July 2018

Student Resistance to Collaborative Learning

Sheri Stover
Wright State University - Main Campus, sheri.stover@wright.edu

Cindra Holland
Wright State University - Main Campus, cindra.holland@wright.edu

Recommended Citation

Available at: https://doi.org/10.20429/ijsotl.2018.120208
Student Resistance to Collaborative Learning

Abstract
The advancing complexity of today’s corporate environment requires that employees are able to collaborate in the workplace. This mixed methods research study follows a nursing faculty’s efforts to incorporate collaborative learning (CL) into an introductory nursing class. The mixed-methods research study found that while students’ final grades improved in the initial CL flipped classroom design ($p < .0005$), their levels of student resistance deepened which resulted in significantly lower levels of community of inquiry ($p = .004$), lower levels of satisfaction, and many negative open-ended comments (83%). Using Tolman and Kreming’s (2017) integrated model of student resistance (IMSR) as a guideline, the instructor was successful in redesigning the CL class to overcome students’ resistance as measured by significantly higher levels of community of inquiry ($p < .0005$), higher levels of satisfaction ($p < .0005$), and many less negative open-ended comments (54% vs 83%).

Keywords
Collaborative learning, Student Resistance, Community of Inquiry, Integrated model of student resistance (IMSR)

Creative Commons License
This work is licensed under a Creative Commons Attribution-Noncommercial-No Derivative Works 4.0 License.
Student Resistance to Collaborative Learning

Sheri Stover and Cindra Holland

Wright State University - Main Campus

(Received 22 August 2017; Accepted 13 December, 2017)

The advancing complexity of today’s corporate environment requires that employees are able to collaborate in the workplace. This mixed methods research study follows a nursing faculty’s efforts to incorporate collaborative learning (CL) into an introductory nursing class. The mixed-methods research study found that while students’ final grades improved in the initial CL flipped classroom design (p < .0005), their levels of student resistance deepened which resulted in significantly lower levels of community of inquiry (p = .004), lower levels of satisfaction, and many negative open-ended comments (83%). Using Tolman and Kreming’s (2017) integrated model of student resistance (IMSR) as a guideline, the instructor was successful in redesigning the CL class to overcome students’ resistance as measured by significantly higher levels of community of inquiry (p < .0005), higher levels of satisfaction (p < .0005), and many less negative open-ended comments (54% vs 83%).

INTRODUCTION

The advancing complexity of today’s corporate environment requires that employees are able to collaborate in the workplace to solve critical issues (Austin, 2000). It is imperative that college students entering the workforce exhibit qualities to foster teamwork. In an attempt to develop students’ communication and collaboration skills, faculty across all disciplines are now beginning to revise their courses to include more collaborative learning activities (Leonard & Leonard, 2001). In the healthcare field, professional nurses must utilize effective communication skills to successfully collaborate with other members of the health care team to prioritize patients’ needs (American Nurses Association, 2016). Research has shown that ineffective communication skills are key factors when health care teams have trouble working together (Brandt, 2015). The Joint Commission, which accredits health care organizations across the United States (U.S.), reported that communication failure is the primary cause of more than 60% of sentinel events in health care (Joint Commission, 2008). Health care workers who utilize clear effective communication skills can decrease the number of medical errors (Noguchi, 2014). Because of these findings, the American Association of Colleges of Nursing (AACN) has identified interprofessional communication and collaboration as one of the essential skills that undergraduate nursing programs must address to prepare students entering the workforce (AACN, 2008). In an effort to develop communication and collaboration skills of beginning nursing students, a Nursing professor redesigned an undergraduate physical assessment course to move from mostly lecture to primarily collaborative learning. This article reviews outcomes from this mixed methods research study.

LITERATURE REVIEW

Collaborative Learning

Collaborative learning (CL) is a pedagogical approach to teaching that moves the student from a passive learner to an active participant in the educational process (Bransford, Brown, & Cocking, 2006). CL requires students to move away from memorization and regurgitation of material to an environment where they actively process and synthesize information. CL can be defined as an “intellectual endeavor in which individuals act jointly with others to become knowledgeable on some particular subject matter” (Koehn, 2001, p. 160). The goal of CL learning are environments where students work together to co-construct knowledge (Chi & Wylie, 2014; Scardamalia & Bereiter, 2006). This allows students to sharpen communication skills, develop team-work and social skills, and hone their conflict resolution capacities (Jarvenoja & Jarvela, 2009; Prichard, Stratford, & Bizo, 2006; Ravenscroft & Luhanga, 2014). Research has revealed many benefits in designing classes that include high levels of CL. Collaborative learning activities can help students develop problem-solving skills, critical thinking skills, formulate ideas, discuss solutions, and receive feedback from each other (Cockrell, Hughes-Caplow, & Donaldson, 2000; Moore, 2009; Mitchell, 2004; Youngblood & Beitz, 2001). Learners also benefit socially and emotionally because they are required to listen to other’s perspectives and articulate and defend their own ideas (Smith & MacGregor, 1992).

Lipman (2003) posits that CL environments are a community of inquiry (CoI) where members of the community are “questioning, reasoning, connecting, deliberating, challenging, and developing problem-solving techniques” (p. 20-21). Garrison, Anderson, and Archer (2000) developed a Col framework to model educational communities of inquiry where students participate in meaningful collaborative learning experiences. Garrison (2016) emphasizes that simply having students work in a group does not automatically result in students’ development of deep thinking and construction of knowledge. Learning experiences need to be designed so that group projects are not simple social interactions, but encourage students to develop “cognitive involvement through social interactions” (Boujaoude, 2016, p. 124). The Col framework outlines the process of designing and delivering educational experiences that are deep and meaningful and grounded in the three interdependent elements of social presence, cognitive presence, and teaching presence (Garrison et al., 2000).

The Col framework has its roots in the collaborative constructivist learning theory which posits that individuals seek to understand the world through interactions with others (Dewey, 1959; Garrison, 2016, Piaget, 1970; Vygotsky, 1978). Constructivism can be looked at as a way of thinking (von Glaserfeld, 1992), an approach to teaching and learning (Hui, 2003), and also a theory (Piaget, 1950). Common to all the constructivists’ approaches is the belief that students’ do not build knowledge by passively receiving information, but must actively building knowledge on their pre-existing mental structures (Ernest, 1995). The
collaborative constructivist theory emphasizes the importance of students working collaboratively in a community of inquiry to have a social construction of knowledge (Garrison, Anderson, & Archer, 2000).

Student Resistance to Collaborative Learning

While many research studies have found benefits of incorporating CL, it is not uncommon for instructors to experience student resistance (Burke, 2011). Tolman and Kremling (2017) define student resistance as an, “outcome, a motivational state in which students reject learning opportunities due to systemic factors” (p. 3). Student resistance is not a trait that is part of a student’s personality enduring over time, but is a fluid motivational state that can be influenced (Tolman & Kremling, 2017). The external factors that have an impact on student resistance are environmental forces (family history, social class, and cultural identify) and students’ previous negative experiences with CL in the classroom. The internal forces that have an impact on student resistance are cognitive development (how student perceives education and knowledge) and metacognition (students’ internal self-awareness of how they learn). The integrated model of student resistance (IMSR) attempts to identify the factors that lead to student resistance (Tolman & Kremling, 2017, Figure 1). While the four elements in the IMSR are separate (metacognition, cognitive development, environmental forces, and negative classroom experiences), they are interdependent so that a change in one element has an impact on the rest of the system (Tolman & Kremling, 2017). When faculty experience student resistance, they can use the IMSR model to make adjustments to their course design and can see a positive impact by just focusing on one aspect of the model (Tolman & Kremling, 2017).

Students are so entrenched in passive learning strategies, they exhibit strong levels of resistance when asked to participate in CL and may experience similar emotions that individuals experience when going through trauma and grief (denial, anger, bargaining, depression, and acceptance) (Kübler-Ross, 1969). Students may feel angry when participating in CL classrooms because they feel the instructor has changed the rules of an acceptable learning environment (Howard, 2015). Students often report disliking CL due to the dynamics of the group, including accountability on group projects. Group work requires students to collaborate, communicate, delegate, and rely on each other, which is challenging for introverts, dominating personalities, or independent workers (Taylor, 2011). Personality issues or conflicts may arise while students are working in a group, which causes students to complain about disliking other members (Virgă, CurŞeu, Maricuţoiu, Sava, Măscinga, & Măgurean, 2014). Students may not value the academic knowledge of their peers and feel that peer-to-peer interactions take away from time they could be hearing from the professor (Taylor, 2011). Group dynamics may exert pressure for the group to reach a majority opinion, which may cause individual group members to agree to decisions they do not entirely support to avoid conflict (Beebe & Masterson, 2003). Group work often results in uneven participation because of social loafing which is the “tendency of individuals to expend less effort when working collectively than when working individually” (Karau & Williams, 1993, p. 681). Students

![Figure 1. Integrated model of student resistance (IMSR)](https://doi.org/10.20429/ijsotl.2018.120208)
have also reported disliking CL because they resent all members of a group receiving the same grade while a few members of the group have completed a disproportionately large amount of the work (Allan, 2016).

Suggestions for Instructors to Overcome Student Resistance
Tolman and Kreming’s (2017) integrated model of student resistance (IMSR) provides a systematic model that outlines reasons for student resistance to CL. The four elements in the model are highly interdependent, so faculty can make adjustments to each element in an effort to lower levels of student resistance. When faculty design CL courses, they should create a proactive course design to address expected resistance. The following are suggestions how faculty can impact each of the four elements in the IMSR model to lower students’ level of resistance.

IMSR- Cognition. An internal force that the IMSR identifies as leading to student resistance is students’ cognition. Student cognition refers to the beliefs students hold about how knowledge is acquired (Cacioppo & Petty, 1982). Implementing pro-active approaches to address students’ cognitive beliefs are strategies that will help overcome student resistance. Many students in have simplistic views of knowledge formation where they believe that the source of knowledge needs to be transferred from an authority figure (instructor) along with the information needed to pass the exam (Kloss, 1994; Perry, 1970). Students with simplistic views of knowledge formation will have strong levels of resistance to CL because peer learning may be viewed as a waste of time because their peers are not viewed as credible sources of knowledge. Instructors can promote cognitive development in students by publicly defining learning as a jointly constructed endeavor between students and the instructor, validating students as having an essential voice in the learning process, and situating learning to allow students to construct their own knowledge (Baxter Magolda, 1992).

IMSR- Metacognition. Another internal force that the IMSR identifies as impacting students’ level of resistance is metacognition, which is closely related to cognition. Metacognition refers to students’ self-awareness of their own cognition and their ability to regulate their cognitive processes (Vrugt & Oort, 2008). Dweck (2000) maintains that most students either view their intelligence as static (fixed mindset) or as changeable (growth mindset). Alpay and Ireson (2006) found that students with a fixed mindset can exhibit student resistance to CL because they prefer to work independently and have a negative view of group work. Students with a fixed mindset will resist collaborative learning because of the possibility of revealing shortcomings in his/her intelligence and do not want to risk any activity where they may fail. Students with a growth mindset enjoy CL because they view the active classroom environment as an opportunity to apply more effort to increase their own learning and believe any learning deficiencies can be overcome with hard work (Dweck, 2006). Instructors can share research outcomes on the benefits of CL to allow students to adopt more of a growth mindset in an effort to embrace the change (Fuchs & Fluegge, 2014).

IMSR- External Forces – Negative Classroom Experiences. One of the external forces that the IMSR identifies includes students’ negative classroom experiences. While CL has many documented benefits, many students have had negative experiences which leads to student resistance (Fiechtner & Davis, 1984). Miller (2014) reported that for instructors to develop productive CL environments they need to communicate clear intentions, assign intentional groups, develop protocols and structures for group work, and hold individuals accountable for their own work. As students work in individual groups, Cole (2007) determined it is important for faculty to eagerly encourage students to be active participants in the learning process by valuing them as they engage in group work. Instructors can also teach students the skills necessary to become an effective member of the Col. Instructors can do this by carefully observing student interactions and then demonstrating and modeling collaboration skills, give students feedback in class, and asking students to write short reflections resulting in self-realizations and growth (Bosworth, 1994). Instructors can also include actions that hold students accountable for their own knowledge with activities such as opening-class quizzes to ensure students have completed required readings so they have the knowledge background to be effective contributors to their Col.

When designing group activities, instructors can provide tools to manage conflict by empowering the group to only put contributors’ names on group assignments. Student groups should also have a process in place to deal with difficult team members by scheduling a group crisis meeting or involving the instructor if necessary. As a last resort, groups should have the ability to remove uncooperative team members if there are members that are disruptive or unproductive members of the community.

IMSR- External Forces – Environmental Forces. Another external force that leads to student resistance identified in the IMSR is environmental forces (work, family, culture/ethnicity, disabilities). Studies have found it can be challenging for minority students to participate in CL due to their lack of confidence (Roksa et al, 2017; White & Lowenthal, 2010). Widnall (1988) conducted studies that found that women may feel their contributions are devalued or discounted in CL environments and are also uncomfortable with the argumentative format adopted by some of the men in their group. However, if instructors created groups with more than one woman, this reduces that possibility (Feldner, Feldner, Mauney, Hamrin, & Dietz, 1995; Ford, 2011). Instructors should also emphasize the importance and benefits of group social acceptance to divergent views that most likely will arise due to differences in culture and background experiences with minority students (Curseu, Schrulier, & Foder, 2017, Smith, Parr, Woods, Bauer, & Abraham, 2010).

Research Questions
The research questions for this study are to investigate if the course design (traditional lecture or CL) in face-to-face classes has an impact on students enrolled in the class. Specifically, our research questions examined in this study include:

H1: Will the course design (traditional lecture or CL) have an impact on students’ perceptions of Community of Inquiry (CoI).

H2: Will the course design (traditional lecture or CL) have an impact on students’ level of satisfaction (SAT).

H3: Will the course design (traditional lecture or CL) have an impact on final grades?
H4: Open-ended questions were asked to seek the impact of the course design (traditional lecture or CL) on students enrolled in these classes.

METHODOLOGY
This Institutional Review Board (IRB) approved mixed-methods research study was conducted at a medium-sized university located in the Mid-west. The instructor in an introductory Nursing course taught Class #1 in a traditional fixed seat auditorium using primarily lecture (Table 1). The fixed-seat auditorium made it extremely difficult for the instructor to incorporate any CL activities due to the inability of students to move into groups. The instructor then redesigned the course after moving to an active learning classroom and included many more collaborative learning activities. Class #2 (active learning architecture, CL teaching methodology, Table 1) was taught in a classroom equipped with round tables where students sat six per table that was specifically designed to accommodate CL activities. After teaching Class #2, the instructor received so much resistance from students that modifications were made to the class design. Class #3 (active learning architecture, CL teaching methodology, Table 1) was structured almost the same as Class #2; however, the instructor included short mini-lectures about the benefits of collaborative learning in an effort to get students to “buy-in” to the CL process.

Summary of the Method
Data were gathered from students in an introductory Nursing class to get perceptions about the level of Community of Inquiry (CoI) and satisfaction (SAT). Below is a summary of each component of the survey.

Community of Inquiry Scale. Arbaugh et al. (2008) developed the CoI Survey to measure students’ perceptions of their levels of CoI in a learning environment. The CoI survey has most often been applied to studying online and blended-learning environments (Akyol & Garrison, 2008; Cleveland-Innes, Garrison, & Kinsel, 2007; Garrison, 2008; Ling, 2007; & Shea & Bidjerano, 2009); however, the CoI framework can be applied to any collaborative learning environment (Garrison, 2016). The 34 self-report items from the Community of Inquiry (CoI) (Swan et al., 2008) were slightly modified so that the survey was appropriate for a face-to-face environment (see appendix). Participants responded to questions such as, “Class discussions help me to develop a sense of collaboration” using a Likert-type scale ranging from 1 = “Strongly disagree”, 2 = “Disagree”, 3 = “Neutral”, 4 = “Agree”, and 5 = “Strongly agree”.

Satisfaction Scale. The authors of this research study also included 15 questions in an attempt to measure students’ level of satisfaction. The format for the satisfaction scale was based on a bipolar adjectives used to measure Social Presence using the semantic differential technique (Osgood, Suci, & Tannenbaum, 1957) where students selected a 1 to 6 score between sets of bipolar adjectives (example: Impersonal - Personal) (Short, Williams, & Christie, 1976). Although the format from the previous Social Presence was used, the bipolar adjectives were changed to measure students’ level of satisfaction. The SAT questions originally had 15 sets of bipolar adjectives selected to measure their satisfaction (example: Dissatisfaction – Satisfaction). To determine if the 15 sets of bipolar adjectives had face validity (Holden, 2010), eight students outside the class enrollees were given a varied list of adjectives and asked to select the bipolar opposites. Results indicated 100% agreement on 7 terms; 87.5% agreement on 5 terms; 75% agreement on 1 term; and 62.5% agreement on 2 terms. To determine internal validity (Brewer, 2000) for the SAT Scale, an exploratory factor analysis (EFA) with principal axis factoring and varimax rotation was used to identify the underlying relationships between the survey items for the satisfaction scale to determine questions that could make up one single satisfaction grouping with primary factor loads of .4 or above (Costello & Osborne, 2005) and no cross-ladings higher than .32 (Tabachnick & Fidell, 2001). The satisfaction category resulted a reduction of 15 bipolar adjective question to a set of

Table 1. Class Structure

<table>
<thead>
<tr>
<th>Class</th>
<th>n</th>
<th>Class Architecture</th>
<th>Primary Teaching Methodology</th>
<th>% Lecture / % CL</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>77</td>
<td>Fixed-seat auditorium</td>
<td>L</td>
<td>L = 80% / CL = 20%</td>
</tr>
<tr>
<td>2</td>
<td>108</td>
<td>Active-learning classroom</td>
<td>CL</td>
<td>L = 20% / CL = 80%</td>
</tr>
<tr>
<td>3</td>
<td>117</td>
<td>Active-learning classroom</td>
<td>CL-RD</td>
<td>L = 20% / CL = 80%</td>
</tr>
</tbody>
</table>

N=302; L=Lecture, CL=Collaborative Learning; CL-RD=Collaborative Learning Redesign
nine questions. Cronbach’s alpha for satisfaction (α = .912) indicating an excellent level of internal consistency (DeVellis, 2012). The resulting nine bipolar adjectives used to determine students’ satisfaction level are displayed in Table 2.

Table 2. Satisfaction Factor Matrix

<table>
<thead>
<tr>
<th>Question #</th>
<th>Word 1</th>
<th>Word 2</th>
<th>Factor</th>
</tr>
</thead>
<tbody>
<tr>
<td>Q52</td>
<td>Passive</td>
<td>Active</td>
<td>.556</td>
</tr>
<tr>
<td>Q54</td>
<td>Frustration</td>
<td>Well-being</td>
<td>.813</td>
</tr>
<tr>
<td>Q57</td>
<td>Lack of interaction</td>
<td>Satisfactory interaction</td>
<td>.618</td>
</tr>
<tr>
<td>Q58</td>
<td>Confusion</td>
<td>Clarity</td>
<td>.766</td>
</tr>
<tr>
<td>Q59</td>
<td>Defeat</td>
<td>Success</td>
<td>.789</td>
</tr>
<tr>
<td>Q60</td>
<td>Anxiety</td>
<td>Security</td>
<td>.792</td>
</tr>
<tr>
<td>Q61</td>
<td>Lack of confidence</td>
<td>Confident</td>
<td>.739</td>
</tr>
<tr>
<td>Q63</td>
<td>Dissatisfaction</td>
<td>Satisfaction</td>
<td>.865</td>
</tr>
<tr>
<td>Q64</td>
<td>Bored</td>
<td>Excited</td>
<td>.625</td>
</tr>
</tbody>
</table>

RESULTS

Hypothesis 1: Community of Inquiry

A one-way Analysis of Variance (ANOVA) was conducted to compare the impact of course design (traditional lecture or CL) on students’ perceptions of CoI. Outliers, as assessed by boxplot were deleted; data were normally distributed for all classes as assessed by skewness and kurtosis. Homogeneity of variances, as assessed by Levene’s test for equality of variances (p = .533), was adequate. There was a significant effect on students’ perceptions of CoI with a decrease in scores the first time the CL course was taught (CL) does have an impact on students’ perceptions of CoI with a decrease of 0.2 (95% CI, -0.5 to -0.0) which was statistically significant (p < .0005). However, students’ perceptions of SAT increased from class #2 CL (n = 100, 3.8 ± 1.2) to class #3 CL-RD (n = 102, 4.6 ± 1.0), an increase of 0.9 (95% CI, -1.2 to -0.5) which was statistically significant (p < .0005). Students’ perceptions of SAT increased from class #1 Lecture (n = 62, 3.9 ± 1.2) to class #2 CL (n = 100, 3.8 ± 1.2), a decrease of 0.1 (95% CI, -0.3 to 0.6) which was not statistically significant (p = .746). However, students’ perceptions of SAT decreased from class #2 CL (n = 100, 3.8 ± 1.2) to class #3 CL-RD (n = 102, 4.6 ± 1.0), an increase of 0.7 (95% CI, -1.2 to -0.3) which was statistically significant (p < .0005, Table 4). The results suggest that course design (traditional lecture vs CL) does have an impact on students’ perceptions of SAT. The first time the course was taught using CL (Table 4, Class #2) resulted in lower SAT scores; however the differences were not at significant levels (p = .746). The second time the same instructor taught the class using the CL-RD (Table 4, Class #3), students’ SAT scores increased significantly from the lecture-teaching format (Class #1) and from the initial time teaching with CL (Table 4, Class #2) (p < .0005).

Table 3. ANOVA Comparisons of CoI with Tukey’s HSD Post Hoc

<table>
<thead>
<tr>
<th>Class</th>
<th>Method</th>
<th>n</th>
<th>M</th>
<th>SD</th>
<th>C #1</th>
<th>C #2</th>
<th>C #3</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>L</td>
<td>62</td>
<td>3.54</td>
<td>.426</td>
<td>.004</td>
<td><.0005</td>
<td><.0005</td>
</tr>
<tr>
<td>2</td>
<td>CL</td>
<td>100</td>
<td>3.30</td>
<td>.459</td>
<td>.004</td>
<td><.0005</td>
<td><.0005</td>
</tr>
<tr>
<td>3</td>
<td>CL-RD</td>
<td>102</td>
<td>3.91</td>
<td>.429</td>
<td><.0005</td>
<td><.0005</td>
<td><.0005</td>
</tr>
</tbody>
</table>

*Note: p < .005

Table 4. ANOVA Comparisons of SAT with Tukey’s HSD Post Hoc

<table>
<thead>
<tr>
<th>Group</th>
<th>Method</th>
<th>n</th>
<th>M</th>
<th>SD</th>
<th>C #1</th>
<th>C #2</th>
<th>C #3</th>
</tr>
</thead>
<tbody>
<tr>
<td>C #1</td>
<td>L</td>
<td>62</td>
<td>3.89</td>
<td>1.213</td>
<td>p<.0005</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C #2</td>
<td>CL</td>
<td>100</td>
<td>3.76</td>
<td>1.209</td>
<td>p<.0005</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C #3</td>
<td>CL-RD</td>
<td>102</td>
<td>4.62</td>
<td>0.099</td>
<td>p<.0005</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

*Note: p < .005

Hypothesis 2: Student Satisfaction

A one-way ANOVA was conducted to compare the impact of course design (traditional lecture or CL) on students’ perceptions of SAT. Outliers, as assessed by boxplot were deleted; data were normally distributed for all classes as measured by skewness and kurtosis. Homogeneity of variances, as assessed by Levene’s test for equality of variances (p = .076), was adequate. There was a significant effect on SAT for the three classes [F(2, 261) = 16.407, p < .0005]. Post hoc comparisons using the Tukey HSD test indicated students perceptions of SAT decreased from class #1 Lecture (n = 62, 3.9 ± 1.2) to class #2 CL (n = 100, 3.8 ± 1.2), a decrease of 0.1 (95% CI, -0.3 to 0.6) which was not statistically significant (p = .746). However, students’ perceptions of SAT increased from class #2 CL (n = 100, 3.8 ± 1.2) to class #3 CL-RD (n = 102, 4.6 ± 1.0), an increase of 0.9 (95% CI, -1.2 to -0.5) which was statistically significant (p < .0005). Students’ perceptions of SAT increased from class #1 Lecture (n = 62, 3.9 ± 1.2) class #3 CL-RD (n = 102, 4.6 ± 1.0), an increase of 0.7 (95% CI, -1.2 to -0.3) which was statistically significant (p < .0005, Table 4). The results suggest that course design (traditional lecture vs CL) does have an impact on students’ perceptions of SAT. The first time the course was taught using CL (Table 4, Class #2) resulted in lower SAT scores; however the differences were not at significant levels (p = .746). The second time the same instructor taught the class using the CL-RD (Table 4, Class #3), students’ SAT scores increased significantly from the lecture-teaching format (Class #1) and from the initial time teaching with CL (Table 4, Class #2) (p < .0005).

Hypothesis 3- Final Grades

The final course grades provided a clear indication that the data were not normally distributed for the three classes, as assessed by Shapiro-Wilk’s test (p < .0005). Therefore, a non-parametric test was used to compare the three classes. A Kruskal-Wallis H test was run to determine if there were differences in Final Grades between students in the three classes. Distributions of Final Grades were similar for all groups, as assessed by visual inspection of a boxplot. Median Final Grades (Table 5) were statistically significantly different between groups, H(2) = 47.322, p < .0005. Pairwise comparisons were performed using Dunn’s (1964) procedure with a Bonferroni correction for multiple comparisons. This post hoc analysis revealed statistically significant differences in median Final Grade scores between Class #1 (85.72) and Class #2 (89.31) (p < .0005), and Class #2 (89.31) and Class #3 (86.68) (p < .0005), but not between Class #1 (85.72) and Class #3 (86.68). The results suggest that course design (traditional lecture vs CL) does have an impact on students’ final grades.
Hypothesis 4: Open-Comments

Students were asked an opened-ended question about their experiences while enrolled in the class to gain a deeper understanding of the impact of the course design (traditional lecture or CL). Students’ comments were grouped into common themes. There were 135 open comments included on the survey with the majority being negative (n = 103, 76%) and the rest positive (n = 32, 24%) (Table 6). The top two theme groupings for each class are summarized below.

Class #1 Traditional Lecture. The majority of the comments for Class #1 were negative (34 of 39, 87%). The largest theme for Class #1 were negative comments by students about issues with the course design (n = 8) by saying things such as, “Would like to see the different sections of PE [physical exam] acted out in lecture. Needs to be demonstrated.” Students also had issues with the exams in the class (n = 7) with comments such as, “I had anxiety over every exam! competency and caused me more stress”.

Class #2 Collaborative Learning. The majority of the comments for Class #2 were negative (49 of 59, 83%). The largest open-ended theme for Class #2 were negative comments where students felt as if they had taught themselves the material (n = 15) with comments such as, “Did not like how we never lectured over all the material. Had to learn everything on our own outside of class”. The next largest theme were negative comments where students did not like active learning (n = 11) with comments such as, “I am not a fan of the active learning. We pay a lot of money for these courses, and would prefer the professor to actually teach us rather than us doing pointless discussion and activities in class.”

Class #3 Collaborative-Learning Redesign. While most opened-ended comments were negative (20 of 37, 54%), there were also many positive comments (17 of 37, 46%). The largest theme grouping for Class #3 were positive statements of students saying they liked the class (n = 11) with comments such as, “It was a tough semester, but all of the little things really added up and I feel like I know the content well”. The second highest theme was also positive where students expressed liking the social and grouping aspects of the class (n = 6) with comments such as, “I loved the table arrangements and that I was able to meet new people and become good friends with them (sometimes it is hard to make friends at school when you commute)”.

DISCUSSION

The Joint Commission and the American Association of Colleges of Nursing (AACN) has emphasized the importance of undergraduate nursing programs incorporating courses designed to develop effective communication and collaboration skills. In an effort to develop these skills in her students, this Nursing professor redesigned her large lecture class from a primarily lecture format to a class that required students to utilize collaborative interactions. The first class was taught in a fixed seat auditorium using primarily lecture teaching pedagogies (80%) and infrequent CL activities (20%) such as case studies. The fixed-seat auditorium style lecture hall made it difficult for students to complete group activities. During Class #2 and Class #3, the class was moved to an active-learning classroom equipped with round tables specially designed to accommodate collaborative learning. The instructor redesigned her class to incorporate less lecture (20%) to more collaborative learning activities (80%). The majority of the collaborative activities were case studies that required the student groups to apply the nursing concepts learned in class to resolve the case. The collaborative learning case study are powerful because students get opportunities to apply content knowledge, practice problem solving skills, and improve their interpersonal skills (Woods, 1996).

The first time this instructor taught her class using CL (Table 3, Class #2), she was met with strong levels of student resistance which resulted in significant lower levels of community of inquiry (p = .004) and also lower levels of student satisfaction. Even though the instructor received strong levels of student resistance the first time the CL course was taught, she saw the benefit in student’s learning which resulted in a significant im-

| Table 5. Descriptive Statistics for Final Grades across the Three Classes |
|---|---|---|---|---|---|---|---|---|
| Class | Method | N | Median | SD | Kurtosis | Kurtosis SE | Skewness | Skewness SE |
| 1 | L | 74 | 85.72 | 14.07 | 4.797 | -5.52 | -2.240 | .279 |
| 2 | CL | 106 | 89.31 | 7.44 | 64.388 | 465 | -7.144 | .235 |
| 3 | CL-RD | 117 | 86.68 | 7.75 | 57.289 | .444 | -6.463 | .224 |

| Table 6. Open-Ended Comments Theme Groupings |
|---|---|
| Class #1: Lecture |
Positive Comments (n=17, 46%)	Negative Comments (n=49, 83%)
Liked professor (3)	Issues with course design (8)
Liked course design (2)	Issues with Exams (7)
Enjoyed the active learning (6)	Issues with direction for exams (7)
Active learning helped engage (2)	Issues with course delivery (6)
Liked labs (2)	Issues wanting more interactions (4)
Issue with class delivery (6)	Other issues (2)

| Class #2: Collaborative Learning |
|---|---|
| Positive Comments (n=10, 17%) | Negative Comments (n=49, 83%) |
| Enjoyed the active learning (6) | Felt as if taught themselves content (15) |
| Active learning helped engage (2) | Did not like active learning (11) |
| Liked labs (2) | Active learning was not aligned well (8) |
| Issue with course delivery (6) | Issue with disorganization (6) |
| Issue with classroom or technical (3) |

| Class #3: Collaborative Learning Redesign |
|---|---|
| Positive Comments (n=17, 46%) | Negative Comments (n=20, 54%) |
| Liked class (11) | Did not like active learning (6) |
| Liked social and groups (6) | Issue with course delivery (5) |
| Felt as if taught themselves content (3) | Technical or structure issue (3) |
| Wanted more clarification (2) | Lab issues (1) |
| Total |
| Positive comments: 32 (24%) | Negative comments: 103 (76%) |
The benefits of active CL over traditional lecture teaching methods were highlighted from Class #2 to Class #3, but incorporated many short mini-lectures in an effort to convince students about the benefits of active CL over traditional lecture teaching methodologies. The instructor shared some of the research studies that have identified the benefits of CL and also shared the grade improvements of students in the previous class taught with CL. The instructor shared that Class #3 paid off and student resistance was remarkably reduced with less negative open-ended comments (Class #1 = 87%; Class #2 = 83%, and Class #3 = 54%), significantly higher levels of Col (p < .0005), and SAT (p < .0005) from Class #2. Final course grades rose significantly from Class #1 to Class #2 (p < .0005). Final course grades increased from Class #1 to Class #3, but not at significant levels. While there is no clear explanation for this outcome, the authors note that the cohort in Class #3 included more students directly admitted from high school and theorize that these students may lack experience with institutions of higher learning.

Students may feel uncomfortable as faculty move away from lecture-dominated pedagogies to collaborative learning formats. CL will change students’ roles from passive learner to becoming an active partner that is responsible for developing their own knowledge creation. Students may not be as receptive to the new CL design and may be downright hostile to the new active role they will be required to assume more responsibility for their own learning (Doyle, 2008). It is important for instructors to share the benefits of the active collaborative learning pedagogy and why the instructor has opted to move away from the passive lecture model. Here are some strategies for faculty change their students’ epistemic fluency (Markauskaite & Goodyear, 2017) to becoming more accepting of collaborative learning pedagogies.

Outcomes from this research study are significant because many faculty will experience strong levels of student resistance when implementing CL in the classroom. Fear of poor student evaluations may stop instructors from adopting CL because of the negative impact on their career (Gooblar, 2015). Student resistance might result in lower course ratings for instructors and could have a negative impact on the faculty careers. Strong student resistance may hinder faculty from implementing CL teaching methodologies which may improve students’ communication skills and collaboration skills.

This research is also significant for faculty development departments as they develop their curriculum for conducting professional development sessions about active and collaborative learning pedagogies. Traditionally faculty developers would include the “How To” information about developing collaborative learning environments such as how to develop collaborative learning activities and how to use technologies to implement collaborative learning. In addition to this “How To” information, faculty developers need to give faculty strategies on how to change their students’ epistemic fluency in an effort to make students be more accepting of the collaborative learning process.

CONCLUSION

Today’s complex workforce requires workers to have strong levels of communication and collaboration to solve the complex issues facing our society. Faculty in all disciplines are beginning to update their curriculum to incorporate more collaborative community projects in an attempt to develop students’ communication skills and teamwork. Nursing faculty are also beginning to include more CL in courses in an effort to enhance teamwork in the workplace. This mixed-method research study shows that many students dislike group work so much that their high levels of student resistance will actually decrease students’ level of Col and satisfaction. Faculty that are incorporating CL in their classroom are encouraged to include strategies to pro-actively address students’ resistance using Tolman and Kreming’s (2017) integrated model of student resistance (IMSR) as a guideline. It is essential that faculty overcome student resistance before students are willing to embrace CL and become a member of the community of inquiry.

Study Limitations

There are three primary limitations of this study. First, this study only included 302 students from one nursing program in one institution, making the findings not generalizable across other programs or institutions. However, the recommendations for helping faculty design CL environments may be useful as classes are restructured.

Second, the students in this study were asked to give their perceptions about their own level of community of inquiry and satisfaction while participating in the class. While the survey was anonymous, there could have been many influences that impact-

<table>
<thead>
<tr>
<th>Table 7. Strategies for Overcoming Student Resistance</th>
</tr>
</thead>
<tbody>
<tr>
<td>MSR Elements</td>
</tr>
<tr>
<td>Metacognition</td>
</tr>
<tr>
<td>Cognitive development</td>
</tr>
<tr>
<td>Environmental forces</td>
</tr>
<tr>
<td>Negative classroom experiences</td>
</tr>
</tbody>
</table>
ed student responses. Issues such as social desirability bias (Zerbe & Paulhus, 1987) can have an impact on students’ responses because they may choose a rating to make themselves more desirable. Reference bias (Groot, 2000) could also have an impact on responses because students could have different standards of comparison.

Finally, the CoI Survey was developed for use in online and blended-learning classes. The verbiage in the survey needed to be modified to be appropriate for students in a face-to-face setting. While the changes made were minor, the updates could have had an impact on the reliability of the instrument.

Areas for Future Research

This research study was conducted with students in an introductory nursing class. However, it is important for students in all disciplines to develop communication and collaboration skills, so this study could be conducted with students in other disciplines. Another suggested area for further study would be to gather data from students in different programs or institutions to compare results. Another area for future research would be to conduct focus group interviews with students to more deeply explore the reasons for student resistance to collaborative learning.

REFERENCES

Cleveland-Innes, M., Garrison, D. R., & Kinsel, E. (2007). Role adjustment for learners in an online Community of Inquiry: identifying the challenges of incoming online learners. *International Journal of Web-Based Learning and Teaching Technologies, 2*(1), 1-16.

APPENDIX

Directions for the CoI Survey: Please read the following questions and based on your experiences in this class, make a determination if you \textit{Strongly Disagree}, \textit{Disagree}, \textit{Neutral}, \textit{Agree} or \textit{Strongly Agree}.

1. The instructor clearly communicated important course topics.
2. The instructor clearly communicated important course goals.
3. The instructor provided clear instructions on how to participate in course learning activities.
4. The instructor clearly communicated important due dates/time frames for learning activities.
5. The instructor was helpful in identifying areas of agreement and disagreement on course topics that helped me to learn.
6. The instructor was helpful in guiding the class towards understanding course topics in a way that helped me clarify my thinking.
7. The instructor helped to keep course participants engaged and participating in productive dialogue.
8. The instructor helped keep the course participants on task in a way that helped me to learn.
9. The instructor encouraged course participants to explore new concepts in this course.
10. Instructor actions reinforced the development of a sense of community among course participants.
11. The instructor helped to focus discussion on relevant issues in a way that helped me to learn.
12. The instructor provided feedback that helped me understand my strengths and weaknesses.
13. The instructor provided feedback in a timely fashion.
14. Getting to know other course participants gave me a sense of belonging in the course.
15. I was able to form distinct impressions of some course participants.
16. Class discussions are an excellent medium for social interaction.
17. I felt comfortable talking during class.
18. I felt comfortable participating in the course discussions.
19. I felt comfortable interacting with other course participants.
20. I felt comfortable disagreeing with other course participants while still maintaining a sense of trust.
21. I felt that my point of view was acknowledged by other course participants.
22. Class discussions help me to develop a sense of collaboration.
23. Problems posed increased my interest in course issues.
24. Course activities piqued my curiosity.
25. I felt motivated to explore content related questions.
26. I utilized a variety of information sources to explore problems posed in this course.
27. Brainstorming and finding relevant information helped me resolve content related questions.
28. Class discussions were valuable in helping me appreciate different perspectives.
29. Combining new information helped me answer questions raised in course activities.
30. Learning activities helped me construct explanations/solutions.
31. Reflection on course content and discussions helped me understand fundamental concepts in this class.
32. I can describe ways to test and apply the knowledge created in this course.
33. I have developed solutions to course problems that can be applied in practice.
34. I can apply the knowledge created in this course to my work or other non-class related activities.