clearly, the condition R0,σε < 1 is constrained by the intensity of the noise in the system. Since
the modified BRN R0,σε decreases, as σε j → 0, and R0,σε increases, otherwise, this suggests that a
condition for the disease dynamics, where there is a constant significant supply of ODAs (i.e. the
expected values E[ε̄ j] are large, and σε j → 0 ) is most favorable to the elimination of the disease from
the system, and vice versa. An example for this scenario is exhibited in Figure 8.
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7. Numerical simulation results for HIV/AIDS epidemic in Uganda

(a.) HIV/AIDS data:
In this section (1) ideas in Joshi et al. [4], (2) data reported for Uganda in the sources [1, 4, 35–37],

over time intervals between 1992 through 2018, and (3) data from clinical trials [38–40] on ART
treatment, are used to design parameter estimates for the HIV/AIDS models (4.3)–(4.9), for a
hypothetical population with comparable characteristics as Uganda over 1992-2018.

Note that access to ART treatment, and the use of PrEP in Uganda, are relatively recent, in fact,
the Ugandan government launched universal access to ART treatment in 2004 [41]. Thus, given the
apparent time and missing information gap on ART treatment and PrEP in Uganda between 1992
to 2004, we resort to theoretical arguments in many instances, to select plausible estimates of some
parameters of the models (4.3)–(4.9).

Therefore, the primary objective of this section is mainly to numerically explore the effects of ART
treatment, the supply of ODAs, early HIV testing-and-onset of ART treatment and noise in the supply
of ODAs, on the prevalence of HIV/AIDS in the population.

(b.) Initial conditions:
Similarly to the Uganda UN data in 1991 [4], we assume the initial population consists of 18.38

million people. Furthermore, according to the UN population report for 1991 on Uganda [4], the
estimated percentage of adults between the ages of 15 to 59 in the population was about 32%. Using
this estimate, it is assumed in this example that the total sexually active adult population is 32%,
consisting of individuals who are either vulnerable, removed or infected with HIV. Thus, the 5,899,980
million adults consist of the states S 0, S 1, S 2, I, T , A and R. In [4], the prevalence rate of HIV
assumed at that time was 15% in Uganda. This assumption led to 884,997 initially infected (I(0))
and 5,014,980 initially susceptible S (0). Since no treatment (T ) and full-blown AIDS (A) states were
considered in [4], we make modifications. In the 5,899,980 initial adult population, 15% is assumed
initially infected or removed, i.e. about 884,997 adults in I,T, A or R states. Moreover, there is a 12%
prevalence rate of HIV (i.e. I(0) is about 707,997 adults) and 2% treatment rate (i.e. T (0) is about
117,999 adults); 1% of the initial adult population is assumed to be fully trained (by organizations in
the community initially involved in IEC ) in the proper application of strong HIV preventive measures
such as the daily use of PrEP [24–26], and as a result of their training, they effectively adhere to
this practice, and are completely removed from HIV transmission (i.e. R(0) is about 58,999 adults);
0% of the initial adult population is assumed to be in the AIDS state (i.e. A(0) = 0). Thus, in the
remaining 85% of the adult population, all susceptibles (about 5014983 adults), we assume 10% are
S 1(0) (about 501,498 adults), susceptibles adopting safe practices such as abstinence and being in a
mutually monogamous relationship; 10% are S 2(0) (about 501,498 adults), susceptibles adopting all
other medically advised practices such as condom use; the remaining 80% are susceptibles S 0 (about
4,011,986 adults), not practicing any safe sex measures.

Also, similarly to [4], it is assumed that there are initially about 240 organizations (20%) involved
in the IEC. That is, Z(0) = 0.2. Applying the percentages above and scaling the initial values (by 1
million), lead to the initial conditions (7.1).

S 0(t) = 4.011986, S 1(t) = 0.501498, S 2(t) = 0.501498, I(t) = 0.707997, T (t) = 0.117999,
A(t) = 0,R(t) = 0.058999, Z(t) = 0.2, ∀t ∈ [−h, 0], h = max(T1,T2) = 8. (7.1)
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(c.) Information rates:
Similarly to [4], the size of information in the population Z(t) is based on the number of

organizations giving out information on HIV. Furthermore, the breakdown into the two states S 1(t)
and S 2(t) at any time depends on the proportion of organizations giving information about the
respective behaviors.

Therefore, as in [4], it is assumed 10% per unit time of S 0(t) interact with Z(t) and become S 1(t),
and 80% per unit time interact with Z(t) and become S 2(t). Also, another 10% per unit time of S 0(t)
interact with Z(t) and become R(t). That is, γ0 = 0.1 per year , γ1 = 0.1 per year and γ2 = 0.8 per year.

(d.) Infection rates:
Some studies [6] argue that the effects of behavioral changes such as abstinence, delayed sexual

initiation, mutual monogamy and correct and consistent condom use on reducing HIV prevalence rates
are complex to understand and debatable. However, UNAIDS [37], asserts that condom use effectively
reduces the risk of transmission of HIV by the range of 69-94%. Siding with UNAIDS, we utilize
some information from [4] to estimate β j, j = 0, 1, 2. That is, it is assumed that β0 ∈ [0.01, 0.1], and
that β1 and β2 are proportional to β0. Moreover, β1 << β0 and β1 << β2 < β0, where β0, β1 and β2

are respective disease transmission rates in the susceptible class S 0 (those not practicing any safe sex
measures), in S 1 (those practicing abstinence and be faithful), and in S 2 (those practicing condom use).
Based on the above relationships, it is assumed that β1 = 0.05β0, and β2 = 0.4β0.

Figure 3. Shows the time series data for the HIV incidence rate per 1000 people for Uganda
adults (15–49 years) obtained from UNAIDS [35] for the period 1990-2018.

The Uganda UNAIDS [35] HIV incidence per 1000 population time series data for adults (15-49
years) in Figure 3 is used to find an estimate for β0 over time. Note that the values for the HIV incidence
per person obtained from UNAIDS [35] approximate the true values of β0. Also, in real life, the value
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of β0 typically changes over time. Thus, the estimate for β0 is obtained over time t ≥ 0 by fitting the
multiple linear regression model β0(t) = b0 + b1t + b2t2 + b3t3 + b4t4 + Error to the data in Figure 3.
The least squares fit is given by

β̂0(t) = 11.97 − 1.004t + 0.08841t2 − 0.003796t3 + 5.327 × 10−5t4 (7.2)

with p-values for the significance of regression coefficients: b1(p − value = 1.73e − 14 < 5%),
b2(p−value = 1.01e−09 < 5%), b3(p−value = 6.98e−08 < 5%), and b4(p−value = 2.96e−06 < 5%),
and multiple R-squared R2 = 0.9964. Moreover, the residual plots for the model are given in Figure 4,
and the Prediction Multiple R-squared based on the PRESS statistic is R2

Prediction = 0.9937. Clearly,
the regression model has a good fit from the residual plots in Figure 4, and also has a high predictive
capacity from the Prediction Multiple R-squared R2

Prediction = 0.9937.
It is also easy to see that β̂1(t) = 0.05β̂0(t) and β̂2(t) = 0.4β̂0(t).

Figure 4. Shows the residual plots for the regression model in Eq (7.2), to verify the adequacy
of the model. Clearly, the normality and constant variance conditions for the errors in the
model are satisfied.

(e.) Influx of new adults, natural and disease related death rates:
Using UN data for Uganda [36], the natural death rate per year is estimated using the mean lifespan

of individuals in Uganda over the years 1997-2005. It is easy to see that the natural deathrate for a mean
lifespan of 47.51667 years is µk = µ = 1/47.51667 = 0.02104525 per year, k ∈ {S j, I,T, A,R}, j ∈
I(0, 2).

Similarly, the UNAIDS Uganda report [37], indicates that HIV related death rates per year were
17.2% in 1997, 13.36% in 1999, 14% in 2001, 14.42% in 2003. This leads to the mean death rate
dI = 0.1474 per year.
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According to Kasamba et. al. [42], ART led to significant reduction of the mortality rate of HIV
positive people in Uganda. It was exhibited (cf. [42]) that in the same HIV positive group with death
rate of 116.4 deaths per 1,000 persons per year prior to ART, a reduction by 25% mortality rate is
obtained after ART, leading to 87.4 deaths per 1,000 person per year. Thus, based on this discussion,
we assume dT = 0.25dI = 0.03685 per year.

According to [1], a white blood cell (CD4) count, lower than 200 cells/mm3, is classified as full
blown AIDS. Furthermore, if not treated immediately, the infected person cannot survive beyond 3
years. This suggests that the average lifetimes 1

dA
<< 1

dI
. Given the apparent challenge of tracking

and recording the progression of HIV infection until full-blown AIDS develops, data for HIV related
deaths are recorded in many cases without a clear distinction between deaths that occur when the white
blood cell (CD4) count is either lower than or above 200 cells/mm3 [37]. Thus, using the estimated
mean death rate dI = 0.1474 per year above, and the relationship 1

dA
<< 1

dI
, we assume that dA is twice

larger than dI . That is, dA = 2dI = 0.2948 per year.
In [4], data for new susceptible adults entering the population over years 1990 to 2005 is utilized

to calculate the mean influx rate of 0.55 per year of new susceptibles into the population. Using this
estimate, we assume that B = 0.55 per year new ”naive” adult susceptibles of type S 0, enter the
population at any time.

Figure 5. (a),(b) shows the time series of Uganda yearly cumulative HIV population and
new HIV infections, respectively, in adults (15-49 years) over the years 1990-2018 (cf.
UNAIDS [35]). (c) shows the graph of the bilinear incidence function G(I(t)) = I(t) against
the yearly cumulative HIV population. (d) shows the graph of the standard incidence function
G(i(t)) =

I(t)
N(t) against the yearly cumulative HIV population. (e) shows the graph of the

modified standard incidence function G(i(t)) =
bi(t)

1+ci(t) , b = 0.05, c = 5 against the yearly
cumulative HIV population.
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(f.) Delays until treatment and AIDS:
As mentioned in the introduction, without proper ART, the infected individual progresses to AIDS

in 2 to 15 years. That is, τ1 ∈ [2, 15] years. Thus, for the purpose of simulations, assume that τ1 = 8
years. Also, according to [1], it is suggested that within 2 to 12 weeks a newly infected person develops
HIV antibodies, and over 6 months nearly every infected person can be diagnosed for HIV. Thus, early
ART is assumed between τ2 ∈ [0.038, 0.5] years. Also, for various simulations presented below, τ2

will be selected in a time range until an individual develops full-blown AIDS, i.e. τ2 ∈ [0.038, 15]
years.

(g.) Nonlinear incidence rates and nonlinear information rates:
Figure 5(a,b) shows the time series of Uganda yearly cumulative HIV population and new HIV

infections, respectively, in adults (15–49 years) over the years 1990-2018 [35]. Clearly, Figure 5(a,b)
shows that the yearly cumulative HIV population is increasing at a decreasing rate, and the new HIV
cases in Figure 5(b) decrease with time. That is, the rate of new infections slowly decreases as the
yearly cumulative HIV population increases. This observation suggests that a bilinear incidence rate
βS (t)G(I(t)), where the bilinear incidence function G(I(t)) = I(t) depicted in Figure 5(c) is not
appropriate. Also, the standard incidence rate βS (t)G(i(t)), where the standard incidence function
G(i(t)) =

I(t)
N(t) depicted in Figure 5(d) is not appropriate. The most appropriate incidence rate for the

Uganda HIV epidemic (considering all three options) is the modified standard incidence rate
βS (t)G(i(t)) depicted in Figure 5(d), where the modified standard incidence function saturates, for
example, in Figure 5(d), G(i(t)) =

bi(t)
1+ci(t) , b = 0.05, c = 5.

Thus, from the argument in Figure 5, the nonlinear functions in Assumption 2.1 and Assumption 2.2
are taken to be

H j(Z) =
a jZ(t)

1 + d jZ(t)
, G j(i) =

b ji(t)
1 + c ji(t)

j = 0, 1, 2 (7.3)

where 0 ≤ a j, b j ≤ 1, c j, d j ≥ 1 for j = 0, 1, 2 are considered.
For simulating system (4.3 )-(4.9), it is assumed that a j = b j = 0.1 ∀ j = 0, 1, 2. Similarly, for the

growth rate function given in (3.10), it is assumed that φI = 0.05, φT = 0.1, φA = 0.15, φ̂I = 0.03, φ̂T =

0.06, φ̂A = 0.09.
(h.) Withdrawal from ART treatment rates:
Clinical trials have been conducted to determine factors influencing withdrawal from ART

treatment, and also to estimate the time until withdrawal, particularly for the first highly active
antiretroviral(HAART) regimen [38, 39, 43, 44]. Some of the factors whose effects on withdrawal have
been quantified in these studies include: drug toxicity, failure of treatment, gender, non-compliance
and specific regimens of HAART containing combinations of inhibitors namely- protease
inhibitors(PI), non-nucleoside reverse transcriptase inhibitors(NNRTI), and nucleoside reverse
inhibitors (NRTI) [38, 39]. It is estimated that when no toxicity occurs due to a HAART regimen, then
less than 10% naive patients withdraw from treatment within 1 year because of failure of
treatment [39], while taking into account all factors affecting withdrawal above, the cumulative
probability of withdrawing from HAART at a one year period after starting ART is 37.6%, with a
95% CI of (25.3%, 39.9%) [38]. Toxicity is the commonest reason for withdrawal or modification of
ART. Indeed, more recently, Torres et. al. [43] observed in a clinical trial involving 1558 patients of
various age groups, that toxicity was the culprit in 95% (228 out of 239 total withdrawal) of all cases
that withdrew from ART. Azevedo et. al. [44] observed that the main adverse events leading to
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modification or withdrawal from ART in the first year of treatment, are dermatological,
neuropsychiatric and gastrointestinal events. Moreover, the estimated median time between initiating
ART and the first modification or withdrawal due to adverse events is 70.5 days (95% CI: 26-161
days).

In this example, we assume that withdrawal from ART is influenced by the combination of factors
above, and not only toxicity. Hence, as in [38], we estimate the rate of withdrawal from ART to be
αT I = 0.376.

Table 1. Shows the list of model parameters, estimates and their definitions. Note that the
parameters are expressed in years and converted to days for all simulations in Section 7.

Parameter Symbol(s) Estimate(s) in years (Source)

Effective response rate of S 0(t), S 1(t), S 2(t) γ0, γ1, γ2 0.1, 0.1, 0.8 [4]
Infection transmission rates β0, β1, β2 estimated from (7.2) [35]
Natural death rates of S 0(t), S 1(t), S 2(t) µS 0 , µS 1 , µS 2 0.01568 [36]
Natural death rates of I(t),T (t), A(t),R(t) µI , µT , µA, µR 0.01568 [36]
Infection related death rates of I(t) dI 0.1474 [37]
Infection related death rates of T (t) dT 0.03685 [37]
Infection related death rates of A(t) dA 0.2948 [37]
Recruitment rate B 0.55 (see [4])
Return rate from T (t) to I(t) αT I 0.376 [38, 39]
Failure of treatment rate from T (t) to A(t) αT A 0.3 [40]
Proportion of newly infected individuals
from the class S j, j = 0, 1, 2 who do not
receive ART and joins full blown AIDS
state A(t)

ε0, ε1, ε2 0 - 1

Time delay to progress to full blown AIDS τ1 2 - 15 [1]
Time delay to begin treatment τ2 0.38-15 [1]

(i.) Failure rate of ART treatment:
Clinical trials have also been conducted to determine predictors of first line failure of HAART [45],

and the failure rate of HAART for individuals who began treatment in the advanced stages of their HIV
infectiousness [40]. Indeed, in the retrospective study [45] involving 195 patients initiated on first line
ART, 7.69% failure rate is observed, and the significant predictors of failure were BMI, CD4 count
at ART onset, and opportunistic infection presence. Also, in the clinical trial [40], over a period of 8
months of treating 250 HIV-infected patients with HAART, most of whom had a CD4 count less than
200× 106/l, it was observed that 30% of the patients developed AIDS-defining events due to failure of
HAART [40, 45]. Thus, since from Model-Assumption 2.6 failure of treatment occurs for individuals
who begin ART in the advanced stages of the HIV infection, in this example, we use the failure rate
in [40]. That is, we assume that the failure rate of ART at which treated individuals develop full-blown
AIDS is given by αT A = 0.3.

Note that all parameter estimates given in (a.)–(i.) above are summarized in Table 1 in years, and
the trajectories of the different states S 0(t), S 1(t), S 2(t),T (t),T (t) and A(t) are generated by applying the
Euler-Maruyama stochastic approximation scheme over 40 years from 1991 to 2031. For the parameter
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estimates in Table 1, the DFE E0 = (26.13417, 0, 0, 0, . . . , 0).
Note that all practical simulation interpretations will be extended by extrapolation only over 40

years from 1991 until 2031, with initial conditions in Eq (7.1).

7.1. Prediction and sensitivity of the BRN R0

Figure 6 shows the predicted BRN R0 in Eq (6.4) over the years 1990–2022 obtained by applying
the parameter estimates in Table 1 and the estimated disease transmission rate β̂0(t) in Eq (7.2). Note
that the prediction values for R0 over 2019–2022 are extrapolations, while all other predictions are
interpolations. Assuming that the trend of the HIV incidence rate over time does not change from
Figure 3, then extrapolation poses no major cause for concern, since the fit for Eq (7.2) has a high
predictive capacity for new HIV incidence rates (R2

Prediction = 0.9937). Clearly, Figure 6 depicts the
BRN R0 continuously decreasing over time, assuming that all the other parameters in Table 1 remain
fixed. Therefore, there is more control over the HIV/AIDS epidemic in the population over time in this
scenario.

Figure 7 depicts the sensitivity of the BRN in Eqs (6.4) and (6.20) to the continuous changes in
(1) the delay after infection, until the onset of ART τ2, (2) the proportion getting treatment 1 − ε0,
and (3) the intensity of the noise in the supply of ODAs σε j , j ∈ I(0, 2). Note that for simplicity, the
estimated value for β̂0 = 0.0211 obtained from (7.2) in 1990 is used for this purpose. It is easy to see
that β1 = 0.05β0 = 0.00106 and β2 = 0.4β0 = 0.00844.

As remarked in Remark 6.2, observe in Figure 7(i) that early treatment (small τ2 values) leads to
R0 << 1. In Figure 7(ii), when ODAs are readily available and more people get ART (i.e. 1− ε0 → 1),
then R0 << 1. In the Figure 7(iii), when ODA supply varies less (i.e. the intensities σ << 1), then
R0 << 1.

These observations confirm the conclusions in Remark 6.2 that the disease is more easily eradicated,
whenever (1) infected individuals begin early ART treatment, (2) more people get ART, and (3) the
supply of ODAs does not fluctuate too much over time.

Figure 6. Shows the predicted BRN R0 of the HIV/AIDS epidemic over time in the
population for the given data of the Uganda UNAIDS [35] HIV incidence per 1000
population, where the disease transmission rate per infective is given by Eq (7.2).
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(iii)  

Figure 7. (i) depicts a continuously rising relationship between the BRN R0 and the delay
τ2. (ii) shows a declining relationship between the BRN R0 and the proportion 1 − ε0 of
individuals who are receiving ART treatment. (iii) depicts a rise in the BRN R0 as the
intensity of the noises in the supplies of ODAs increases in the population.

7.2. Numerical results for the stochastic stability of the DFE and disease eradication

Applying the parameters in Table 1 to (14.6)-(14.7), and selecting 0 < K < 2.6836, leads to λ(µ) =

0.25286. Furthermore, the modified BRN R0 and other disease control parameters in (6.20)-(6.25)
are respectively, R0,ε = 0.0239 + 2.18285 × 10−15 < 1, U0 = 0.0857 < 1, U1 = 0.0010629 < 1,
U2 = 0.0010637 < 1, V0 = 0.08175 < 1 and W0 = 0.36623 < 1.

Thus, the conditions of Theorem 6.3 and Theorem 6.4 are satisfied and as a result, the DFE E0

is stochastically stable in probability in the large, and the disease dies out asymptotically. Moreover,
from Theorem 6.4, S (t) = S 0(t) + S 1(t) + S 2(t) is persistent and stable in the mean. These results are
exhibited in Figure 8. Clearly in Figure 8(e-1,f-1,g-1), the paths of I,T, A die out asymptotically. In
Figure 8(d-1), the path of the total susceptible state S (t) = S 0(t)+S 1(t)+S 2(t) is persistent in the mean,
and approaches the DFE S ∗0 = 26.13417.

7.3. Effects of the information interventions with and without ART treatment on the HIV/AIDS
epidemic

The comparative effects of information intervention and ART treatment to control the HIV/AIDS
epidemic in the population are exhibited in Figure 9, where the predicted BRNs R0 and RnoTr

0 in Eqs
(6.4) and (6.5) for the HIV/AIDS dynamics without ART treatment in Eq (3.13) and HIV/AIDS
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dynamics with ART treatment in Eqs (4.3)–(4.9). Clearly, the predicted BRN R0 when ART treatment
is available is continuously lower than the BRN R0 when there is no ART treatment available as
remarked in Remark 6.1. Thus, the disease is more easily eradicated, whenever IECs and also ART
treatment are available in the population.
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Figure 8. (a-1)-(d-1) shows the behavior of the path of the total susceptible population
S (t) = S 0(t) + S 1(t) + S 2(t), over time, whenever the conditions of Theorems 6.3 and 6.4 are
satisfied. Clearly, the path of S (t) is persistent as proven in Theorem 6.4 and approaches the
DFE state S ∗0 = B

µS 0
= 26.13417. The dotted redline in (d-1) is the value of S ∗0 = 26.13417.

The figures (e-1), (f-1) and (g-1) also show the paths of the HIV related states I,T and A.
Clearly, the paths of I,T and A approach the corresponding coordinate 0 of the DFE E0. In
other words, the disease is getting extinct over time.
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7.4. A statistical analysis of the power of the model to predict the BRN R0

To give more credibility to the model to predict the BRN R0 over time using the fit in Eq (7.2), we
apply the statistical technique of data imputation to assess the predictive power of Eq (7.2) for the BRN
R0 over time. The method consists of the following.

(1) The data for HIV incidence per 1000 people depicted in Figure 3 is subdivided into two parts
namely: Part A (Figure 10) called the ”training” data, consists of measurements for the HIV incidence
per 1000 over 1990–2013. And Part B (Figure 10) called the ”validation” or ”testing” data, consists of
measurements for the HIV incidence per 1000 over 2014–2018. The data in Part A will be treated as
an incomplete data set with missing values for the HIV incidence per 1000 over 2014–2018.

(2) The data in Part A is used to fit the model β0(t) = b0 + b1t + b2t2 + b3t3 + b4t4 + Error, similarly
to Eq (7.2). The new fit is given by

β̂0(t) = 13.07 − 1.203t + 0.1026t2 − 0.004209t3 + 0.0005832t4. (7.4)

(3) The new fit in Eq (7.4) is used to predict values for the HIV incidence/1000 people by
extrapolation over the years 2014–2018, and the predicted values are used to impute the missing data
in Part A over 2014–2018. Figure 10 (bottom figure) depicts the actual observed data that is also
given in Figure 3, and the imputed/complete Part A data over over 1990–2018. Indeed, in the bottom
figure in Figure 10, the purple circular dots are the actual observed data for the HIV incidence/1000
people shown in Figure 6. The cross black dots represent the imputed or estimated values obtained
from (7.4) over the years 2014–2018. Observe that the actual observed and predicted values are close
to each other, for the given sample data used. However, point estimation is limited; we use confidence
intervals to affirm that predicted and actual observed values are close.

(4) The imputed/complete Part A data set (now complete over 1990–2018) is used to generate
predicted 95% confidence intervals (CI) for new responses β0(t) over the years 2014–2018. The 95%
CI’s for new responses β0(t) over the years 1990–2018 are depicted in Figure 11. The outer thin blue
dotted lines are the lower and upper 95% CI limits for the new responses β0(t) over the years 1990–
2018. The inner thick red dashed lines are the lower and upper 95% CI limits for the conditional mean
response E[β0(t)|t] over the years 1990–2018. The thick solid black line is the fitted values of the
regression model, computed on the imputed/complete Part A data over 1990–2018 in Figure 10. The
purple dots are the actual observed values for the HIV incidence/1000 people, which are also depicted
in Figure 3.

(5) The predicted 95% CI’s for β0(t) over the years 2014–2018 in Figure 11 are compared with the
actual observed values of Part B in Figure 10. Observe that all actual observed values of Part B fall
within the 95% CI limits for the new responses β0(t) over the years 2014–2018. This implies that at the
5% significance level, there is sufficient evidence that predictions from the fitted model in Eq (7.4) lead
to values that are close to the actual observed values of β0(t). Hence, adding the fitted model (7.2) into
Eq (6.4), and predicting new values for the BRN R0 over time, such as in Figure 6, leads to trustworthy
results, provided that all other parameters in Eq (6.4) are correctly estimated.

However, observe from Figure 11 that as the years increase, the observed values tend to move further
away from the 95% CI limits for the new responses β0(t) over the years 2014–2018. This suggests that
extrapolation beyond four years with the model (7.2) may lead to errors in the predicted BRN R0.
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Figure 9. Shows the predicted values of the BRNs in R0 and RnoTr
0 in Eqs (6.4) and (6.5),

whenever there is ART treatment available and also when there is no ART treatment present
in the population.

1990 1995 2000 2005 2010 2015 2020

4
6

8
1

0

Part A and Part B of observed data

Year

H
IV

 i
n

c
id

e
n

c
e

/1
0

0
0

 p
e

o
p

le

Part A ( used to fit model)

Part B (used to test model)

1990 1995 2000 2005 2010 2015 2020

4
6

8
1

0
1

2

Observed:1990−2018 vs. imputed data:2014−2018

Year

H
IV

 i
n

c
id

e
n

c
e

/1
0

0
0

 p
e

o
p

le

observed value

imputed value over 2014−2018

Figure 10. The top figure shows the split between Part A (red circular dots) and Part B
(purple star dots) of the actual observed data for the HIV incidence/1000 people shown
in Figure 6. The data in Part A is used to ”train” or fit the regression model, and further
used to impute the missing data (removed data) of Part A, for the incidence rate over 2014–
2018. In the bottom figure, the purple circular dots are the actual observed data for the HIV
incidence/1000 people shown in Figure 6. The cross black dots represent the imputed or
estimated values obtained from Eq (7.4) over the years 2014–2018.
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Figure 11. The outer thin blue dotted lines are the lower and upper 95% CI limits for the
new responses β0(t), over the years 1990–2018, for the imputed/complete Part A data. The
inner thick red dashed lines are the lower and upper 95% CI limits for the conditional mean
response E[β0(t)|t] over the years 1990–2018, for the imputed/complete Part A data. The
thick solid black line is the fitted values of the regression model on the imputed/complete
Part A data over 1990–2018 in Figure 10. The purple dots are the actual observed values for
the HIV incidence/1000 people, which are also depicted in Figure 3. The actual observed
values over 1990–2018, lie within the lower and upper 95% CI limits for the corresponding
new responses β0(t) obtained from the imputed/complete Part A data, over the years 1990–
2018. Thus, there is evidence at the 5% significance level that the fitted model (7.4) predicts
new values for β0(t) over 2014–2018 that are close to the actual observed values of the HIV
incidence/1000 people in the Uganda data.

8. Conclusions

In this study, a multipopulation behaviorial HIV/AIDS epidemic model is derived and studied.
Human behavior is influenced by IECs in the population. White noise perturbations of the random
supply of ODAs and also in the living standards of people in the population are considered. Moreover,
the delay time to begin ART treatment after HIV infection is also studied. Stochastic stability in
probability of the DFE is investigated, and conditions for disease eradication are found. The model
is applied to Uganda HIV/AIDS epidemic, and simulation results are given. The results of this study
show that HIV/AIDS is more easily eradicated, whenever the two HIV/AIDS control strategies: IECs
and ART treatment are combined together in the population. Moreover, when the supply of ODAs
is optimal and less random, more people are encouraged to test for HIV early, and to afford ART
treatment, which also controls the disease more easily.
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Appendix

9. Derivation and interpretation of the deterministic distributed delay epidemic models
(3.1)–(3.7)

Indeed, the delay terms in Eqs (3.1)–(3.7) are derived as follows. The term β jS jG j(i(t)), j ∈ I(0, n)
is the newly infected individuals from the susceptible state S j at any time t ≥ t0. The fraction ε j, j ∈
I(0, n) of the newly infected population fail to get ART and progress into full-blown AIDS after τ1 time
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units. Also, the other proportion ε̄ j = 1 − ε j, j ∈ I(0, n) of the newly infected population will get ART
after τ2 time units, and enter into the treatment state T (t).

Let h = max (τ1, τ2). Thus, assuming exponential survival lifetime during HIV infectiousness, the
total number of infectious persons at any time t ≥ t0 is

I(t) = I0e−µI (t−t0) p(t − t0)

+

∫ t

t0

ε0β0S 0(θ)G0(i(θ))e−µI (t−θ) pε0(t − θ) +

n∑
j=1

ε jβ jS j(θ)G j(i(θ))e−µI (t−θ) pε j(t − θ)

 dθ

+

∫ t

t0

ε̄0β0S 0(θ)G0(i(θ))e−µI (t−θ) pε̄0(t − θ) +

n∑
j=1

ε̄ jβ jS j(θ)G j(i(θ))e−µI (t−θ) pε̄ j(t − θ)

 dθ,

(9.1)

where I0 is the initial infectious population, and pε j(t), j ∈ I(0, n) is the probability that a newly infected
person who will not receive ART, remains infectious for t time units. Also, pε̄ j(t), j ∈ I(0, n) is the
probability that a newly infected person who will receive ART, remains infectious for t time units.
Clearly,

pε j(t) =

{
1, t < τ1,

0, otherwise,
j ∈ I(0, n) (9.2)

and

pε̄ j(t) =

{
1, t < τ2,

0, otherwise,
j ∈ I(0, n), (9.3)

and

p(t) =

n∑
j=0

pε j(t) +

n∑
j=0

pε̄ j(t). (9.4)

It is easy to see from Eqs (9.1)–(9.4) that for any time t ≥ h, where all initial perturbations have already
been converted, then I(t) becomes

I(t) =

∫ t

t−τ1

ε0β0S 0(θ)G0(i(θ))e−µI (t−θ) +

n∑
j=1

ε jβ jS j(θ)G j(i(θ))e−µI (t−θ)

 dθ

+

∫ t

t−τ2

ε̄0β0S 0(θ)G0(i(θ))e−µI (t−θ) +

n∑
j=1

ε̄ jβ jS j(θ)G j(i(θ))e−µI (t−θ)

 dθ. (9.5)

Recall Model-Assumption 2.5, the delays τ1 and τ2 are random variables with probability densities
fτ1 , t0 ≤ τ1 ≤ h1 and fτ2 , t0 ≤ τ2 ≤ h2. Therefore, taking the average of Eq (9.5) with respect to the
delays τ1 and τ2, and differentiating the result leads to Eq (3.3).

Hence, in the models (3.1)–(3.7), the delay term
∑n

j=0

∫ h1

t0
ε jβ jS j(t − r)G j(i(t − r))e−µIr fτ1(r)dr

represents the average number per unit time of individuals newly infected at earlier times
t − r, r ∈ [t0, h1], who survived natural death rate over the incubation period, τ1, of HIV, with
exponential survival distribution e−µIr,∀r ∈ [t0, h1], and are currently converted into full-blown AIDS
class.
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The other delay term
∑n

j=0

∫ h2

t0

(
1 − ε j

)
β jS j(t − u)G j(i(t − u))e−µIu fτ2(u)du represents the average

number per unit time of individuals newly infected at earlier times t − u, u ∈ [t0, h2], who survived
natural death rate over the time lapse between initial infection and the on set of treatment, with
exponential survival distribution e−µIu,∀u ∈ [t0, h1], and are now newly converted into the treatment
class. All other parameters of the model are non-negative and defined in Assumptions (A)–(G) in
Model-Assumptions 2.1–2.8.

10. The white noise processes in the HIV/AIDS epidemic dynamics

From Assumptions (D) and (G) in Model-Assumptions 2.1–2.8, it is assumed there are noises in the
HIV/AIDS dynamics from the random supply of ODAs and random poverty levels/living standards in
the community reflected by life expectancy. That is, the proportions per unit time ε̄ j = 1−ε j and ε j, j ∈
I(0, n) are random variables, and likewise the natural death rates µk, k ∈

{
S j, I,T, A,R

}
, j ∈ I(0, n) are

random variables per unit time. Denote these random variables, respectively, by ˜̄ε j, ε̃ j, j ∈ I(0, n) and
µ̃k, k ∈

{
S j, I,T, A,R

}
, j ∈ I(0, n). We represent the environmental variabilities as independent white

noise processes applying similar techniques in the earlier studies [27, 28].
For t ≥ t0, let (Ω,F, P) be a complete probability space, and Ft be a filtration (that is, sub σ- algebra

Ft that satisfies the following: given t1 ≤ t2 ⇒ Ft1 ⊂ Ft2; E ∈ Ft and P(E) = 0 ⇒ E ∈ F0 ). The
variabilities in ˜̄ε j, ε̃ j, j ∈ I(0, n) and µ̃k, k ∈

{
S j, I,T, A,R

}
, j ∈ I(0, n) in any small time interval of

length dt are represented by independent white noise processes as follows:

µ̃kdt = µkdt + σkdwk(t), k ∈
{
S j, I,T, A,R

}
, j ∈ I(0, n) (10.1)

˜̄ε jdt = (1 − ε̃ j)dt = (1 − ε j)dt + σε̄ jdwε j(t), and

ε̃ jdt = ε jdt + σε jdwε j(t), j ∈ I(0, n), where σε j = σε̄ j , (10.2)

and the wk(t)’s are the normalized Wiener processes for the kth state at time t (k ∈
{
S j, I,T, A,R

}
, j ∈

I(0, n)), with the following properties: wk(0) = 0, E(wk(t)) = 0,Var(wk(t)) = t. Note from Eqs (10.1)
and (10.2) that the random variables ˜̄ε j ∈ R, ε̃ j ∈ R, j ∈ I(0, n) and their means E[ ˜̄ε j] = ε̄ j = 1 − ε j ∈

(0, 1) and E[ε̃ j] = ε j ∈ (0, 1).
Furthermore, to emphasize that the intensities σε j and σε̄ j are identical, it is easy to see from Eqs

(10.1) and (10.2) that the variances of the random fluctuations in the random variables ˜̄ε j, ε̃ j, j ∈ I(0, n)
and µ̃k, k ∈

{
S j, I,T, A,R

}
, j ∈ I(0, n) in any small time interval of length dt, are given by Var[µ̃kdt] =

σ2
kdt, where σ2

k is the intensity of the environmental white noise in the natural death rate of the kth

state; Var[(1 − ε̃ j)dt] = Var[ε̃ jdt] = σ2
ε j

dt ≡ σ2
ε̄ j

dt, where σ2
ε j
≡ σ2

ε̄ j
is the intensity of the white noise

in the random variable ε̃ j, j ∈ I(0, n). Note, σε j and σε̄ j are identical, however, the distinct notations
are utilized to emphasize the origins of the noises.

Note, as remarked in [28], the traditional use of the white noise process in the form as additive noise,
given above in Eqs (10.1) and (10.2), to represent environmental variabilities in the biological system,
is only for convenience. Some authors [46, 47] have raised important concerns about the suitability of
this form to represent biological processes. More advanced extensions to this technique of modeling
environmental variabilities with the white noise process have been proposed, e.g. the mean-reverting
approach [46, 47].
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Remark 10.1. Note that from Model-Assumption 2.7, it makes sense that the expected value
E (µkdt + σkdwk(t)) = µdt,∀k ∈

{
S j, I,T, A,R

}
, j ∈ I(0, n), where µ is the mean of the random

variable natural death rates per unit time µ̃k of every kth state, k ∈
{
S j, I,T, A,R

}
, j ∈ I(0, n). That is,

Eq (10.1) can be rewritten as

µ̃kdt = µdt + σkdwk(t), k ∈
{
S j, I,T, A,R

}
, j ∈ I(0, n). (10.3)

To emphasize the origins of the deathrates, the expressions in Eq (10.1) will be used, and wherever
necessary, remarks for Eq (10.3) will be given.

To avoid repetition, the reader is referred to Wanduku [28], where it is shown that for any state
k ∈

{
S j, I,T, A,R

}
, j ∈ I(0, n), even when the natural death rates are influenced by random

fluctuations of white noise types exhibited in Eqs (10.1) and (10.3), it follows that under the
assumption of independent natural deaths in any interval [t0, t0 + t] of length t, the number of deaths
that occur in state k ∈

{
S j, I,T, A,R

}
, j ∈ I(0, n) are best described by independent Poisson processes

with means E(µ̃k) = µk, where µ̃k and µk are defined in Eq (4.1). Thus, the survival lifetimes until
natural death occurs in the kth state at time t (k ∈

{
S j, I,T, A,R

}
, j ∈ I(0, n)) are given by

Sk(t) = e−µkt, k ∈
{
S j, I,T, A,R

}
, j ∈ I(0, n). (10.4)

11. Complete proof and interpretation of Theorem 5.1

Proof. Observe from Eqs (4.3)–(4.9) and (4.12) that for the intensities σε = σε̄ ≥ 0, σS j ≥ 0 and
σk ≥ 0, k ∈ {I,T, A,R}, then

dN(t) =

B − n∑
j=0

µS jS j(t) − µI I(t) − µT T (t) − µAA(t) − µRR(t)

 dt

−

n∑
j=0

σS jS j(t)dwS j(t) − σI I(t)dwI(t) − σT T (t)dwT (t) − σAA(t)dwA(t) − σRR(t)dwR(t).

(11.1)

When the solution of Eqs (4.3)-(4.9) is positive, i.e. Y(t) ∈ Rn+6
+ , then it is easy to see from Eq (4.12)

that when Theorem 5.1 (a.) and (b.) holds ( i.e. σk = 0, ∀k ∈ {S j, I,T, A,R}, and ∀ j ∈ I(0, n), and also
σε j ≡ σε̄ j ≥ 0), then given that N(t0) ∈ [0, B

µmin
], it follows that

lim sup
t→∞

N(t) ≤
B
µmin

, almost surely, (11.2)

where

µmin = min

 n∑
j=0

µS j , µI , µT , µA, µR

. (11.3)

Furthermore, it is easy to see from Eqs (11.2), (3.10) and (4.9) that for Z(t0) ∈ [0, 1
µZ

φmax

min (1,φ̂min)
B
µmin

],

lim sup
t→∞

Z(t) ≤
1
µZ

φmax

min (1, φ̂min)
B
µmin

, almost surely, (11.4)
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where φmax = max(φI , φT , φA), and φ̂min = min(φ̂I , φ̂T , φ̂A).
Thus, it follows from Eqs (11.2) and (11.4) that the closed ball centered at the origin with radius

r =
B
µmin

+
1
µZ

φmax

min (1, φ̂min)
B
µmin

, (11.5)

defined as follows

D(∞) = B̄Rn+6
+

(0, r) =
{
Y(t) ∈ Rn+6

+ |N(t) + Z(t) = ||Y(t)||1 ≤ r
}
, (11.6)

is positive self-invariant with respect to the stochastic systems (4.3)–(4.9), whenever the conditions of
Theorem 5.1 (a.) and (b.) holds holds.

On the other hand, when Theorem 5.1 (c.) holds (i.e. at least one of σk > 0, k ∈ {S j, I,T, A,R}, and
j ∈ I(0, n), and also σε̄ j ≡ σε j ≥ 0), then the closed ball B̄Rn+6(0, r) is no longer positively self-invariant
Eqs (4.3)–(4.9). However, the positive paths of the SSP Y(t) ∈ Rn+6

+ , t ≥ t0 continue to oscillate in Rn+6
+

for all time t ≥ t0. �

Remark 11.1.
(1.) Theorem 5.1 signifies that the stochastic systems (4.3)–(4.9) always has a positive solution
{Y(t,w), t ≥ t0,w ∈ Ω}. Moreover, Theorem 5.1(a)-(b) signify that all paths of {Y(t,w), t ≥ t0,w ∈ Ω}

that start in the closed ball B̄Rn+6(0, r), continue to oscillate in the closed ball, almost surely, provided
that the intensities of the noises in the system are infinitesimally small (i.e. σε j = 0,
σS j = 0,∀ j ∈ I(0, n) and σk = 0,∀k ∈ {I,T, A,R}), or provided that the only source of variability in
the system is from the random supplies of ODAs in the system with intensities σε j > 0 (i.e. σε j > 0,
σS j = 0,∀ j ∈ I(0, n) and σk = 0,∀k ∈ {I,T, A,R}).

(2.) When additional sources of noise in the system occur e.g. the noises in the living standards of
people in system, i.e. at least one of σk > 0, ∀k ∈ {S j, I,T, A,R}, j ∈ I(0, n), whenever σε̄ j ≡ σε j ≥

0, , j ∈ I(0, n), then the paths of {Y(t,w), t ≥ t0,w ∈ Ω} are inflated out of bounds by the additional
noises, to continue oscillating outside of the closed ball B̄Rn+6(0, r), but remain in the positive phase
space Rn+6

+ .

(3.) The observations in (1)-(2) above suggest that the stochastic HIV/AIDS epidemic model in Eqs
(4.3)–(4.9) is more profound than the corresponding deterministic systems (3.1)–(3.7). For instance,
(i.) randomness exclusively in the supply of ODAs does not perturb the system much different from the
corresponding deterministic scenario (this fact is exhibited in the example in Section 7). In fact, in
this case, the disease outbreak cannot grow beyond bounds defined by B̄Rn+6(0, r) in Eq (5.1). (ii.) The
occurrence of additional variability e.g. from the living conditions of people in the system, tends to
inflate paths of the disease dynamics out of bounds into the unbounded space Rn+6

+ . This case suggests
the possibility of extinction of the population occurring, whenever for instance, the living standards
fluctuate with very high intensities in the HIV/AIDS epidemic.

12. Complete proof and interpretation of Theorem 6.1

Proof. When the stochastic systems (4.3)–(4.9) is in equilibrium, then (1) the drift and diffusion
components corresponding to the same equation in the system (4.3)-(4.9) must be equal. Moreover,
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the disease-free steady state requires that (2) the corresponding disease related states in the
equilibrium point E0 = X∗0 = (S ∗0, . . . , S

∗
n, I
∗,T ∗,Z∗) satisfy I∗ = T ∗ = Z∗ = 0. It is easy to see that

solving the resulting system of equations obtained by applying (1)-(2) above leads to E0 in Eq (6.1),
whenever the conditions in Theorem 6.1(a.)–(c.) hold, and there is no solution, whenever
Theorem 6.1(d) holds [28]. �

Remark 12.1. In essence, Theorem 6.1 signifies that the stochastic and the corresponding
deterministic systems (4.3)–(4.9) and (3.1)–(3.7), respectively, have the same DFE E0, whenever
σS 0 = 0. Furthermore, when σS 0 > 0, the DFE no longer exists. This result suggests that the
magnitude of the intensity (σS 0) of the fluctuations in living standards of the susceptible people of type
S 0, who have not yet modified their sexual behaviors, determines the existence of a disease-free steady
state in the population, wherein the disease can be eradicated. If during the HIV/AIDS epidemic
outbreak, the majority of the susceptible population (S 0) live in unhealthy conditions, so that more
people tend to die naturally, then the intensity, σS 0 > 0, of the noise in S 0 becomes significantly high,
and the DFE ceases to exist. This implies that HIV/AIDS will persist in the population.

13. Complete proof of Lemma 6.1

Proof. It is easy to see that the differential operator applied to V1 with respect to Eqs (4.3)-(4.9), leads
to

dV1 = 2(S 0(t) − S ∗0)dS 0(t) + (dS 0(t))2

= LV1(t)dt − 2(S 0(t) − S ∗0)S 0(t)dwS 0(t), (13.1)

where

LV1(t) = −

n∑
j=1

2γ j(S 0(t) − S ∗0)2H j(Z(t)) − 2γ0(S 0(t) − S ∗0)2H0(Z(t))

−

n∑
j=1

2γ j(S 0(t) − S ∗0)S ∗0H j(Z(t)) − 2γ0(S 0(t) − S ∗0)S ∗0H0(Z(t)) − 2β0(S 0(t) − S ∗0)2G0(i(t))

−2(β0S 0(t) − S ∗0)S ∗0G0(i(t)) − 2µS 0(S 0(t) − S ∗0)2 + σ2
S 0

S 2
0(t). (13.2)

Similarly,

dV2 =

n∑
j=1

[
2S j(t)dS j(t) + (dS j(t))2

]
= LV2(t)dt −

n∑
j=1

2σS jS
2
j(t)dwS j(t), (13.3)

where

LV2(t) =

n∑
j=1

[
2γ jS j(t)(S 0(t) − S ∗0)H j(Z(t)) + 2γ jS j(t)S ∗0H j(Z(t)) − 2β jS 2

j(t)G j(i(t))
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−2µS jS
2
j(t)G j(i(t)) + σ2

S j
S 2

j(t)
]
. (13.4)

Also,

dV3 = 2(I(t) + T (t))(dI(t) + dT (t)) + (dI(t) + dT (t))2

= LV3(t)dt

−2(I(t) + T (t))
n∑

j=1

σε jβ jEτ1

[
S j(t − τ1)G j(i(t − τ1))e−µIτ1

]
dwε j(t)

−2(I(t) + T (t))σI I(t)dwI(t) − 2(I(t) + T (t))σT T (t)dwT (t), (13.5)

where

LV3(t) = 2β0G0(i(t))I(t)S 0(t) + 2β0G0(i(t))T (t)S 0(t)

+

n∑
j=1

[
2β jG j(i(t))I(t)S j(t) + 2β jG j(i(t))T (t)S j(t)

]
+

n∑
j=0

[
−2ε jβ jI(t)Eτ1

[
S j (t − τ1) G j (i (t − τ1)) e−µIτ2

]
−2ε jβ jT (t)Eτ1

[
S j (t − τ1) G j (i (t − τ1)) e−µIτ2

]]
−2 (µI + dI) I2(t) − 2 (µI + dI) T (t)I(t) − 2 (µT + dT + αT A) I(t)T (t) − 2 (µT + dT + αT A) T 2(t)

+

n∑
j=0

σ2
ε j
β2

jE
2
τ1

[
S j (t − τ1) G j (i (t − τ1)) e−µIτ1

]
+ σ2

I I2(t) + σ2
T T 2(t). (13.6)

And

dV4 = 2Z(t)dZ(t)

= [2Z(t)FZ(I,T ) − 2µZZ2(t)]dt, FZ(I,T ) =
φI I(t) + φT T (t)

1 + φ̂I I(t) + φ̂T T (t)
. (13.7)

In the following, Cauchy-Schwarz inequality, Holder inequality, (a + b)2 ≤ 2a2 + 2b2, and the
following algebraic inequality Eq (13.8) will be used to obtained the results.

2ab ≤
a2

g(c)
+ b2g(c), g(c) > 0. (13.8)

Indeed, it follows from Eqs (13.2) and (13.4) that

LV1(t) + LV2(t) ≤− n∑
j=1

2γ jH j(Z(t)) − 2γ0H0(Z(t)) +

n∑
j=1

γ jS ∗0 + β0S ∗0 + γ0S ∗0 + 2σ2
S 0
− 2β0G0 (i(t)) − 2µS 0

 (S 0(t) − S ∗0
)2

+

n∑
j=1

[
γ jH j(Z(t)) + γ jS ∗0 + σ2

S j
− 2β jG j (i(t)) − 2µS j

]
S 2

j(t)
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+

n∑
j=1

2γ0S ∗0H2
j (Z(t)) + γ0S ∗0H2

0(Z(t)) + β0S ∗0G
2
0(i(t)) + 2σ2

S 0

(
S ∗0

)2 . (13.9)

Also, it follows from Eq (13.6) that

LV3 ≤ 2β0
1
λ(µ)

(
S 0(t) − S ∗0

)2
+

n∑
j=1

2β j
1
λ(µ)

S 2
j(t)

+

β0λ(µ) + β0S ∗0
1
λ(µ)

+ β0S ∗0λ(µ) + β0S ∗0
1
λ(µ)

+

n∑
j=1

β jλ(µ)

+

n∑
j=0

ε jβ jλ (µ) + (µI + dI) λ2(µ) + (µT + dT + αT A)
1

λ2(µ)
+ σ2

I

−2 (µI + dI)
]

I2(t)

+

β0λ(µ) + β0S ∗0 + λ(µ) +

n∑
j=1

β jλ(µ) +

n∑
j=0

ε jβ jλ(µ)

+ (µI + dI)
1

λ2(µ)
+ (µT + dT + αT A) λ2(µ) + σ2

I − 2 (µT + dT + αT A)
]

T 2(t)

+

n∑
j=0

(
2ε jβ j

1
λ(µ)

+ σ2
ε j
β2

j

)
Eτ1

[
S 2

j (t − τ1) G2 (i (t − τ1)) e−2µIτ1
]
, (13.10)

where λ(µ) and λ2(µ) are positive real valued functions of µ.
Also, from Eq (13.7), it is easy to see that

dV4(t) =

[
2φIZ(t)I(t)

1 + φ̂I I(t) + φ̂T T (t)
+

2φT Z(t)T (t)
1 + φ̂I I(t) + φ̂T T (t)

− 2µZZ2(t)
]

dt

≤

[
φIλ(µ)I2(t) + φTλ(µ)T 2(t) +

(
(φI + φT )

1
λ(µ)

− 2µZ

)
Z2

]
dt. (13.11)

From Eqs (13.9) and (6.7), observe that for each j ∈ I(0, n), the terms

−2γ jH j(Z(t)) ≤ γ j

(
1 +

(
H∗j

)2
)
, γ0S ∗0H2

j (Z(t)) ≤ γ0S ∗0Z2(t), and β0S ∗0G
2
0(i(t)) ≤ β0S ∗0(i(t))2 ≤ β0S ∗0I2(t).

Now, combining Eqs (13.2)–(13.11) and grouping like-terms, and also applying Eq (6.7) and some
further algebraic manipulations and simplifications, it is easy to see that

LV(t) = LV1(t) + LV2(t) + LV3(t) + LV4(t)

≤ −

φ0(S 0(t) − S ∗0)2 +

n∑
j=1

φ jS 2
j(t) + ϕI I2(t) + ϕT T 2(t) + ϕZZ2(t)

 + 2σ2
S 0

(S ∗0)2

+

n∑
j=0

(
2ε jβ j

1
λ(µ)

+ σ2
ε j
β2

j

)
Eτ1

[
S 2

j (t − τ1) G2 (i (t − τ1)) e−2µIτ1
]
, (13.12)

where φ j, j ∈ I(0, n) and ϕk, k ∈ {I,T,Z} are defined in Eqs (6.11)–(6.15). �

Note 13.1.

Mathematical Biosciences and Engineering Volume 17, Issue 6, 6791–6837.



6834

(1.) Recall Theorems 6.1&5.1 assert that the DFE exits in D(∞) and Rn+6
+ under a given set of

restrictions for the intensities of the noises in the system. Furthermore, the modes of estimating the
delay-term in Eq (6.18),

∑n
j=0

(
2ε jβ j

1
λ(µ) + σ2

ε j
β2

j

)
Eτ1

[
S 2

j(t − τ1)G2
j(i(t − τ1))e−2µIτ1

]
give rise to

different pictures of the disease dynamics inside the different spaces D(∞) and Rn+6
+ .

Indeed, in D(∞), using Eqs (5.2) and (6.7)

n∑
j=0

(
2ε jβ j

1
λ(µ)

+ σ2
ε j
β2

j

)
Eτ1

[
e−2µIτ1

]
S 2

j(t)G
2
j(i(t))

≤

n∑
j=0

(
2ε jβ j

1
λ(µ)

+ σ2
ε j
β2

j

)
Eτ1

[
e−2µIτ1

]
r2(i(t))2

≤

n∑
j=0

(
2ε jβ j

1
λ(µ)

+ σ2
ε j
β2

j

)
Eτ1

[
e−2µIτ1

]
r2(I(t))2, (13.13)

where r is defined in Eq (5.2).
Due to space limitations, the second estimation of (13.13) and corresponding interpretation of the

disease dynamics in Rn+6
+ , whenever Theorem 6.1(c.)-(d.) hold appears in a sequel to this paper. Only

the stochastic stability in probability of the DFE E0 in the space D(∞) will be discussed in this paper.
That is, stability in probability, whenever Theorem 6.1(a.)-(b.) hold.

(2.) In subsequent analysis, it is assumed that Theorem 5.1(a.)-(b.), Theorem 6.1(a.)-(b.) and
Theorem 6.2 hold. That is, the stochastic systems (4.3)-(4.9) has a positive solution and a DFE E0

inside of D(∞).

14. The complete proof of Lemma 6.2

Proof. Let R0,σε < 1, R1(µ) < 1 + (1 − R0,σε), max (U j) j∈I(0,n) < 1, and max (V0,W0) < 1. When the
intensities of Eqs (4.3)–(4.9) satisfy σε̄ j ≡ σε j > 0, σS j = 0,∀ j ∈ I(0, n) and σk = 0,∀k ∈ {I,T, A,R},
observe from Eqs (6.16)–(6.19) and (13.13) that

LV(t) + LV5(t) ≤ −

φ0(S 0(t) − S ∗0)2 +

n∑
j=1

φ jS 2
j(t) + ϕI I2(t) + ϕT T 2(t) + ϕZZ2(t)


+

n∑
j=0

(
2ε jβ j

1
λ(µ)

+ σ2
ε j
β2

j

)
Eτ1

[
S 2

j(t)G
2
j(i(t))e

−2µIτ1
]

≤ −

φ0(S 0(t) − S ∗0)2 +

n∑
j=1

φ jS 2
j(t) + ϕI I2(t) + ϕT T 2(t) + ϕZZ2(t)


+

n∑
j=0

(
2ε jβ j

1
λ(µ)

+ σ2
ε j
β2

j

)
Eτ1

[
e−2µIτ1

]
r2(I(t))2

= −

φ0(S 0(t) − S ∗0)2 +

n∑
j=1

φ jS 2
j(t) + ϕ1,I I2(t) + ϕT T 2(t) + ϕZZ2(t)

 ,
(14.1)
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where φ j, j ∈ I(0, 1) and ϕk, k ∈ {I,T,Z} are obtained from Eqs (6.11)–(6.15) by setting the intensities
σε̄ j ≡ σε j > 0, σS j = 0,∀ j ∈ I(0, n) and σk = 0,∀k ∈ {I,T, A,R}. Moreover, it is easy to see from Eqs
(6.11)-(6.15) and (14.1) that

φ0 = 2µS 0 −

 n∑
j=0

γ j(1 + (H∗j )
2) +

n∑
j=0

γ jS ∗0 + β0S ∗0 + 2β0 + 2β0
1
λ(µ)


= 2µS 0 (1 − U0) > 0 (14.2)

φ j = 2µS j −

[
γ j(1 + (H∗j )

2) + γ jS ∗0 + 2β j + 2β j
1
λ(µ)

+ σ2
S j

]
, j ∈ I(1, n)

= 2µS j

[
1 − U j

]
> 0 (14.3)

and

ϕI,1 = ϕI −

n∑
j=0

(
2ε jβ j

1
λ(µ)

+ σ2
ε j
β2

j

)
Eτ1

[
e−2µIτ1

]
r2

= (1 −
1
2
λ2(µ))(µI + dI) −

[
β0S ∗0(1 + 2

1
λ(µ)

+ λ(µ))
]

+(1 −
1
2
λ2(µ))(µI + dI) −

 n∑
j=0

(1 + ε j)β jλ(µ) + φIλ(µ) + (µT + dT + αT A)
1

λ2(µ)


−

n∑
j=0

(
2ε jβ j

1
λ(µ)

+ σ2
ε j
β2

j

)
Eτ1

[
e−2µIτ1

]
r2

= (1 −
1
2
λ2(µ))(µI + dI)

1 − β0S ∗0
(µI + dI)

[
(1 + 2 1

λ(µ) + λ(µ))
]

(1 − 1
2λ2(µ))

−
Eτ1

[
e−2µIτ1

]
r2

(1 − 1
2λ2(µ))(µI + dI)

n∑
j=0

(
β2

jσ
2
ε j

)
+(1 −

1
2
λ2(µ))(µI + dI)

[
1 − R1(µ)

]
. (14.4)

Select the functions λ(µ) and λ2(µ) such that in Eqs (14.4), (6.4) and (6.3), P(1) is proportional to[
(1+2 1

λ(µ) +λ(µ))
]

(1− 1
2λ2(µ))

. That is,

P(1) =
1[

ε0R1E(e−µIτ1) + (1 − ε0)R1E(e−µIτ2) − αT I(1 − ε0)R1E(e−µIτ2) 1
(αT I+µT +dT +αT A) + 1

G′ (0)

]
= K

[
(1 + 2 1

λ(µ) + λ(µ))
]

(1 − 1
2λ2(µ))

, (14.5)

where

0 < K <
P(1)(1 − 1

2λ2(µ))

1 + 2
√

2
, (14.6)

Mathematical Biosciences and Engineering Volume 17, Issue 6, 6791–6837.



6836

and λ(µ) satisfies

Kλ2(µ) − λ(µ)[P(1)(1 −
1
2
λ2(µ)) − K] + 2K = 0. (14.7)

Note that when λ2(µ) ∈ (0, 2) is given, then the solutions of Eq (14.7) are real and positive. Also,
clearly from Eqs (14.4) and (6.4)–(6.3),

R0 = P(1)
β0S ∗0

(µI + dI)
= K

[
(1 + 2 1

λ(µ) + λ(µ))
]

(1 − 1
2λ2(µ))

β0S ∗0
(µI + dI)

. (14.8)

It is easy to see from Eq (14.4) that

ϕI,1 = (1 −
1
2
λ2(µ))(µI + dI)

[
(1 − R0,σε) + (1 − R1(µ))

]
> 0 (14.9)

ϕT = (2 − λ2(µ))(µT + dT + αT A)

−

 n∑
j=0

(1 + ε j)β jλ(µ) + β0S ∗0λ(µ) + φTλ(µ) + (µI + dI)
1

λ2(µ)


= (2 − λ2(µ))(µT + dT + αT A) [1 − V0] > 0. (14.10)

ϕZ = 2µZ −

γ0S ∗0 +

n∑
j=0

γ jS ∗0 + (φI + φT )
1
λ(µ)


= 2µZ [1 −W0] > 0. (14.11)

�

15. Complete proof of Theorem 6.4

Proof. It is easy to see from Eq (6.26) that

L(V + V5)(t) ≤ −

φ0(S 0(t) − S ∗0)2 +

n∑
j=1

φ jS 2
j(t) + ϕI,1I2(t) + ϕT T 2(t) + ϕZZ2(t)


≤ −m0

(
1

(n + 1)

) 
 n∑

j=0

S j(t) − S ∗0


2

+ I2(t) + T 2(t) + Z2(t)


(15.1)

where
m0 = min

j∈I(1,n)

(
φ0, φ j, ϕI,1, ϕT , ϕZ

)
> 0. (15.2)

Integrating both sides of Eq (15.1) over [t0, t], and diving both sides by t, it is easy to see that

m0

(
1

(n + 1)

)
1
t

∫ t

t0

((
S (ζ) − S ∗0

)2
+ I2(ζ) + T 2(ζ) + Z2(ζ)

)
dζ ≤

1
t
V(t0) +

1
t

∫ t

t0

−→g (X(s))d
−−−→
w(s), (15.3)
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Observe that for all Y(t) ∈ D(∞), and from Eq (6.17), the quadratic variation of the local martingale
m(t) =

∫ t

t0
−→g (X(ζ))d

−−−→
w(ζ) denoted by < m(t) > is given by

< m(t) >=

∫ t

t0

(
−2(S 0(ζ) − S ∗0)S 0(ζ)

)2 dζ +

n∑
j=1

∫ t

t0

(
2σS jS

2
j(ζ)

)2
dζ

+

n∑
j=1

∫ t

t0

(
σε jβ j(−2(I(ζ) + T (ζ)))Eτ1

[
S j(ζ − τ1)G j(i(ζ − τ1))e−µIτ1

])2
dζ

+

∫ t

t0
(−2(I(ζ) + T (ζ))σI I(ζ))2 dζ +

∫ t

t0
(2(I(ζ) + T (ζ))σT T (ζ))2 dζ. (15.4)

For for all Y(t) ∈ D(∞), it is easy to see that lim supt→∞
1
t < m(t) >< ∞, a.s., and by the strong law of

large numbers for local martingales [48], limt→∞
1
t m(t) = 0, a.s.

Thus, dividing both sides of Eq (15.3) by the constant m0

(
1

(n+1)

)
> 0, and taking lim supt→∞ of both

sides, we obtain

lim sup
t→∞

1
t

∫ t

t0

(
S (ζ) − S ∗0

)2 dζ ≤ lim sup
t→∞

1
t

∫ t

t0
||X(ζ) − E0||dζ

= lim sup
t→∞

1
t

∫ t

t0

((
S (ζ) − S ∗0

)2
+ I2(ζ) + T 2(ζ) + Z2(ζ)

)
dζ = 0, a.s. (15.5)

Clearly, from Eq (15.5), lim supt→∞
1
t

∫ t

t0

(
S (ζ) − S ∗0

)2
dζ = 0, a.s. Furthermore, since the integrand is

nonnegative, i.e.
(
S (t) − S ∗0

)2
≥ 0,∀t ≥ t0, and the random variable S (t,w),w ∈ Ω, t ≥ t0 is continuous

with respect to t ≥ t0, but nowhere smooth, it implies that S (t) must be equal to S ∗0 almost everywhere
with respect to t ≥ t0, and (6.27) is obtained. �
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