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DEVELOPMENT OF A HIGH SPEED DATA ACQUISITION SYSTEM FOR SPARK 

IGNITION ENGINE 

by 

CORY GRISWOLD 

(Under the Direction of Frank Goforth) 

ABSTRACT 

Full engine control can only be accomplished with multi-input multi-output (MIMO) 

control system requiring measurement of variables for which no sensor/instrument is yet 

available in the Renewable Energy and Engines Laboratory, therefore a less detailed single input 

single output (SISO) engine model is developed.  To develop the engine controller a model of 

the engine had to first be determined.   Known Discrete-Event and Mean-Value models were the 

first choice, but could not be utilized because of the nature of the single cylinder intake manifold 

pressure.  Therefore an engine model based on experimental data had to be developed.  Using 

Matlab/ Simulink, xPC Target and data acquisition hardware a model of the single cylinder 

engine was developed.  These models were developed by taking measurements of the engines 

dynamics such as engine speed, crank angle, air mass intake, spark timing, injection timing, and 

intake temperatures at different engine speed set points while running gasoline and then a 

gasoline and ethanol mix (E85).  From which experimental coefficients were determined 

necessary for the model.   

INDEX WORDS: Spark Ignition,  SI Engine,  High Speed Data Acquisition,  

Single Cylinder Engine  
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 CHAPTER 1 

1  INTRODUCTION 

The objective of this thesis research is to develop an instrumentation system to measure 

the operating characteristics of a single cylinder spark ignition fuel injection (SIFI) engine in 

order to develop a mathematic model of said engine sufficient to control the engine in real time.  

There are many of these small motors in use for various applications, and aspects of the motor’s 

performance such as idle speed exhaust emissions and fuel efficiency can be better manipulated 

by computer control. These aspects of the engine’s operations have an impact on the 

environment and cost of operating these motors, however controlling such a nonlinear system 

presents many challenges.  The first challenge is to generate an accurate linear model that 

represents the engine system.     

 The reason the single cylinder engine is the engine of choice for controls is because there 

are millions of them and they are not very efficient in the amount of fuel it uses. The engines are 

also not very clean which caused more stringent regulations on emissions being put in place by   

the Environmental Protection Agency.  The new regulations can be seen in Table 1.1 for non-

handheld engines.   

 

Engine Class Model Year Model Year HC+NOx 

[g/kW-hr] 

COa 

[g/kW-hr] 

Class I (>80cc to <225cc)
b
 2012 10.0 610 

Class II ( 225cc)
a
 2011 8.0 610 

Table 1.1: Small SI Non-Handheld Engine Exhaust Emission Standards 

 
a
 5 g/kW-hr CO for Small SI engines powering marine generators. 

b
Nonhandheld engines at or below 80cc will be subject to the emission standards for handheld 

engines.  

Environmental Protection Agency (2008)  
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 These engines need to produce less pollutant emissions such as nitrogen oxide (NOx), 

hydrocarbon (HC) and carbon monoxide (CO).  These reductions in emissions can come from a 

change in fuel from gasoline to Ethanol 85% mix (E85).  Changes in the fueling map and spark 

timing will be necessary.   

A model of the engine must be researched, tested and then validated in order to complete 

the controls task.  The engine model details the engines physical parameters.  There are different 

models that can represent the same physical section of an engine, such as the filling and 

emptying model or the wave action charge model for the air intake system.  Certain assumptions 

had to be made in order to simplify and generate a model that fit the needs of the research.  For 

example, an assumption the intake manifold is an isothermal orifice helps simplify calculations.  

Not just any model would fit the criteria to effectively simulate the dynamics of the engine.   

The engine model equations are comprised of engine level variables such as intake 

manifold pressure and engine speed with constants that either pertains to the engine or 

surrounding conditions.  Some of the constant coefficients need to be found experimentally, 

while some need to be pre-calculated. System identification must be performed using the 

measured engine data in order to model the engine dynamics.  The system identification will be 

performed at idle speed for the first test with measurements of variables such as engine speed, 

intake manifold pressure and intake air mass flow.  

The non-linear engine model has to be linearized around several operating points.  These 

operating points are the engine speed and intake manifold air pressure.  The resulting model will 

be a linear gain schedule model in state space form.   

The following constants, acronyms and variable notations will be used throughout this report.  
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1.1 Nomenclature 

     Pressure downstream, manifold pressure [Pa]
  

    Engine speed [rad/s] 

 ̇    Air mass flow through throttle area [kg/s] 

 ̇   Air mass flow exiting manifold [kg/s] 

     Intake Manifold Temperature upstream of engine cylinder [K] 

     Air Manifold Temperature [K] 

    Back pressure exhaust manifold [Pa] 

    Pressure upstream, ambient pressure [Pa] 

    Control signal input to throttle [0…1] 

    Velocity of air flow at position x [m/s
2
] 

    Open area of throttle [m
2
] 

       Angle of throttle fully closed [degrees] 

     Throttle opening angle [degrees] 

         Throttle opening area when          [m
2
] 

    Specific gas constant [J/kg K] 

    Ratio of specific heats [-] 

 ̇   Engine Mass Flow [kg/s] 

     Exhaust manifold pressure [Pa] 

    Cylinder Displacement [m
3
] 

    Compression volume at TDC [m
3
] 

    Volume of intake manifold [m
3
] 

     Engine Inertia [kg/m
2
] 

     Engine Torque [Nm] 

    Actual Load Torque [Nm] 

    Lower Heating Value www.afdc.energy.gov Hl=116,090 Btu/gal [J/m
3
] 

     Throttle Diameter [m] 

          Transport Delay [s]   

     Volumetric Efficiency Coefficient 1[-] 

     Volumetric Efficiency Coefficient 2 [s]   

     Volumetric Efficiency Coefficient 3 [s
2
]   

    Willansparameter 1 [J/kg]   

     Willansparameter 2 [J s/kg] 

     Willansparameter 3 [Nm]     

    Willansparameter 4 [Nm s
2
] 

    Air to Fuel Ratio [-] 

    Stoichiometric Air/fuel Ratio for Gasoline [-] 

    Discharge Coefficient [-] 

    Area of Nozzle or Orifice Throat [m
2
] 

    Stagnation Pressure [Pa] 

    Stagnation Temperature [K] 

    Pressure of Nozzle or Orifice Throat [Pa] 

 ̇  Mass Flow [kg/s] 

 ̇   Rate of Change of Fuel Fraction [-] 

    Fuel Mass Fraction [-] 
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   Fuel Fraction [-] 

   Density [kg/m
3
] 

   Volume [m
3
] 

 ̇    Total Heat Transfer Rate Across the Boundary [W] 

    Fuel/ Air Equivalence Ratio [] 

 ̇    Mass flow through intake valve [kg/s] 

 ̇   Mass flow through exhaust valve [kg/s] 

    Cylinder pressure [Pa] 

    Connecting rode length [m] 

    Crank radius [m] 

   Crank angle [˚ or rad] 

SI  Effect of spark advance angle on the engine torque [-] 

MBT   Minimum spark advance for best brake torque [  -] 
     Area of the piston [m

2
] 

       Volume of cylinder [m
3
] 

    Work output of engine [J] 

      Number of cylinders [-] 

    Sound speed [m/s] 

    Internal Energy [J] 

    Friction Loss Coefficient [-] 

    Friction Loss Coefficient [-] 

    Friction Loss Coefficient [-] 

    Pumping Loss Coefficient [-] 

    Pumping Loss Coefficient [-] 

N  Pade Approximation Order [-] 

MVM  Mean Value Engine Model [-] 

DEM   Discrete Event Model [-] 
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 CHAPTER 2 

2  LITERATURE REVIEW 

There have been many models created in the attempt to control the nonlinear engine 

process.  Previous researchers have used models to fit their control needs.  For different control 

strategies this portion of the thesis will outline the most commonly referenced engine models.  

One very well referenced text on the internal combustion engine is Heywood’s (1988) 

Internal Combustion Engine Fundamentals.  Heywood gives details on real engine models that 

take into account fluid dynamics, heat-transfer, thermodynamics and kinetics fundamentals, or 

combinations of the four.  Heywood gives details of models that simulate the engine dynamics, 

such as intake and exhaust flow models, thermodynamic in-cylinder models, and fluid dynamic 

models.  The level of detail of these models is too complex for engine control purposes using 

computers in real-time. (Heywood, 1988)  

Heywood’s equations on engines start out as a basic, open thermodynamics system.  

Systems that can be described in this form include the cylinder volume and the intake and 

exhaust manifolds.  This system can be used when the composition and state of the gas can be 

assumed to be uniform and when variations of the state and composition occur over time because 

of heat transfer, work transfer and mass flow across the systems boundaries.  The important 

equations for thermodynamic based systems are the conservation of mass and conservation of 

energy; these equations use either time or crank angle as their independent variable.(J. Heywood, 

1988)   

Heywood defines the mass of fuel flow and the change in the fuel to air equivalence ratio, 

using the equations of conservation of mass, while for the conservation of energy the first law of 

thermodynamics is used.   This set of equations fundamentally defines energy production of the 
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engine.  The conservation of energy equations take into account the heat-transfer rate into the 

system and work-transfer rate out of the system, which is defined by the position displacement 

and equal to cylinder pressure times change in volume.  The heat released by combustion is 

defined in the energy and enthalpy terms.  Heywood defines the internal energy, enthalpy and 

density of the fluid as being characterized by the fluid temperature, pressure and fuel/air 

equivalence ratio (J. Heywood, 1988).  The completed model is best understood by considering 

the major subsystems shown in Figure 2.1. 

The engine system can be broken down into two main systems.  Each system uses a 

dynamic equation that governs the whole system as well as algebraic equation that describes the 

engine physical system.  These systems can be referred to as the air system and the mechanical 

system.  The air system is primarily made up of mass air flow entering the manifold, intake 

manifold pressure, the mixing of the fuel and air that influences the air to fuel ratio.  The level 

variable that governs over the air system is the intake manifold pressure.  The mechanical system 

deals with the engines physical dynamic and therefore its combustion and torque production.  

The dynamic engine speed governs the mechanical system.   

 

Figure 2.1: Engine Idle Speed System (Guzzella & Onder, 2004) 

𝑚̇𝛼 𝑚̇𝛽 

𝑢𝛼 

𝜗𝑚 𝑝𝛼 𝑝𝑒 

Θ  

𝑇𝑒 

𝜆 
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2.1 Throttle Body/ Intake Manifold/ Air /Fuel Mixture Models and Engine 

Heywood details three intake and exhaust flow models.  These models fall into the 

category of (1) quasi-steady model, (2) filling and emptying model and (3) gas dynamics model.  

Each will be further explained.   

 Quasi-Steady 2.1.1

The quasi-steady model concerns the flow around restrictions such as throttle port, air 

cleaner, and valves. The gas flow rate through each component is considered quasi steady.  

Guzzella and Onder (2004) use the same equations for flows around restrictions as the quasi-

steady model presented by Heywood, as seen in Equation (2.1) and Equation (2.2).  The two 

equations represent two conditions of compressible flow.  Where Equation (2.1) is for subcritical 

flow and Equation (2.2) for choked flow. The variables in Equation (2.1) and Equation (2.2) are 

 ̇  which is the mass air flow entering the intake manifold,    for the discharge coefficient 

which is the ratio of the real flow velocity through the orifice and the ideal flow velocity,    is 

throttle area,    is the stagnation pressure,    is the pressure around the throttle,    is the 

stagnation temperature,   is the gas constant and   is the ratio of specific heats.  States within 

the equation include the pressure through the throttle (  ) this would be equivalent to the engines 

intake manifold pressure.  These equations are one-dimensional flow equations for mass flow 

rate into each cylinder.  The quasi-steady models are used to calculate flow into and out of the 

cylinder through restrictions and mass flow rates into and out of the cylinder.  Each of the 

restriction components are connected by the gas flow passing through them.   

Quasi-steady models are useful for calculations of mass flow ―into and out of the cylinder 

through the inlet and exhaust valves‖ as stated by Heywood (1988). A disadvantage of this, 

model as stated by Heywood (1988), is that the method cannot predict ―the variations of 
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volumetric efficiency with engine speed, however, because many of the phenomena which 

govern this variation are omitted from this modeling approach.‖  This model also requires more 

knowledge on the engines operation than some of the later models that will be discussed.   

  

 ̇  
      

√   

(
  

  
*
   

,
  

   
*  (

  

  
*
(   )  

+-

   

 

 

(2.1) 

 

 ̇  
      

√   

    (
 

   
*

(   )  (   )

 (2.2) 

 Filling and Emptying Model 2.1.2

The second model is the filling and emptying model.  This model takes into account the 

finite volume of critical components.    The intake manifold can be analyzed as a single control 

volume where the mass of gas can increase or decrease with time.  This model can be used to 

describe the how the air flow passing the throttle varies with increase in throttle angle.  A 

simplified version of this model is used by Guzzella and Onder (2004) to describe the mass air 

flow rate entering the manifold, and some of the same assumptions are used.  Such as the 

assumption the model represents a finite volume, and there is no change in volume with time.  

This model also assumes the composition of the gas does not change.  The assumptions allow the 

filling and emptying model to be attractively simplified.   

The filling and emptying model is able to predict the average variations of manifold 

dynamics over time, but not the spatial variations of the gas properties, because of unsteady gas 

dynamics.  Heywood uses equations for mass and energy conservation as seen in Equation (2.3), 

Equation (2.4), Equation (2.5), Equation (2.6) and Equation (2.7).  Along with Equation (2.1) 

and Equation (2.2)  as was used with the quasi-steady model for flows around restrictions.  
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Where Equation (2.3) is the sum of mass flow.   The simplification of the models by assuming a 

fixed volume and static gas composition makes calculations easier.(J. Heywood, 1988) 
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Equation (2.4) details the rate of change of the fuel fraction which is a function of mass flows 

and fuel fractions. 
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Equation (2.5) details the dynamic of the pressure entering the open system.  The variables 

include the density( ), volume( ), fuel air equivalence ratio( ), temperature( ), and mass.    
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Then dynamic temperature of the open system can be solved using either Equation (2.6) 

or Equation (2.7).  Where new variable   and   are the specific internal energy and specific 

enthalpy respectively.   
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The Equation (2.3) through Equation (2.7) can be simplified for intake and exhaust flows since 

the volumes are fixed.  Also the composition of the gases is assumed to be fixed.   

The intake manifold dynamics can be modeled using Equation (2.8) with the filling and emptying 

model.  Where    is the volumetric efficiency,    is the displacement of the volume,    is the 

engine speed,  
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 Gas Dynamic Models 2.1.3

The gas dynamic model takes into account the volume variations in flow and pressure 

throughout the manifold.  This model is used to study the engine gas exchange processes.  The 

model takes into account many variables which include the length and cross-sectional area of 

both primary and secondary runners, the volume and location of the plenums, cylinder 

dimensions, number of cylinders, intake and exhaust port and valve design, and valve lift timing.  

Some variables such as enthalpy, heat-transfer, internal energy and changes with respect to 
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distance inside the engine cannot be measured in real-time.  The equations include the unsteady 

flow equation.  The model requires partial differential equations to solve many of the variables, 

and thus is too complex to solve in real time. (Heywood, 1988) 

The gas dynamic model has the disadvantage compared to the previous mention models 

because the model requires dimensions and locations of engine features such as cross-sectional 

area and the entrance and exit angle at junctions of runners as well as intake and exhaust port 

designs.(J. B. Heywood, 1988)                                                                            

To simplify these complex equations uses the method of characteristic and the finite 

difference method.  The method of characteristics is used to solve hyperbolic partial differential 

equations, by changing the partial differential equation into an ordinary differential equation.   

As stated by Heywood, ―the finite difference methods is used to solve one-dimensional unsteady 

flow equations in intake and exhaust manifolds‖ which is ―proving more efficient and flexible 

that the method of characteristics.‖ (J. Heywood, 1988) 

Mass Conservation:   
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where t is time in seconds, x is the linear distance D is the equivalent diameter; ξ is the friction 

coefficient and is the    shear stress on the walls.   

Mass and Momentum Conservation:  
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Energy Conservation:  
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where isentropic process is designated by the subscript s is used to solve for the sound speed (a) 

of an ideal gas as seen in Equation (2.14).  

 Extensions of Heywood’s Intake and Air/ Fuel Mixing Models 2.1.4

The authors Kiencke and Nielson (2000) of ―Automotive Control Systems for Engine, 

Driveline and Vehicles‖ introduces their models that depend on the control objective.  Kiencke 

and Nielson (2000) models the engine separately first with the intake manifold.  Whereas 

Heywood describes the IC engine models from a purely physical perspective, Kiencke and 

Nielson (2000) approach the task of engine modeling from a control perspective, building on 

Heywood’s models.   Guzzella and Onder (2004) extended the work of Kiencke and Nielson 

(2000).   
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For idle speed control the model uses dynamic equations for the intake manifold pressure.  

The equation takes into account constant intake manifold volume, gas constant, ambient air 

temperature, specific heat ratio, mass air flow into the manifold and mass air flow into the 

cylinder. 

The equation differs from that of Guzzella and Onder (2004)by the introduction of the 

specific heat ratio, and ambient air temperature instead of intake manifold temperature.  The 

mass air flow entering the cylinder(  ̇ ) is not computed in real time but rather uses a look-up 

table   (     ).  The  ̇  depends on the engine speed (  ) and intake manifold pressure (  ) 

which are measured at steady state conditions, and assume 
 

  
  ( )    and 

 

  
  ( )   .  The 

constants are then replaced by integration constant noted as 
 

 
. 

The same above equation is then used by the Kiencke and Nielson (2000) to arrive at  ̇ .  

As seen in the equation  

 ̇ ( )    
 

  
  ( )    (     ) (2.15) 

The air system takes into account the prediction of the amount of air entering the manifold.  One 

method of predicting the air mass intake into the cylinder is illustrated more succinctly by 

Guzella and Onder (2004).  They use a model that takes into account the pressure outside and 

inside the intake manifold, the temperature inside the intake manifold, open area around the 

throttle, the gas constant for air and the discharge coefficient of the intake manifold.  The 

equation used is for an isentropic one-dimensional compressible flow equation.   

 ̇      ( )
  ( )
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) (2.16) 

where   is the flow function in Equation (2.16).   
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For compressible fluids it is assumed that the orifice of the pipe is isothermal, which is 

constant temperature.  With compressible fluids there are two key assumptions that allow one to 

separate the flow behavior.  First, no losses occur in the accelerating part of the orifice up to the 

narrowest point, which is the throttle valve opening.  Also, the potential energy that is stored in 

the flow is converted isentropically in kinetic energy. Second, after passing the throttle plate all 

the flow is fully turbulent and the kinetic energy gained in the first assumption is dissipated into 

thermal energy.  Therefore, no recuperation of pressure takes place (Guzzella & Onder, 2004).   

Given these assumptions the pressure downstream of the narrowest point and the pressure 

at the narrowest point are equal.  Also the temperature before and after the orifice is assumed to 

be the same. 

The equation used to calculate the mass air flow entering the engine is derived from the 

thermodynamic relationships for isentropic expansion.  This equation will take into account open 

area of throttle for a given throttle input, ambient air pressure (which is pressure up stream of 

throttle plate) the ambient air temperature, ideal gas constant, discharge coefficient, ratio of 

specific heats, and pressure downstream of throttle plate (which is considered the manifold 

pressure).  The discharge coefficient has to be experimentally validated and is assumed constant 

thereafter.  Other assumed constants are the gas constant, ratio of specific heats, and ambient 

pressure and temperature.  The same equations as used by Guzzella and Onder (2004) when 

modeling air intake is used by Wu, Chen, and Hsieh (2007) when modeling a single-cylinder 

engine as seen in Equation (2.15), Equation (2.16) , Equation (3.2) and Equation (3.23).  This 

same model was also used by Yuh-Yih Wu, Bo-Chiuan Chen, Feng-Chi Hsieh, Ming-Lung 

Huang and Ying-Huang Wu (2006) for modeling a 125 cc motorcycle engine, and is referred to 

as a filling-and-emptying model. 
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Another representation of the engine air delivery is the wave action charge model.  This 

model, used by Wu, Chen, and Hsieh (2007), has the same output as the model used by Guzzella 

and Onder (2004) for engine systems, but uses different factors.  The wave action charge model 

uses partial differential equations that take into account the air flow velocity ( ) at a particular 

time ( ) and position ( ), the ratio of specific heats ( ), the sound speed ( ), the pressure ( ) and 

cross-sectional area as seen in Equation (2.17) through Equation (2.19). Wu, Chen, and Hsieh 

(2007) also state that the wave action charge model can be used to study physical design of the 

manifold such as valve seat diameter, valve timing, pipe length and diameter, etc.   
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Since the mass flow of the actual air entering the cylinder of the engine cannot be 

measured directly it must be estimated.  Different authors use different equations to calculate the 

air mass flow leaving the intake manifold.  Guzzella and Onder (2004) use Equation (3.12) 

through Equation (3.16) that considers only air mass flow exiting the intake manifold.  This 

equation cannot account for variations in fuel mass flow but makes calculations simpler.  This 

mass flow can be calculated by assuming the engine is a volumetric pump, which is a device 

where in volume flow varies directly to speed.  This calculation takes into account intake 

manifold density, volumetric efficiency, displaced volume of cylinder, and number of 
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revolutions per cycle.  Some key assumptions are made by Guzzella and Onder (2004) in 

calculating the air mass flow entering the engine.  They include no drop in pressure in the intake 

runners and the drop in temperature from the evaporation of fuel is disregarded because the 

heating effect of the hot intake walls, the air/fuel ratio is assumed constant and at stoichiometric 

value (14.7 for gasoline) for idle speed control, (and will be handled by a separate controller) and 

the exhaust manifold pressure maybe assumed to be constant (if not measured will have to be 

estimated) Guzzella and Onder (2004). 

The volumetric efficiency of the engine must be calculated from experimental 

measurements.  The volumetric efficiency approximation is a multilinear formula that is 

influenced by the manifold pressure and engine speed.  The component dependent on the 

pressure must take into account compression volume, displacement volume, exhaust pressure, 

manifold pressure and ratio of specific heats.  This portion of the volumetric efficiency describes 

the effects caused by the trapped exhaust gas at top dead center (TDC).  The speed dependent 

component is a nonlinear equation that is comprised of multiple engine speed measurements and 

three coefficients that must be experimentally validated.  Experimental validation is done using 

least-squares methods and measurements of manifold pressure, mass air flow and engine speed 

(Guzzella & Onder, 2004).  Guzzella and Onder (2004) also state that evaporation of fuel can 

cause a change in temperature of the mixture and therefore an increase in volumetric efficiency.  

Alternately, Wu, Chen and Hsieh (2007) use experimental regression that considered engine 

speed and manifold pressure for finding volumetric efficiency. 

Guzella and Onder (2004) also give a scenario for port injection engines where mass of 

the fuel delivered to the cylinder can be taken into account.  The fuel’s temperature, specific heat 
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and gas constant must be known.  This also assumes that the fuel has been fully evaporated and 

therefore the density of the air and fuel mixture must be calculated.   

The filling and emptying model will be used to model the dynamics of the intake air.  

This model was chosen for its simplicity compared to other models that require greater 

knowledge of dynamic process within the intake manifold.    
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2.2 In-Cylinder Combustion Models 

 There exist several models for the combustion process within the engine producing 

torque.  These models have evolved over the years and become simplified to be better for 

controls purposes.  These models cover in-cylinder process and lead to estimation of torque 

production.   

 Thermodynamic/ In-Cylinder Combustion Models 2.2.1

Thermodynamic-based in-cylinder models are used to predict the engine operating 

characteristics, such as indicated power, mean effective pressure, specific fuel consumption, etc.  

This model requires many of the engine dynamics to be known, Heywood (1988) states that 

when ―the mass transfer into and out of the cylinder during intake and exhaust, the heat transfer 

between the in-cylinder gases and the cylinder, piston, and cylinder liner, and rate of charge 

during (or energy release from the fuel) are all known, the energy and mass conservation 

equations permit the cylinder pressure and the work transfer to the piston to be calculated.‖  

The thermodynamic-based in-cylinder model follows the changing states of the 

thermodynamics, chemical states, and working fluid through the engine’s intake, compression, 

combustion, expansion, and exhaust procedures.  These are referred to as the four stroke cycle.  

The intake and compression of the engine system is thought to be a single open system.  

Heywood (1988) then uses the conservation of energy and mass equation to define the model.  A 

set of three equations is used for both intake and compression.  There are three equations used 

for   ̇,  ̇ and  ̇ to derive mass conservation, energy conservation and fuel. The intake stroke 

Equation (2.20) through Equation (2.22) and three slightly different equations for these variables 

during the compression stroke Equation (2.23) through Equation (2.25).  The six equations are 

then solved to find the pressure of the flow.  During intake and compression the working fluid’s 
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composition is considered stationary.  The compression and exhaust process can be calculated 

using Equation (2.23) through Equation (2.25) and Equation (2.26) through Equation (2.28) 

respectively.  The thermodynamics and composition properties of the fluid can be determined 

with those assumptions using another set of equations.  Heywood (1988) states the unsteady gas 

dynamic equations are more accurate to calculate the mass flow through the valve openings 

Intake Equations:  
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 ̇  
 ̇ 

 
(    )  

 ̇ 

 
(    ) (2.21) 

 

 ̇  
 

 
*
 ̇

 
(  

 

 
*  

 ̇

 
 

 

 
 ̇  

 

  
( ̇     ̇     ̇ )+ (2.22) 

  

Modeling of the combustion process is very complex.  The simplest method, as stated by 

Heywood (1988), is to use a one-zone model which assures one thermodynamic system to 

represent the entire combustion chamber contents.   

The expansion of the gases in the cylinder is treated as a continuation of the combustion 

process or separately after the combustion.  The mass, fuel, and energy conservation equation 

can be used.  The equations Heywood used are for one-zone open system model.  This set of 

equations requires knowing the enthalpy of the flow.  This enthalpy is admittedly hard to 

measure in real-time. 

The working fluid state can be found around the open cycle, this is done using Equation 

(2.28), which is ―the work transferred to the piston per cycle‖.  Then, using the working fluid 
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state, which is the work output, along with the mass of fuel and air and engine speed, 

characteristics of the engine such as the power, torque, mean effective pressure, specific fuel 

consumption etc. can be found. (J. Heywood, 1988) 

Compression Equation:     
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Exhaust Equation: 
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Open Cycle Equation:  

   ∮     (2.29) 
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 Spark-Ignition (SI) In-Cylinder Combustion Models 2.2.2

This model allows simplification of the thermodynamic model because the fuel, air, and 

residual gas charge is essentially uniformly premixed.  For the spark ignition engine model 

Heywood (1988) focuses on the combustion sub-model.  Modeling of the SI engine allows some 

assumptions for simplification to be made.  Heywood states some assumptions for the SI engine, 

―thermodynamic modeling are: (1) the fuel, air, residual gas charge is essentially uniformly 

premixed; (2) the volume occupied by the reaction zone where the fuel-air oxidation process 

actually occurs is normally small compared with the clearance volume—the flame is a thin 

reaction sheet even though it becomes highly wrinkled and convoluted by the turbulent flow as it 

develops;‖ and ―(3) thermodynamic analysis, the contents of the combustion chamber during 

combustion can be analyzed as two zones—an unburned and a burned zone.‖ 

The spark ignition engine model can be used for engine design.  The model can be used 

to calculate the flame geometry and predict the mass fraction burned of the fuel.  Using the 

thermodynamic-based simulation structure, when combined with a combustion model, can 

predict the rate of fuel burning.  The combustion model can either be empirically based, or 

―based on the highly wrinkled, thin reaction-sheet flame model‖ states Heywood (1988).  The 

equations used in this model cannot be used for controls purposes because the equations require 

the measurement of in-cylinder phenomena such as the shape of the combustion cylinder, 

burning area, mass burning rate, etc. cannot be done in real-time.  Variables such as spherical 

burning area and burned gas volume require must be solved using partial differential equations 

relative to burned gas radius.   
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 Fluid-Mechanic Model 2.2.3

The Fluid-Mechanics based models, as stated by Heywood, allow the modeling of fluids 

within the intake and exhaust port.  The models are three-dimensional and give more detail about 

the working fluid in contrast to the one-dimensional models,  since the flows inside the intake 

manifold are inherently unstable and three dimensional.   

Predictions of patterns of gas-flow can be done best by comparing to fuel spray and 

combustion calculations.  The partial differential equations that represent the conservation of 

mass, momentum, energy, and species concentrations are solved by engine process.  Heywood 

states that for a computer to solve these partial differential equations the entire volume must be 

decomposed into multiple finite volumes.   

Heywood breaks down the multidimensional engine flow model as follows: (1) the 

turbulence model is a mathematical model that describes the small-scale characteristics of the 

flow which cannot be directed calculated.  (2) The differential equations are transformed using 

the discretization procedures into algebraic relations between discrete values of velocity, 

pressure, temperature, etc. (3) Then there is the solution algorithm that solves the algebraic 

equations. (4) Last, there is the computer code which provides an interface between input and 

output for information and most importantly converts numerical algorithm into computer 

language.   
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 Extension to Heywood’s In-Cylinder Combustion Models 2.2.4

Other authors have taken models and derived control oriented models from Heywood 

(1988) engine equations.   

Kiencke and Nielson (2000) derive the equations for the energy conversion model and 

torque balance.  They represent the combustion torque (     ) using a nonlinear map   (     ) 

which is measured at each of the engine’s operating points.  The dynamics of the combustion 

torque is linearized separately by using a first order lag      and dead time      .The 

     and      can be approximated using Equation (2.31) and Equation (2.32) respectively. 
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Kiencke and Nielson then consider the torque balance at the crank shaft to be as follows: 
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They then state for an open clutch the moment of inertia can range from    

               .  Normalized variables are then placed into the equation noted by the 

subscript ―0‖ in Equation (2.34).  
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Where              re the nominal engine speed and nominal torque respectively in 

Equation (2.34).   

2.2.4.1 Torque Production/ Combustion 

Since the torque production is not measured directly it must be estimated.  The torque 

production is nonlinear and can be comprised of many variables such as fuel mass in cylinder, 

air/fuel ratio, engine speed, ignition, injection timing and exhaust gas regulation. Guzzella and 

Onder (2004) use a Willan’s approximation to describe the dynamic actions of the engine torque.  

For their engine torque production model they make several assumptions.  They assume at 

constant speed the torque primarily depends on manifold pressure. ―Usually thermodynamic 

simulations are used to predict the engine torque, but for controls those calculations are too time 

consuming‖ as stated by Guzzella and Onder (2004). 

Guzzella and Onder (2004) explain there are two possible solutions to have engine torque 

data for controls purposes.  One is to measure or calculate the engine torque for all possible 

operating conditions and store this data in grid form for later on-line use.  The second and the 

more likely choice are to use physical knowledge of the system and some assumptions to predict 

the engine torque.   

 

2.2.4.1.1 The Willan’s Approximation: 

The Willan’s approximation is used to approximate an engine’s torque and efficiency. 

This is done by splitting the problem into multiple parts.  The simplification is done by thinking 

of the engine as a Willan’s machine.  The engine torque is a function of the brake mean effective 

pressure (   ).  This equation for calculation of brake mean effective pressure is normalized 
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formulation that takes into account displacement volume (  ) and engine torque (  ) as seen in 

Equation (2.35).  Fuel mean effective pressure (   ) is also used in the calculation of engine 

efficiency.  The fuel mean effective pressure is a function of the lower heating value (  ) of the 

fuel, burnt per combustion cycle mass (  ) and volume displacement (  ) as seen in Equation 

(2.36).  The Willan's approximation notes that there is a simple relationship between mean fuel 

pressure and mean effective pressure that approximates real engine behavior very well.  This 

approximation clearly shows the contributing factors between internal effects such as 

thermodynamic effects ( ( )) and external effects such as friction and gas exchange on the 

engine efficiency represented by (    ( )).  The internal effect take into account the lower 

heating value, air/fuel ratio ( ), displacement volume (  ), engine speed (  ) and mass flow of 

air into the cylinder.  Within the torque generation calculations there is a time delay between 

injection and torque center.  The time delay needs to be taken into account because the torque 

production does not respond immediately to an increase in manifold pressure. (Guzzella & 

Onder, 2010) 

Losses such as gas exchange (     ) and friction losses (     ) are also taken into 

account for the torque production.  The loss due to gas exchange (     ) is the cycle-average 

pressure difference between intake manifold pressure and exhaust manifold pressure.  Equation 

(2.39) is the best for solving the friction losses directly by knowing the intake and exhaust 

pressures.  Later an assumption is made that if the exhaust gas (   ) is deposited into the 

atmosphere is the atmospheric pressure (   ).  Losses due to friction within the engine have been 

presented in many, forms the one presented in Guzzella and Onder (2004) takes into account 

engine speed and displaced volume.  The model also uses experimental validation for some 

coefficients.   
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2.2.4.1.2 Other Torque Models 

In contrast to other models, authors Sun, Kolmanovsky, Cook and Buckland (2005) 

describe the engine rotational dynamics taking into account engine brake and load torque. Brake 

torque is the ability of the engine to do work on the brake i.e. stator of dynamometer.  The brake 

torque is broken down into indicated torque and total friction.    

Authors Wu, Chen and Hsieh (2007) use three different models to estimate the indicated 

torque.  The first torque-function is a simple function to estimate the indicated engine torque as 

seen in Equation (2.40).  Where        is the coefficient from curve fitting of steady state 

experimental results and ―SI is the effort of the spark advance angle on the engine torque‖ which 

is solved using Equation (2.41).  Where in Equation (2.41) SI is solved as a function of new 

variables spark advance (SA) and minimum spark advance for best brake torque (MBT).  The 

second is a mean-value combustion torque module that considers the first law of 
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thermodynamics as seen in Equation (2.42).  Where W is the work output of the engine.  The 

third is an instantaneous combustion torque model which considers the first law of 

thermodynamics and crank geometry as seen in Equation (2.44).  Where    is the area of the 

piston,    is the in-cylinder pressure,    is the ambient air pressure,   is the radius of the crank,   

is the length of the connecting rod and   is the crank angle in units of radians.  The work output 

can be solved using Equation (2.43). 

Friction torque is modeled using mean-value and dynamic friction modules.  The mean-

value model input is the engine speed only.  

The dynamic torque model takes into account the piston assembly friction and crankcase 

assembly friction as seen in Equation (2.44).  The inputs to the dynamic torque model are the 

engine cylinder pressure and crank angle. (Y-Y Wu et al., 2007) 
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Equation (2.46) the engine torque is solved as a function of the indicated torque, friction 

torque and engine load.  The variables are   the crankshafts angular acceleration, b is the 

damping constant of the crankshaft bearing and non-linear rotational inertia    changes with the 

rotation and movement of the crank assembly. The rotational inertia is a function of the 

rotational inertia of crankshaft and connecting rod, mass of the piston and connecting rod, and 

the length of the connecting rod.  Wu, Chen and Hsieh (2007) also use a mean-value engine 

model that simplifies the rotational inertia equation. 

The torque equation takes into account the engines speed dynamics.  This model deals 

with the inertia of the engine, torque production and torque load which is considered a 

disturbance by Guzzella and Onder (2004).  The torque load in a real engine can take the form of 

an alternator or power steering pump.   
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The previous equations will need to be linearize around an operating point.  Using the 

equations described above or similar ones the model can be simulated in Matlab/ Simulink as 

noted in Herman and Franchek (2000), Guzzella and Onder (2004).  Wu, Y-Y., Chen, B-C., & 

Hsieh, F-C. (2007) uses similar equations as Guzzella and Onder (2004).  Wu, Y-Y., Chen, B-C., 

& Hsieh, F-C. (2007) use a detailed calculation that takes into account the variations in crank 

shaft and piston geometry during engine operation.    
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2.2.4.1.3 Other Variations 

Rajamani (2006) takes two approaches to the mean-value model of SI Engines.  The first 

uses parametric equations for the model and the second uses look-up tables with equations.   The 

focus of the model for a SI engine is the air flow model for the intake manifold and the rotational 

dynamics of the crankshaft.  Rajamani (2006) start off with the engine rotational dynamics.  The 

dynamics of the engine rotational moment of inertia, engine speed dynamics, indicated 

combustion torque, external load torque and pumping and frictional torque are lumped as one 

term.   

 For the indicated torque the authors use an equation from authors Hendricks and 

Sorenson.  The indicated torque is a function of the fuel energy constant, thermal efficiency 

multiplier that accounts for the cooling and exhaust system losses, and the fuel mass flow rate 

into the cylinder is a value in the Equation (2.48).  (Rajamani, 2006) 

     
     ̇ 

  
 (2.48) 

  The indicated and friction torque varies as the engine proceeds through cycles. Rajamani 

(2006) also states that the dynamics of rotation are averaged with a mean value model.  

The hydrodynamic and pumping friction losses are found using Equation (2.49) through 

Equation (2.51).  Both equations are polynomials with the hydrodynamic friction losses being a 

function of engine speed which is taken from Heywood (1988).  The pumping friction loss is a 

function of engine speed and manifold pressure which is taken from Hendricks and Sorenson 

(1990).  
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          (2.49) 

   

                       (2.50) 

   

       
                           (2.51) 

 

The manifold pressure equations are the same as used by Guzzella and Onder (2004).   

The mass air flow going into the cylinder is as in Guzzella and Onder (2004).  The only 

unknown aspect is the volumetric efficiency, which Rajamani (2006) does not detail with the 

simple mean-value engine model.  The model for the intake into the intake manifold is similar to 

Guzzella and Onder (2004).   

Rajamani (2006) also details an engine model that includes look-up maps.  Many of the 

previously mentioned functions such as indicated torque, total friction and pumping loss, mass 

air flow into the intake manifold and mass air flow into the cylinder are found using a 

dynamometer.  The look-up maps can be presented in tabular form or plotted data.  These models 

that use look-up tables are considered second order engine models because each function has two 

dependent variables. (Rajamani, 2006) 
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CHAPTER 3 

3   ENGINE MODELING 

The initial intention of this research was to study, investigate and ultimately create a 

model that represent a single cylinder engine, starting with studying ―Introduction to Modeling 

and Control of Internal Combustion Engine Systems‖ written by Guzzella and Onder (2004), 

which covers the creation of engine models for gasoline and diesel engines.  The focus of this 

thesis was to study port-injection gasoline engines.  Within the text by Guzzella and Onder 

(2004) the engine is broken down into sections in order to simplify the calculations.   

The initial modeling attempt was to create an idle speed controller.  This model was to be 

created in order to simulate an engine running under idle conditions.  This requires an 

understanding of the various systems within an engine and the assumptions needed when 

creating a control oriented model (COM).  The sections are broken down into the air system 

which includes throttle plate nonlinearities, mass air flow through throttle, and air mass flow into 

engine cylinder and intake manifold pressure dynamics.  Second is the mechanical system which 

governs the mechanical output after engine combustion this includes the dynamics engine speed, 

torque production and simulation of engine load.   

3.1 Intake Manifold Dynamics 

The intake manifold of an engine is modeled as a receiver as stated by Guzzella and 

Onder (2004).  Thus this receiver is considered a fix volume and therefore the thermodynamic 

states are considered to be constant.    

The engines air system is comprised of the fluid dynamics of the air charge from the 

beginning of the intake manifold to air flow around the throttle and mass air flow or air and fuel 

mixture entering the manifold.  Also, since a lot of the various changes taking place inside the 
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engine manifold cannot always be measured with every engine cycle, certain assumptions must 

be made.  The air mass entering the manifold can be estimated by Equation (2.16) repeated here.   

For compressible fluids i.e. air, it’s assumed that the orifice of the pipe is isothermal, 

which is constant temperature.  With compressible fluids there are two key assumptions that 

allow you to separate the flow behavior.  First, no losses occur in the accelerating part of the 

orifice up to the narrowest point which is the throttle valve opening.  Also the potential energy 

that is stored in the flow in converted isentropically in kinetic energy. Second, after passing the 

throttle plate all the flow is fully turbulent and the kinetic energy gained in the first assumption is 

dissipated into thermal energy.  Therefore no recuperation of pressure takes place (Guzzella & 

Onder, 2004).   

Given these assumptions the pressure downstream of the narrowest point and the pressure 

at the narrowest point are equal.      

 ̇      ( )
  ( )

√   

 (
  ( )

  ( )
) (2.16)  

where  ̇  is the mass air flow entering the manifold in kilograms per second,    is the 

dimensionless discharge coefficient of the intake manifold,   is the open area of the throttle in 

m
2
,     is the temperature in the intake manifold in Kelvin,    is the atmospheric pressure 

upstream of the intake manifold in dimensions of Pascal, R is the gas constant for air in Joules 

per kilogram Kelvin,   is the manifold pressure in Pascal, and  (
  ( )

  ( )
) is the flow function 

defined in Equation (3.1).   
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where the new constant k is the isentropic exponent.  Guzzella and Onder (2004) make 

the assumption for simplification that k≈1.4 for working fluids such as intake air and exhaust gas 

at lower temperatures, and is the ratio of specific heat. The discharge coefficient cd is assumed to 

be 1 for simplification and is the most ideal case.   Equation (2.16) and Equation (3.1) become as 

seen in Equation (3.2) and Equation (3.3).  
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Since the    and    can be measured in real-time the ratio 
  ( )

  
 can be measured.  

Therefore the controller is able to switch between the predictions of  ̇ ( ) in real time.   

The area around the throttle     is considered nonlinear and is described by the Equation 

(3.4) and Equation (3.5). 
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where     is the angle of the throttle in units of degrees,       is the angle of the throttle 

when closed fully in the units of degrees,    is the control signal input between 0% and 100%, 

         is the area of the throttle when     and       are equal in units of m
2
,     is the diameter 

in meters that becomes nonlinear.   

To increase the accuracy of predictions of manifold pressure entering the intake manifold 

 ̇  an adjustment can be made to the nonlinear    .  This is performed by predicting  ̇  from 

known user selected throttle angle that will vary with each prediction and therefore will change 

with each measurement.   

For all operation conditions of the engine in idle speed control, the manifold pressure is 

considered to be below 0.5 bars (50,000 Pascal). This assumption simplifies the calculations and 

allows for the nonlinear function   to be constant.  The diameter of the throttle     enters in a 

nonlinear way as seen in Equation (3.6) a substitution must be made to form a linear in the 

parameters problem.   This substitution can be seen in the equation below 

  

  
     

 

 
 (3.6) 
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      (3.7) 

   

Equation (3.7) shows a vector  ̃  which is the predicted mass air flow entering the 

manifold,    is a matrix of two columns derived from Equation (3.2) to Equation (3.7).   Where 

the gain kα is    
  

√   

 

√ 
  as from Equation (3.2) and Equation (3.3),  ̇̃    is the n-th 

prediction of the intake manifold mass air flow entering the manifold,   is the nonlinear 

correction factor.  The full column rank of    from the experimental data used to determine the 

coefficients is rank of 2. 

The system shown in Equation (2.16) and Equation (3.1) through Equation (3.5) with 

Equation (3.6) and Equation (3.7) can be rewritten as seen in Equation (3.8). 

  

 ̃     [          ]
 
 (3.8) 

The solution of equation [          ]
 
 that minimizes error is shown in Equation (3.9) .   

    ∑( ̇     ̇̃   )
 

 

   

 (3.9) 

Then using Equation (3.10) below   can be found. 

[          ]
 

  [  
    ]     

   ̃  (3.10) 

Using the   value found in Equation (3.10) the appropriate     can be found using Equation 

(3.11)   



49 

 

    √
 

 
 (3.11) 

The    found using Equation (3.11) will then be used for real time predictions of  ̇  

with an acceptable amount of error.   

3.2 Engine Air Mass Flow 

The engine is considered a volumetric pump when modeling the air mass charge entering 

the engine cylinder.  Therefore the air volume flow is approximately proportional to the engine 

speed.  The air mass flow entering the cylinder is described using a set of nonlinear equations.  

Equation (3.12) through Equation (3.16) describe the engine air mass flow entering the engine 

cylinder.    

 ̇ ( )  
  ( )

   ( )
   (  ( )   ( ))  

  

 
 
  ( )

  
 (3.12) 

 

Where Equation (3.12) describes the mass of the mixture of fuel and air entering the 

cylinder; where   (  ( )   ( )) is the volumetric efficiency, N is the number of revolutions per 

cycle, which N=2 for a four stroke engine,    is the temperature of the intake manifold in Kelvin 

and Vd is the displacement volume of the cylinder.  

  

  (  ( )   ( ))     (  ( ))     (  ( )) (3.13) 

  

Describes the volumetric efficiency and is broken down into its engine speed dependent 

part in Equation (3.14) and its manifold pressure dependent part in Equation (3.15).         
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   (  ( ))                
  (3.14) 

  

Equation (3.14) is a polynomial that depends on speed only as the dynamic variable to 

solve for the volumetric efficiency.   

  

   (  ( ))  
     

  
 

  
  

 (
  

  ( )
*
   

 (3.15) 

  

Equation (3.15) describes the manifold pressure defendant section of the volumetric 

efficiency.  With pe as the exhaust manifold pressure and considered a constant.   

 ̇ ( )  
 ̇ ( )

  
 

   

 (3.16) 

 

Finally the mass air flow exiting the manifold is described by Equation (3.16) where   

the air / fuel ratio is assumed to be 1 and    is the stoichiometric air to fuel ratio assumed to be 

14.7 for gasoline engine at ideal. While for E85 the stoichiometric is 9.9.(Grabner, Eichlseder, & 

Eckhard, 2010), (Varde & Manoharan, 2009) 

Coefficients   ,    and   from Equation (3.17) can be solved experimentally using 

measurements of engine speed   ( ), manifold pressure   ( ) and intake air mass flow  ̇ ( ).  

Knowing these measurements the volumetric efficiency can be written as seen in Equation 

(3.18).   

  

                  
   (           ̇   ) (3.17) 
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The right side of Equation (3.17) is then solved as seen in Equation (3.18).   
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 (3.18) 

   

As was previously done with Equation (3.6) through Equation (3.11) the coefficients of 

the volumetric efficiency can be solved using Equation (3.18) and Equation (3.19).  The full 

column rank of    from the experimental data used to determine the coefficients is rank of 3. 
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(3.20) 

 (3.21) 

The predicted versus the measured engine speed error is found using Equation (3.22).   

  ∑*(      ̃   )
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 (3.22) 

  

The algebraic result of Equation (3.22) ideal to be as small as possible. 
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 ( )  

    

       

 *    ̇ ( )          ̇ ( )       ( ̇ ( )   ̇ ( ))   + (3.24) 



52 

 

   

An adiabatic formulation as seen in Equation (3.26) is considered a very good 

approximation of the receiver’s behavior.  The dynamics of the intake manifold are described by 

a lumped parameter model under isothermal conditions.  Where the volume is constant. 

  

 

  
  ( )  

    

  
 [ ̇ ( )   ̇ ( )] (3.25) 

  

  ( )     ( ) (3.26) 

  

The purpose of the engine is to produce torque.  Torque generation is defined as the mean 

value torque which is a nonlinear function defined in Equation (3.27).  The mean value engine 

torque is a function of as stated by Guzzella and Onder (2010)―fuel mass cylinder, air/ fuel ratio, 

engine speed, ignition or injection timing, EGR rate etc.‖ 

  

    ( ̇               ) (3.27) 

  

To correctly predict the engines torque output detailed thermodynamics simulations are 

needed.  Thermodynamics simulations are impractical for engine control in real time because of 

their time consuming nature.  Using knowledge from the engines physical properties Guzella and 

Onder (2004) states ―use some physical insight to separate the different influencing variables and 

to divide the modeling task into several low-dimensional problems.‖ 

The torque generation of the engine is simplified as a Willan’s machine. The Willan’s 

approximation is done to simplify an engine’s torque and efficiency characteristics.  This 



53 

 

approximation also details the difference between the effects of internal and external factors on 

engine efficiency.  The engine’s torque and efficiency characteristics are shown in Equation 

(3.28) through Equation (3.31) .    

  ( )  (                 )  
  

  
 (3.28) 

  

where      is the thermodynamics properties of the engine and        and       

represent the friction and gas exchange losses respectively.  The cycle-averaged pressure 

difference      is between the intakes and exhaust ports of the engine and directly defined in 

Equation (3.31).   

  

      (        )     
 ̇ (         )    

       (         )    
 (3.29) 

  

  

      (        
 )  

  

  
 (3.30) 

  

                   (3.31) 

  

Where η0, η1, β0, and β2 are Willan’s parameters, τinj→TC is the induction to power stroke 

delay which is considered a transportation delay, λ is the lambda value and σ0 is the 

stoichiometric constant.  The Willan’s parameters are found experimentally under steady state 

conditions.  Induction to power stroke delay has to be determined.  The stoichiometric constant is 

found using the equation below. 
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Where for hydrogen based fuel   is for carbon atoms and   is for hydrogen atoms. The change in 

engine speed with respect to time is a level variable as shown in Equation (3.33). 
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[  ( )    ( )] (3.33) 

  

Using the above equations that represent the engines dynamics a model was to be created 

under certain conditions.   This model was intended to represent the engine dynamics under idle 

conditions to be later linked with a controller.  Within the next section the process of measuring 

and determining the constants necessary to fully describe the state space model will be detailed.   
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 CHAPTER 4 

4   METHODOLOGY 

Most of the control models mentioned in Chapter 3 depend on a set of measured 

variables.  Therefore it’s necessary to characterize the engine to be controlled by measuring 

variables such as engine speed, crank angle, intake manifold pressure, intake mass air flow, air/ 

fuel ratio, intake air temperature, ignition signal and injection signal.   

The test engine is set up on table.  The engine is hooked to a hydraulic dynamometer at 

the motors shafts that produces a disturbance on the engine.  This disturbance simulates real 

world disturbance such as heavy grass for testing purposes.      

Bore 93.99 mm 

Stroke 77.77 mm 

Displacement 540 cc 

Table 4.1: Test Engine Characteristics 

 

4.1 LabView for Data Acquisition 

To acquire the signals produced by the engine a data acquisition system had to be 

researched and implemented within the Georgia Southern’s Renewable Energy Laboratory.  This 

software and hardware combination must record the changing dynamics of the engine.  The 

engine is expected to be operated at a maximum of 3000 rpms.  This is one of the engine’s many 

dynamics that created a challenge for the research.  The first attempt used a well-known software 

package known as Lab View from National Instruments (www.ni.com).  The initial data 

acquisition hardware setup was comprised of an Intel Pentium 4 desktop computer with data 
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acquisition cards that will be described throughout sections of this paper.  A diagram of this 

system with the many connections can be seen in Figure 4.1.  

In order to ensure this software will be able to keep track of the changing engine system 

dynamics in real time simple tests needed to be performed to measure this accuracy, without 

running the engine and using up fuel.  It was chosen to substitute electric motors and function 

generators to initially test the LabView response. 

Measurement Computing Inc. (www.mccdaq.com) provided the data acquisition 

hardware which connects sensors and instruments to the PCI communications backplane of a 

personal computer.  Measurement Computing also provided software drivers to move measured 

data into LabView database.  National Instruments measurement hardware was not sufficiently 

fast to provide the speed of data acquisition required.  Within Table 4.2 the types of 

measurements needed, the sensors used to take those measurements and the expected maximum 

frequency of change is shown.    

 

Sensor Number Measurement Sensor Frequency of Measurement (Hz) 

1 Engine Crank Angle  

and Engine Speed 

Rotary Encoder 100K (electrical) 

2 Throttle Angle Potentiometer 100 

3 Intake Air 

Temperature 

Thermal Couple Type: K 0.25 

4 Exhaust Air 

Temperature 

Thermal Couple Type: K 0.25 

5 Injector Timing Injector 200K 

6 Intake Mass Air Flow Laminar Flow System 30 

7 Ignition Timing Inductive Clamp 200K 

Table 4.2: List of Sensors, Measured Variables and Expected Maximum Frequency of Change 
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DAQ Assistant is a tool implemented within LabView by the software creators National 

Instruments.  DAQ Assistant is made to work easily with National Instruments data acquisition 

hardware and includes a nice user friendly graphical user interface (GUI). To program LabView 

for data acquisition required the use of Measurement Computing Boards drivers. Therefore the 

usual means of using LabView’s easily and familiar DAQ Assistant was not available and the 

Measurement Computing boards would not even show up in DAQ Assistant.  Therefore 

implementing the new Measurement Computing hardware system presented a challenge when 

trying to record data.   

Measurement Computing Universal Libraries adds additional set of VIs (virtual 

instruments) to LabView.  The VI is LabView’s program file type.  A LabView VI is represented 

by an icon which is moveable blocks used as the user level programming language to provide an 

interface with data acquisition hardware.   

A second piece of software called InstaCal is necessary for the interface between 

LabView and Measurement Computing data acquisition hardware.  This software creates a 

configuration file that lists details about the installed Measurement Computing data acquisition 

boards.  InstaCal also allows the data acquisition cards to be tested for proper operation.   
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Figure 4.1: Diagram for Hardware Setup with LabView 
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 LabView Limit Testing 4.1.1

4.1.1.1 Sine Wave 

The first attempt at testing the limits of LabView was to use a function generator.  The 

function generator is used to input a sine wave at known frequency to see if the signal could be 

recorded accurately. The signal was taken using Measurement Computing’s PCI-DAS1602/16. 

This data acquisition card is able to sample signals at 200 kHz. An example provided by 

Measurement Computing is seen in Figure 4.2. The example allows a range of signals to be 

scanned, number of analog samples to collect, and sample rate in scans per second.   

LabView uses many different data types.  The different data types are designated by the 

color of the lines that connect the virtual instruments.   The blue lines on the top left side of 

Figure 4.2 coming from inputs such as Count, LowChan, HighChan, BoardNum, Rate, and 

Range are 32-bit integer data, which are inputs into AInScBg. While the green Cont/Sngl is a 

Boolean data type that which is an input into AInScBg.   

The new virtual instruments (VI) incorporated by Measurement Computing in Figure 4.2 

include AInScBg, GetStatus, ToEng, OptAIn, StopBg, and ErrMsg.  The inputs are first taken as 

shown on the Front Panel as seen in Figure 4.3.  The AInScBg, located in the middle left side, has 

many inputs and outputs and is the main VI that defines the A/D data transfer for the background 

operation.  BoardNum which designates the board number as appointed in InstaCal is set. The 

setting for LowChan and HighChan are set which designates which channels the program looks 

for analog signals.  The Count designates the number of samples taken for the analog to digital 

conversion.  The Rate designates the desired rate of scanning which is an input.  The Range 

designates the expected voltage level of the incoming signal.  The option Continuous if set to 

true the program runs in a never ending loop, else if false the program stops after the maximum 
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designated counts is reached as set in the Count argument.  InterChannel Delay is used to specify 

the time between scanning individual channels. Outputs of the block are either passed on to other 

VIs or their individual status is displayed on the frontpanel.  The Actual Rate of scanning shows 

the real rate of scanning.  The main output of the AInScBg is the Context, which carries the data 

from a background process.  Last, the error code is handling by the ErrCode output.  The 

AInScBg outputs are then taken in by other various VIs.  The Options, located at the bottom left, 

allows the method of trigger and transfer to be designated.  The default option is DEFAULTIO 

this option is the easiest and chooses the best sampling mode defined by the type of DAQ board 

used.   

The Context output goes to the GetStatus virtual instrument in bottom right of Figure 4.2.  

The GetStatus outputs the status of the background process controlled by AInScBg.  Other 

outputs include the CurCount which is the current accumulated number of samples taken and is 

displayed on the front panel.  The DataArray is output to the Front Panel and into the ToEng VI.  

The Context is sent to the StopBg for controlling the background process.  Overall program is 

kept running using the Running output, which is a Boolean true or false.  Running is then 

ANDed with a true false input located on the front panel in series with a not.  This logic will then 

be if the stop is pressed and the Running is true the program stops.   If the Running is true and 

the stop has not been pressed the process continues to run.   

The output of the ToEng VI is the voltage value as being read by the data acquisition card.  

Inputs of Range and BoardNum input from the front panel and DataArray from the GetStatus are 

taken into the VI.   
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The ErrMsg VI takes the error Code designated by ErrCode which is an integer 32-bit data 

type.  The error code is then interpreted and displayed on the Front Panel through the ErrMsg 

output as plain text.  

Where the main VI AInScBg is used to scan analog input channels in the back ground and 

exports the results to the GetStatus. The accumulated count gets displayed on the front panel out 

of the GetStatus VI.   

An analog signal was input in the data acquisition card using a differential wiring setup to 

minimize interference. The sine wave data was outputted to an Excel readable file to better 

observe what was recorded and insure that data could be recorded. The first attempts seemed to 

acquire a signal accurately. Further testing using the data acquisition system needed to be 

performed using sensors that would be used on the engine.  
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Figure 4.2: Screen of LabView Program for Analog Input 
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Figure 4.3: Front Panel of LabView Analog Input Program 

 

4.1.1.2 Quadrature Encoder 

 The quadrature encoder signal is produced by Omron rotary encoders (E6CZ-CWZ3E).  

The encoder produces a signal that is a pulse train with on and off states.  The three pulse trains 

are called channels.  The first two channels, usually noted as channels A and B, are comprised of 

2000 pulses for the rotary encoder used within this experiment.  Channels A and B are identical 

in every way but are aligned out of phase by 90 degrees.  The two channels with their phase shift 

create the encoders quadrature signal because of the four possible states of the signal produced.  

The quadrature signal also allows the direction of the encoder rotation to be discerned.  The third 
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channel is usually designated the Z channel or Index.  The Z channel is used to given an absolute 

starting position for the encoder and does this by generating one pulse per revolution.  The Z 

channel is used to reset the encoder counts in data acquisition and to sync the encoder with top 

dead center (TDC) of the engine.  With an encoder of such precision the encoder is able to have 

an accuracy of 0.18 degrees per pulse.  At the expected maximum speed of the engine the 

encoder will be able to produce a signal with a frequency of 100 kHz.   

4.1.1.3 Encoder Signal 

To record the encoders pulse and therefore discern the engine speed and crank angle the 

encoder signal is captured by the quadrature encoder card (PCI-QUAD04) input card.  This card 

is able to take the pulse train produced by the rotary encoder and at a clock frequency of 1.2 

MHz maximum.  This translates into 36,000 revolutions per minute (rpm) using the 2000 pulses 

per revolution encoder, which is faster than the engine will ever operate. 

              
      

      
 

          

           
 
          

        
       

           

       
 (4.1) 

   

The encoder card keeps track of the count and outputs the number of counts to the data 

acquisition computer.  The card is only required to keep up with no more than the maximum 

expected encoder count of 500 pulses per revolution, after dividing. 

4.1.1.4 LabView with Rotary Encoder 

The LabView code example given by Measurement Computing for use with LabView 

and the PCI-QUAD04 data acquisition card was the starting point of data acquisition.  The 

example uses modules specific to the counter IC on the PCI-QUAD04.  The PCI-QUAD04 uses 
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a LS7266R1, which is a 24-bit dual axis quadrature counter.  The LS7266R1 and LabView 

interface for the chip gives many options for use with encoders.   

The setting for the desired operation with the Omron rotary encoders (E6CZ-CWZ3E) are 

shown in Table 4.3 below.  These settings include specifying the board number (BoardNum), 

counter number (CounterNum), the quadrature mode, counting mode (CountingMode), data 

encoding type (DataEncoding), index mode (IndexMode), inverting of index signal 

(InvertIndex), flag pin setting (FlagPins), gating and  finally Load Value.   

 The code used is once again the block programming language as discussed in the 

previous section.  The code used can be seen in Figure 4.4 through Figure 4.6.  The program 

takes the inputs as mentioned in the previous paragraph and uses them to configure the chip used 

in the PCI-QUAD04.  The program uses multiple frames that give a sequential order to progress.  

The first VI is the C7266Config which configures the 7266 chip to gather data and is located in 

the first frame designated frame 0 as seen in Figure 4.4.  Every setting as mentioned above is an 

input into the C7266Config.  The only output of the C7266Config is the error code that goes into 

the ErrMsg VI.  The ErrMsg VI then outputs an error message to the Front Panel if an error 

occurs.  On the second frame, marked as 1 at the top of the frame contains Cload32 and ErrMsg 

VI with an output that displays the error message on the Front Panel as seen below in Figure 4.5.  

For the third and last frame marked as 2 on the top of the frame as seen in Figure 4.6.  

Within the final frame the results as the program runs are displayed onto the Front Panel.  The 

final frame contains the VIs CIn32 and CStatus as the main VIs.  Where the CIn32 outputs a 32-

bit integer after reading the current count.  This VI takes the BoardNum and CounterNum as 

inputs and also outputs an ErrCode.  The ErrCode is then output to an ErrMsg VI.  The CStatus 

VI used in this portion of the program to interpret the status of the encoder card and the signal 
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being recorded.  The CStatus outputs a signal that is in matrix form and is split for each using an 

Index Array.  The split data type are Boolean and as follows, the Underflow, Overflow, 

Compare, Sign, Valid Index, Up(on)/Down (off), and Error.  The Underflow is displayed as true 

when the count goes down below zero and Overflow is set to true when the count goes over the 

maximum limit. The Compare becomes true when the preset register is equal to the current 

count.  The Error is set to true when an error occurs due to unwarranted noise.  With all three 

being reset when the CStatus is called upon.  The Sign is set to true when the MSB (most 

significant bit) is 1 and false when the MSB of the count is 0.  Valid Index is set to true when the 

index signal passes and is reset after it passes.  The Up/Down is true when the current count is 

incremented and is false when the count decrements.   

Setting Setting Value 
Board number 2 

Counter number 1 

Quadrature mode X1_QUAD 

Counting mode NORMAL_MODE 

Data encoding type BINARY_ENCODIG 

Index mode RESET_CTR 

Inverting of index signal ENABLED 

Flag pin setting CARRY_BORROW 

Gating DISABLED 

Load Value 0 

Table 4.3: LabView Settings for Quadrature Encoder Card 

There are many setting that need to be set properly in order to get an accurate count 

measurement.  The setting can be set on the front panel as seen in Figure 4.7.  First, the board 

number must referenced by looking up the PCI-Quad04 in Measurement Computing’s InstaCal 

software and the setting that value in LabView.  Next, the counter number should be set by 

looking at the C37F-4X9F-1M cable and taking note of the plug number on one of the four ends.  

Then, the quadrature mode is set using the drop down menu next to ―Quadrature‖ to X1_QUAD.  
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The quadrature setting is a multiplier that can double (X2_QUAD) or quadruple (X4_QUAD) 

the number of counts. Next, the CountingMode setting was set to NORMAL_MODE, which 

means the counter functions as a 24-bit counter that rolls over when the maximum count is 

reached.  Then, the DataEncoding setting is set to BINARY_ENCODIG for use with an 

incremental encoder or BCD for use with absolute encoders.  The IndexMode is set to 

REST_CTR to reset the counter when the Z channel pulse is read every revolution from the 

encoder.  Next, the FlagPins setting is set to CARRY_BORROW.  Gating is disabled because 

index mode is being used.   

After the correct settings have been made the LabView code outputs the number of 

counts produced by the rotation of the 2000 pulse per revolution encoder.  Using the count 

output, data can be manipulated to get degrees of rotation as shown.  The math is simply done by 

dividing by the maximum number of pulses and then multiplying by 360.   

Next, an attempt was made to estimate the angular velocity of the DC motor coupled to 

the rotary encoder.  This was attempted by subtracting the current measured degrees from the 

previous measured value and dividing by the known time interval.  The result is a measurement 

in degrees per second that is then converted into rpm.   

Preliminary results indicated that the velocity measurement is not constant and oscillates 

between two values even at an assumed constant velocity.  This is assumed to happen because 

during one measurement interval half a pulse is measured and during the next the second part of 

that half is assumed to a whole pulse.  Since the computer does not distinguish between whole 

and half a pulse.  The computer counts everything as a whole.  The inaccuracy as a result of 

encoder measurements and speed estimation could be compensated for by averaging multiple 

measurements. 
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4.1.1.5 Encoder Signal Testing 

A small test apparatus was constructed next, consisting of a DC motor coupled to a rotary 

encoder.  The DC motor was simply a geared dc motor rated at 5 rpm for an input voltage of 4.5 

volts.  The encoder is a 2000 pulse per revolution optical encoder.  Therefore at the maximum 

operation speed the encoder is expected to have maximum change of frequency of 100 kHz.  The 

encoder’s quadrature signal was fed into the PCI-QUAD04.  With an input voltage of 3 volts to 

the motor, LabView only logged 1430 counts within one full rotation out of the maximum of 

2000.  This speed was noticeable less than the 5 rpm rated speed. This count will become more 

sporadic with the increase in speed to 3000 rpm.  Therefore simply using LabView running 

under Windows XP will not suffice for the data acquisition needs.  Sample of the data collected 

is presented in the appendix of this report. 

 

Figure 4.4: Frame 0 LabView Block Diagram Code for Quadrature Encoder 
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Figure 4.5: Frame 1 LabView Block Diagram Code for Quadrature Encoder 

 

Figure 4.6: Frame 2 LabView Block Diagram Code for Quadrature Encoder 
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Figure 4.7: LabView Front Panel for Encoder Program 

 

4.2 The Switch to MatLab/Simulink/xPC Target   

As stated in the previously section LabView is not adequate for sampling the encoder 

signal and a new option was researched.  The new option came in the form of MatLab with 

Simulink as the block language for programming.  MatLab and Simulink were run under 

Windows XP for programming the data acquisition experiment.  The significant difference was 

the xPC Target, which runs on a separate ―target‖ computer and has the ability to execute 

simulations that access the data acquisition boards in real time.  The new setup is illustrated in 

Figure 4.8 below with the main difference being the addition of second desktop computer.   

For the desktop computer to process and acquire data in real-time an xPC Target kernel 

must be implemented.  The target computer must be loaded into a different mode.  This mode is 
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induced by what MatLab calls xPC Target kernel.  This mode allows the Target computer to 

execute Simulink models and gather data in real time.   

The new data acquisition system is programmed by using the Simulink block 

programming language.  Boards can be found by simply searching by name or going through the 

block libraries tree.  MatLab provides a set of driver blocks sorted by signal type and board 

manufacturer.  For instance the PCI-QUAD04 is used to acquire quadrature encoder signals and 

therefore is listed in the Simulink library tree under Encoder and then Measurement Computing 

Inc. because they manufacture the board.  The necessary sampling rate is set by double clicking 

the source block.   

The target machine also has a monitor to observe signal operations.  Target Scopes are 

added from the block library to view these signals on the monitor. The Target Scope is one of 

three xPC Target specific scopes.  To send data to the MatLab work space an Out1 block is 

added.  Depending on the automatically assigned Out1 block determines the position of the 

signal in the acquired data matrix.  This system helps keep track of the multiple signals being 

acquired.  The code used to import the data is shown in the Appendix section of this paper.  The 

Out blocks and xPC Target data acquisition blocks can be seen in Figure 4.9. 

Using xPC Target system the options when scanning channels differs between analog and 

digital inputs.  For analog inputs the drivers provided by MathWorks only allows one to scan a 

range of channels and not select individual channels.  For instance, one cannot just scan channel 

five, one must scan channels one through five. Therefore, if only the signal from channel five is 

needed the connections must be switched or they could affect the overall bandwidth for a test.  

Digital signals can be picked individually and scanned.   



72 

 

Once data acquisition is completed for one run the data is automatically sent to the host 

machine.  The data is in what is called a target object.  This chunk of data is split up by using 

specific xPC target commands.  The first is ―tg.timelog‖ which acquires the target time.  Another 

is ―tg.outputlog‖ which is a matrix of all the output signals.  The number of data points 

remaining in the ―tg.outputlog‖ object is determined by the size of the data buffer.  This buffer 

rolls over after it is filled and starts writing over the first data set.  The buffer size is limited by 

the amount of RAM available on the Target Computer. The buffer size is set under View> 

Configuration Parameters >Real-Time Workshop>xPC Target options>Data logging options.  

This value also determines the overall maximum number of data points logged and for each 

signal this value is divided.  The way MatLab calculates this value is by dividing the maximum 

by the number of signals taken.  This calculation can be done in MatLab using the command 

floor(x) and the command window, where x is simply replaced by the quotient equation.   
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Figure 4.8: Diagram for Hardware Setup with for xPC Target 



74 

 

 
Figure 4.9: SimuLink Screen with xPC Target Blocks 

 

The encoder signal count is reset each time the index is triggered.  The index is aligned 

with top dead center of the engine to give a correlation of how many degrees before or after other 

signals are triggered such as spark timing and injection timing.  Setting for the PCI-QUAD04 can 

be seen in below.  The block programming to capture encoder signals in real time is displayed in 

Figure 4.9.  Where the input block at the far left is the PCI-QUAD04  
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Parameter Parameter Value 

Channel 1 

Index input resets counter Check Mark 

Index Polarity Negative Index 

Counting Mode Normal 

Count Limit or Reset Value 0 

Count Range -2^23…+2^23-1 

Count Speed 1x 

Filter prescale factor 0 

Sample Time 0.00004 

PCI slot -1 

Table 4.4: PCI-QUAD04 settings in MatLab 

The engine sensors will be connected to a computer based data acquisition system.  The 

necessary equipment needed to acquire data from the engine and its various sensors includes a 

variety of data acquisition boards placed within a personal desktop computer considered the 

Target PC.  The details on the host and target computer used in this study are detailed in Table 

4.5 below.  A list of these data acquisition boards, the type of signals they can acquire and 

maximum input frequency can be seen in Table 4.6 below.   
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Computer Host Computer Target Computer 

CPU Pentium 4 3.40 Ghz Pentium 4 

RAM 1 GB 1GB 

Operating 

System 

Windows XP xPC Target real-time 

kernel 

PCI Card Slots  5 

Table 4.5: Host and Target Computer System Properties 

 

PCI Cards Card Description Maximum Input Frequency 

(Hz) 

PCI-6024E 16Analog-Input Multifunction 

DAQ 

200 kS/s 

 

PCI-DIO48H Logical-Level Digital I/O 

Board 

 

PCI-QUAD04 Encoder Card 1.2 M 

PCI-DIO96 96-bit Digital I/O Board 2 M 

PCIM-DDA06/16 Analog Output and Digital I/O 

Board 

 

PCI-DAS1602/16 Analog and Digital I/O Board 200 k 

Table 4.6: Maximum Input Frequency of PCI Data Acquisition Cards 

Each PCI card can handle either input or output signals or both.  They can accept either 

digital or analog data as inputs.  For the first part of the study of this thesis, data needs to be 

gathered from different dynamics of the engine.  The maximum input frequency of the data 

acquisition boards and the latency created when using these boards affect the data collection and 

possible sampling times of each signal.   

  



77 

 

 Analog and Digital Signals 4.2.1

Digital and analog signals are brought into the data acquisition computer using an Analog 

and Digital input/ output (IO) board (PCI-DAS1602/16).  This card is used to sample injector 

signals, flow meter analog outputs i.e. the intake manifold pressure and intake mass air flow, 

throttle angle and air/ fuel ratio.   

For analog input signals the PCI-DAS1602/16 has software selectable input configuration 

of 8 differential inputs or 16 single-ended inputs.  The PCI-DAS1602/16 has a maximum 

sampling rate of 200 kHz and a 512 FIFO to help with sampling data and not losing any data.  

Setting used for analog connections can be seen in Table 4.7 below and digital connection 

settings in Table 4.8 and Table 4.9.  Differences in setting are based on expected input signal and 

expected maximum frequency of change.   

The Figure 4.9 shows the portion of the Simulink code used to program the xPC Target 

machine for the injector signal. This block code contains a digital input block labeled with the 

name of the data acquisition card and the type of signal input.   An output block is added labeled 

Out1 to get the gathered data into the MATLAB workspace.  Finally a Target Scopes is added to 

display the data as its being gathered.   
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Parameter Parameter Value 

Number of channels 4 

Range vector ±5V 

Input coupling 8 channels 

Sample time 5e-5 

PCI slot -1 

Table 4.7: Settings for Analog Input for PCI-1602/16 

Parameter Parameter Value 

Channel vector 1 

Port A 

Sample time 5e-5 

PCI slot -1 

Table 4.8: Settings for Digital Input of PCI-1602/16 for Injector Timing 

Parameter Parameter Value 

Channel vector 2 

Port A 

Sample time 5e-5 

PCI slot -1 

Table 4.9: Settings for Digital Input of PCI-1602/16 for Spark Timing 
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 Target Machine Benchmark 4.2.2

A benchmark was performed on the target machine to get some idea of the performance 

capability of the target computer.  The performance was done using the internal command 

―xpcbench‖.  This command runs the target machine through a battery of tests running increasing 

more complex models.  The does not take into account latency produced by the data acquisition 

cards currently installed 

 DC Motor and Offline Testing 4.2.3

Further offline testing was needed to insure that signals could be recorded at the fastest 

expected change of a signal while doing engine testing.  This testing is considered offline 

because the single cylinder Briggs and Stratton engine is not being used to simply test system 

limits.  The advantage of such testing is the gas is not wasted, the system is simple enough that 

taking repeated measurements does not take much time and the quickest changing dynamics can 

be tested i.e. the rotary encoder.   

The test setup was comprised of a Normand Electrical Company (NECO) DC shunt 

motor rated at a velocity of 3000 rpm.  Sensors used for testing include a rotary encoder and 

variable reluctance (VR) sensor.  The motor can be seen in to Figure 4.11 below.  The figures 

show a side and top view. The encoder is used to discern crank angle and speed once again, and 

the VR sensor is used as a second signal to sync with the encoder changes.   

 Building Stands and Assembly 4.2.4

To get this system put together two stands were made using scrap pieces of aluminum.  

One stand will be used to hold the rotary encoder in line with the motor shaft and the other holds 

the VR sensor near the engine shaft.   
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The encoder was coupled to the DC motor using a Lovejoy coupling.  This particular 

coupling has an inside diameter of 5/8 inches on one end and ½ inches on the other for the DC 

motor shaft and rotary encoder respectively.  The Lovejoy coupling is able to withstand speeds 

of 18,000 rpm as stated in the data sheet.  Therefore testing of the xPC Target data acquisition 

should be able to run up to the 3,000 rpm, which is the rated speed of the motor. 

The scraps of aluminum were machined to provide the necessary alignment for the 

encoder.  The center of the shaft was located using a height gage and painting the sheet with blue 

layout fluid.  Using a center punch and the aluminum sheet metal holes were translated from the 

motor stand to the sheet metal.  These holes will be used to mount the aluminum stand to the 

motor stand.  Using bolts that were previously mounted on the motor, the aluminum sheet was 

attached to the motor.  Then, Blue Layout Fluid was applied to the aluminum sheet in the general 

area where the center of the motor shaft would be.  Then, the end of the height gage was placed 

on top of the rounded portion of the motor shaft.  Next, the radius of the shaft (0.25 inches) was 

subtracted from the value on the height gage.  This new height was locked into place and then 

etched into the Blue Layout Fluid to get a horizontal indicator line.  Then the process was 

repeated for the vertical line with the motor tuned on its side.  This leaves a center indication 

where the center of the shaft is located.   

With this center point the other three screw holes were located in order to mount the 

encoder.  The other holes were located by first drilling the center hole then using the vertical end 

mill drilling the hole directly below the center at a distance of 19 mm.  The other two holes were 

located by trigging out the 120 degree rotation from the center to the other two holes on either 

side of the center hole.   



81 

 

Spacers were added to the sheet metal to finish the stand.  These spacers give enough 

space between the motor shaft and encoder to allow the coupling to connect the two and also 

provide some rigidity to the structure.  The spacers were attached by simply drilling two holes 

into each spacer and assembling them with screws and locknuts.   

 Next, the stand that holds the VR sensor was machined using the end mill.  The 

stand is held together with bolts and screws.  The base of the stand was counter sunk to allow the 

stand to sit flat on a surface.   

 DC Motor Setup Issues 4.2.5

Issues arose when trying to complete this project.  Longer bolts were needed to mount the 

bracket to the motor.  First, the original bolts located on the base of the motor were threaded with 

a usual thread.  The screw was threaded with 22 threads per inch with an outside diameter of 

5/16 inches.  The bolts are believed to have been 5/16 British Standard Fine (BSF) threads.  The 

5/16 BSF threaded bolt could not be purchased in Statesboro, GA.  The solution was to drill out 

the threads and re-tap the whole with standard thread and bolt size that could be easily 

purchased.   

4.3 Preparation for System Testing 

The DC shunt motor was operated to get a correlation between motor speed and 

tachometer output voltage.  The motor speed was measured using a photo tachometer pointed at 

a piece of reflective tape on the black encoder wheel that was attached to the motor shaft.  The 

voltage versus speed correlation will be used for the control of the dc motor.  The expected 

voltage output is 2 volts per 1000 rpm.  As seen in Figure 4.13 below when plotting the 

tachometer voltage output versus speed the slope of the line is 0.0026 which means about 2.6 

volts per 1000 rpm.   
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The VR sensor and two metal nuts and screws are used to generate a signal every time 

one of the screws passes the sensor.  The VR sensor with stand can be seen in Figure 4.12.  The 

VR signal will then be logged with the crank angle using xPC Target.   

 Control of DC Motor 4.3.1

In the attempt to control the DC motor to aid in the testing process digital control strategy 

was attempted.  The strategy included the use of a Basic Stamp 2 microcontroller, H-Bridge, and 

Schottky Diodes.  The assumption was that using the above components and pulse width 

modulation to either the shunt or armature of the dc motor the motor could be controlled.  The 

DC motor already had a tachometer on the back of the motor that could be used as a feedback 

signal.  The output of the voltage of the tachometer was to be divided to protect the 

microcontroller.   

Reasons for the inability to drive the motor could come from lack of knowledge in how 

shunt motor control works or the microcontroller being unable to produce encough pulses to 

ultimately drive the test system.   

The micrococontroller setup was abandoned and switched to using the DC power supplie.  

Using the power supplie the armature and shunt of the motor were powered seperately.  Using 

this simple configuration and an oscilloscope to monitor the tachometer voltage for speed 

confirmation the test set-up became very useful.  The test setup still required a little tuning to 

make the speed stable. 

The test set could be used to generate data at up to 3000 rpms that then can be taken into 

Matlab for further manipulation such as sending the data to Excel.     
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Figure 4.10: Stand for Mounting Rotary Encoder to DC Motor Shaft 

 

 

Figure 4.11: Top View of DC Motor with VR Sensor 
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Figure 4.12: Stand for VR Sensor 

 

 
 

Figure 4.13: Output Tachometer Voltage versus NECO DC Motor Speed 
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Figure 4.14: Plotted data of encoder position versus VR sensor 

 Through plotting of this data as seen in Figure 4.14 the data shows that the VR senor  can 

be captured and plotted using the xPC based data acquisition system.  The transition from 

positive to negative voltage represents the position of the two nuts placed 180 degrees apart on 

the electric motor shaft as seen in Figure 4.11.   

The xPC Target computer does not have enough bandwidth to capture all the pulses of 

the rotary encoder and include other signals.  Therefore the encoder signal needs to be divided.  

In order to divide the signal a circuit is need to divide reduce the maximum amount of pulse 

between each Index passing.  This reduced the resolution of absolute angular measurement, but 

this can be alleviated by averaging over many counts.   
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4.4 Sensors 

Other devices used for gathering the engine dynamics include a rotary encoder, type K 

thermocouples and mass air flow measurement system.  The rotary encoder is used to measure 

engine speed and crank angle.  There are two thermocouples used to measure intake and exhaust 

manifold temperatures.  Final, the mass air flow measurement system comprised of a differential 

pressure laminar flow element (LFE) and laminar flow system (LFS). The frequencies of change 

of these devices are listed in Table 4.10. 

Sensor 

Number 

Sensor Measurement Frequency of Measurement (Hz) 

1 Rotary Encoder Engine Crank Angle  

and Engine Speed 

100K electrical 

2 Potentiometer Throttle Angle 100 

3 Thermal Couple Type: K 

Tolerance Class 1 

Intake Air Temperature 0.25 

4 Thermal Couple 

Type: K 

Exhaust Air 

Temperature 

Not Available at the Moment 

5 Injector Injector Timing 200K 

6 Horiba Emissions Gas Analysis CO, HC, CO2 15 s (0.067 Hz) 

O2 15s (0.067 Hz) 

NO 40s (0.025 Hz) 

7 Oxygen Sensor Air/Fuel Ratio Not Available at the Moment 

8 Inductive Spark Plug 200K 

9 Laminar Flow System Intake Mass Air Flow 30 values per second (30 Hz) 

Table 4.10: Sensors and Maximum Frequency of Measure 

 Crankshaft Rotary Encoder 4.4.1

The crankshaft is a key measurement point.  The cranks shaft with the connecting rod 

translates the reciprocating motion of the engine into rotations.  This connecting point provides a 

point to measure engine speed and crank angle.   
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To measure the engines speed and crank angle an Omron incremental rotary encoder is 

used.  The encoder works by having a disc inside with multiple equally spaced slits cut out.  

These slits allow light emitted from a LED internal to the encoder to hit a sensor inside the 

encoder.  Therefore, as the encoder spins pulses are generated when the sensor picks up the LED 

light.   There are three tracks of these slots called channels.  The first two channels are usually 

called channel A and B.  Channel A and B generate a signal when the encoder is spun that is 90 

degrees out of phase with each other.   This difference in phase allows the direction the encoder 

is spinning to be identified. The third channel usually designated the index or channel Z, 

generates only one pulse per revolution.  The Z channel is used to reset the encoder counts in 

data acquisition and to sync the encoder with top dead center (TDC) of the engine.   

The encoder is coupled to the engine crank shaft parallel with the engine spinning axis.  

The rotary encoder has a resolution of 2,000 pulses per revolution.  This resolution provides an 

accuracy of 0.18 degrees per pulse.  Therefore there are 4,000 pulses or counts within one four 

stroke process.  These 2,000 pulses per revolution can generate a change on frequency at 3,000 

rpm engine speed of 100 kHz.   At 100 kHz the bandwidth of the data acquisition computer will 

be almost total used up on the one signal alone.  Therefore the signal needs to be divided in order 

to ensure the encoder signal is not sporadic.  To divide the encoder signal a commercially 

available encoder divider from BaneBots was selected.  The encoder divider enables divisions of 

4, 8 or 16.  The results of this division and the effects on resolution and the bandwidth usage can 

be seen in the table below.   

 Flow System Measurements 4.4.2

The Laminar Flow System requires a plug to connect to the two analog outputs.  A Neutrik 

NC5MX five pin plug is used to provide an external connection.  Pins 1 and 2 are the positive 
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and negative outputs respectively of the first analog output while pins 3 and 4 are the positive 

and negative outputs of the second analog output as seen in the Figure 4.15.  Pin 5 is connected to 

ground on the target computer and the LFS.  The first analog output is for the mass air flow and 

absolute air pressure for the first and second analog output respectively.  A diagram of the 

connection can be seen in Figure 4.15.   

  

 
Figure 4.15: Laminar Flowmeter Analog Output (Meriam,2010 ) 

 

The LFS-1 Analog output can be changed by the serial port or manually using the front 

panel of the S320.  The parameters that need to be changed are in section Px900 of the parameter 

blocks. 

  

Analog Output 
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 Mass Air Flow 4.4.3

The mass air flow and absolute manifold pressure meter is measured using the Meriam pressure 

measurement system.  The Meriam system includes two devices, the Laminar Flow Element 

(LFE) and Laminar Flow System (LFS), seen in Figure 4.16 and  

Figure 4.17 respectively. The LFS measures the pressure drop across the LFE using a 

pressure transducer within the LFS.  Then, using a probe to measure humidity and the 

surrounding air temperature upstream of the LFE, the LFS does flow calculations and 

corrections.  These two measurements, the mass air flow entering the manifold and the pressure 

reading inside the manifold are very important.  The mass air flow is calculated using the 

pressure difference across the LFE and the pressure is taken from the high flow entrance of the 

LFE.  The analog output from the LFS is a linear output of 0-10V for representing the mass 

airflow and pressure read by the data acquisition PC.     

 

 

Figure 4.16: Meriam Laminar Flow System (LFS) (Meriam, 2010) 

 

 
Figure 4.17: Meriam Laminar Flow Element (LFE) Z50MC2-2 (Meriam, 2010) 
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 Throttle Position Sensor (TPS) 4.4.4

The TPS is the main input signal for engine control.  To identify the angle the throttle is 

open a potentiometer is positioned on the underside of the intake manifold directly under the 

throttle plate.  The potentiometer outputs a signal from 0.901 to 4.44 volts from closed to wide 

open throttle.  For engine testing the throttle will be set to a constant angle.  The image of the 

TPS can be seen in Figure 4.18.   

A correlation between the throttle angle and voltage output is simply made using an 

oscilloscope and the percentage of open throttle using the Engine Management Systems’ 

electronic control unit (ECU) display.  As seen in Figure 4.19. 

 
Figure 4.18: Engine Throttle Positioning Sensor 
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Figure 4.19: Voltage versus Throttle Angle for TPS 

 Injection Sampling Circuit 4.4.5

Reading when the injector fires and the duration of the firing signal is essential for 

generating any model needing injection timing.  The injection timing needs to be sampled 

without affecting the operation of the injector.  Therefore a direct connection between the data 

acquisition hardware and the ECU to injector signal is not ideal as any voltage above 15 volts 

could damage the data acquisition card. 

The ECU signal going to the injector needs to be read while taking care not to reduce 

power going to the injector or damage the computer, data acquisition equipment, or people 

taking data.  This will be accomplished by using a MOSFET based circuit.  As seen in the Figure 

4.20.  The MOSFET used is an IRF630 which is an N-channel enhanced mode MOSFET. 
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The MOSFET is will be setup with the 12 volt injector signal being applied to the gate.  The 

drain will have a constant 5 voltage signal coming from the PCI-DAS1602/16 digital and analog 

card.  A 1 kilo ohm resistor is placed in series with the source output.  The voltage across the 1 

kilo ohm resistor will then be read by the PCI-DAS1602 as a digital signal.   

With the MOSFET setup for the injector signal when the injector fires a channel is 

created within the MOSFET that allows the 5 volts from the PC to be sensed at the source.    By 

only reading the 5 volts that passes through the MOSFET and not the 12 volts directly from the 

ECU, the data acquisition system will be safe.  The circuit design can be seen in Figure 4.20.  

A diode was added to the gate of the MOSFET as seen in the Figure 4.20.  The diode was 

added to fix a grounding issue.  That was caused when the engines ECU tried to find a grounding 

point on the data acquisition computer.  The injector was a Bosch Suzuki injector with model 

number 2500431 with impedance of 20 ohms. A diagram of the circuit can be seen in Figure 

4.20. 
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Figure 4.20: MOSFET Injector Sampling Circuit 
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 Second Injector Sampling Circuit 4.4.6

 

Figure 4.21: The Encoder Signal and Injector using First Injector Circuit 

The injector signal would not register as a digital signal.   The signal registers as 

remaining high because as seen in the figure the signal is not pulled all the way down to zero.  

The signal only as low as 1.5 V, but the digital input on the PCI-DAS1602/16 needs the signal to 

go as low as 0.8 V.  To solve this issue the suggestion is to invert the incoming signal using two 

MOSFETs.  The researched configuration requires the use of two MOSFETs one P type and the 

other N type.  The first test using the engine resulted in the FETs getting hot to the touch, 

therefore testing stopped.  The circuit will be retried using a signal generator and oscilloscope.   
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  The circuit was redone and tested using a function generator and oscilloscope.  The actual 

injector signal was compared to the output of the inverting MOSFET.  The results were as 

expected with the output of the circuit was the inverse of the injector signal.   

 The results of the retest sampling the actual injector proved reliable and enabled further 

engine testing to resume.  The final inverting can be seen in Figure 4.22. 

  

 

Figure 4.22: Circuit for inverting injector signal 

 Thermocouple 4.4.7

Thermocouples are used to measure the temperature of the air at the intake and the 

exhaust gas as it exits the engine.  Type K thermocouples are used for both measurement points.   

A type K thermocouple works by having two dissimilar metals welded together at the tip of the 

thermocouple probe.  When the two dissimilar metals come into contact a thermoelectric 

junction is formed.  The standard type K thermocouple is comprised of Nickel Chromium alloy 

and a Nickel Aluminum alloy leads.  Type K thermocouples have a temperature range of -270 to 

1372 ºC.  The diameter and type of thermocouple determines the frequency of change in 

temperature can be noticed. (Alciatore & Histand, 2005) (National Institute of Standards and 

Technology, 1995) 
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 Thermocouple Data Acquisition 4.4.8

The sensors for the current study will be attached as follows.  The PCI-6024E is 

connected to a SCC-2345 signal conditioning board.  The SCC-2345 contains two SCC-TC01 

thermocouple input modules. The SCC-TC01 takes in the thermocouple voltage and does cold-

junction compensation using a thermistor to measure the reference temperature.  Then, the 

thermocouple voltage and cold-junction compensation voltage are used to calculate the 

thermocouple temperature.  The temperature is correlated to the temperature voltage read by the 

target machine. 

To acquire temperature measurements from thermocouples a conversion is needed 

between the thermocouple voltage and temperature.  To get this correlation a known temperature 

is compared to the voltage.  The known temperature measurement was provided by an Extech 

470 which can read between -20 to 750 Celsius with a resolution of 1 degree Celsius.  The 

Extech provides an accuracy of 3.0% for the reading for the measurement circuit and 3 digits for 

the analog to digital converter.  The correlation was attempted by using boiling water in beaker 

and measuring the temperature with the Extech 470 and computer based data acquisition.  Then 

the voltage and temperature were recorded.  With this method a temperature of only 94 degrees 

Celsius can be reached because the water starts boil.   

Since the above testing limits the range of possible temperatures to only 94 degrees 

Celsius another method will be attempted.  Using an E5CS Omron Temperature Controller to 

read the exhaust temperature and comparing that to the actively recorded voltage of the data 

acquisition system to get a new correlation at those extreme temperatures.   

The second and final solution is to use the later purchased temperature controllers.  The 

controller is an Omega temperature controller with a linear output of 4 – 20 ma.  A 250 ohm 
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resister will be connected to give a maximum of 5 Volts as the output.  The resulting voltage will 

be fed to the data acquisition analog connection.   

 Wideband O2 Sensor 4.4.9

The wideband oxygen sensor allows the air to fuel ratio of the engine to be recorded.  

This sensor can also be used in data acquisition and closed loop control of the engines emissions.   

The lambda sensor is a Bosch Lambda Sensor LSU 4.2.  The lambda sensor has an accuracy at 

lambda values of 1, 0.8 and 1.70 of 1.016 ± 0.007, 0.80 ± 0.01 1.70 ± 0.05 respectively. 

(―LSU42.pdf,‖ n.d.) 

The Bosch sensor is then interpreted by Zeitronix Zt-3 Wideband Air/ Fuel Ratio Meter.  

The Zt-3 is capable of reading lambda values between 1.43 to 0.64 and air to fuel ratios from 

21.0 to 9.0.  For data acquisition the Zt-3 outputs an analog signal representing the air to fuel 

ratio value.  An example of the sensor used can be seen in Figure 4.23.  (Zeitronix, 2011) 

  

Figure 4.23: Wideband Air to Fuel Ratio Sensor (Bosch, n.d.) 
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4.5 Signal Conditioning and Sensors 

 First Attempt Encoder Dividers 4.5.1

The rotary encoder has a resolution of 2,000 pulses per revolution.  This resolution 

provides an accuracy of 0.18 degrees per pulse.  Therefore there are 4,000 pulses or counts 

within one four stroke process.  These 2,000 pulses per revolution can generate a change on 

frequency at 3,000 rpm engine speed of 100 kHz.   At 100 kHz the bandwidth of the data 

acquisition computer will be almost completely used up on the one signal alone.  Therefore the 

signal needs to be divided in order to ensure the encoder signal is not sporadic.  To divide the 

encoder signal a commercially available encoder divider from BaneBots was selected.  The 

encoder divider enables divisions of 4, 8 or 16.  The results of this division and the effects on 

resolution and the bandwidth usage can be seen in the table below.   

The data acquisition setup and encoder dividers were tested to ensure the set-up would 

work.  Two BaneBots encoder dividers are used for channels A and B.  Each channel is fed into 

both encoders, but the primary signal is switched to divide each channel.  A diagram of the 

connections can be seen in the Figure 4.24.   

The ―division amount‖ affects the frequency of the input signal into the quadrature 

encoder card PCI-QUAD04.  In Table 4.11 the division amount can be seen.   

Encoder Divide Amount 

Maximum Encoder Counts 

After Division 

Resolution (Degrees per 

Pulse) 

Frequency of 

change at 3000 rpm 

4 500 0.72 25000 

8 250 1.44 12500 

16 125 2.88 6250 

Table 4.11: Results of Dividing Encoder Counts on Resolution and Frequency 
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Figure 4.24: Banebots Encoder Dividers to PCI-QUAD04 

 Encoder Signal Issues 4.5.2

The process to diagnose the encoder issue will be presented in the section below.  

Originally the encoder signal became unpredictable while running the engine and using the 

simulation with the dc motor.  The encoder signal would either become jagged with respect to 

time or decrement when expected to increment upwards.  From observing output of the encoder 

dividers the signal became unpredictable.  

In the attempt to sample data from the rotary encoder, injection signal, inductive clamp 

and manifold pressure from the laminar flow meter simultaneously, the encoder failed to produce 

a signal.  In an attempt to solve the issue, the encoder was checked alone without encoder divider 

to see if a signal could be produced and recorded by the data acquisition xPC Target machine 

and host.  This attempt was successful.  The assumption was to then check the encoder divider 

box.    
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The encoder divider box was checked to see if it would produce a signal.  At first the 

signal was not as expected. The encoder divider for dividing the B channel was not dividing the 

channel as expected.  Then a continuity check was done on the encoder divider to check 

particularly the grounded points using the BaneBots Encoder Divider Card Manual and 

schematic as a guide.  It was found that the ground at block J4 was not soldered correctly.  The 

points were re-soldered and the encoder was checked again using the DC motor and 

Oscilloscope.  The connections appeared to be as expected with channel A and B having the 

ideal 90 degrees phase shift and same amount of divisions.  Last, a test was done again with 

DAQ system and Briggs engine.  No signal was seen on the target machine.   

The next attempt used LabView to test the connection.  With the encoder divider plugged 

in between the encoder and the input to the encoder card a signal was recorded.  The issue occurs 

inconsistently.   

The 90 degrees shift in phase usually need to discern the direction of rotation of the 

encoder was not of the normal state, instead channel B seemed to be leading channel A versus 

the norm of the reversal.  Oddly the DAQ computer still read the signal proceeding in a clock 

wise direction with the count value increasing from 0 to 500 and resetting back to zero.  A 

solution for this could be an opto-isolator or a D-Type Flip Flop to extend the signal. 

The encoder issue was solved by not splitting each channel as they entered the signal 

conditioning box.  According to the encoder manual specification only one signal needs to be 

divided, while the other is used for direction.  Only the input into S1 is needed to divide the 

encoder signal.  The splitting of each of the encoder signal channels is believed to have caused 

fan-out and therefore unpredictable results.  Therefore channel A goes to S1 of one encoder 
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divider and channel B goes to S1 of the second encoder.  The encoder dividers problems 

reoccurred later in testing where in channels A and B did not have the 90 degrees phase shift.   

If the encoder divider problem persists a D-type flip flop may be implemented.  From 

researching the recurring issue a potential solution of increasing the distance between the phase 

of channel A and B could give the target machine more time to discern the direction the encoder 

is spinning.  This will ideally cause less problematic behavior in the generated signal. 

 Second Encoder Divider 4.5.3

Considering the issues generated from the previous Banebot encoder divider setup 

another encoder divider was purchased from US Digital.  This encoder divider has an input 

frequency of 1.0 MHz  

 Wiring of Signals 4.5.4

In an effort to decrease noise within the signal all analog input connections were switched 

from single-end input to differential connections.  These connections included analog output 

from mass air flow sensor, air to fuel ratio from Zeitronix wide air band sensor and throttle 

positioning sensor (TPS).  The switch seemed to improve the signal, but not totally clean up the 

signal.  Further conditioning will be attempted following the guide given by Measurement 

Computing. (―Guide to Signal Connections,‖ 2006) 

 Inductive Sensor 4.5.5

The spark signal was coupled to the crank angle to get the firing angle relative to top 

dead center.  To record the point when the spark plug fires relative to crank angle an inductive 

sensor was used.  A clamp containing the sensor is placed around the spark plug wire.  The 

inductive pick-up is an off the shelf clamp that conveniently has an audio jack connection.  The 
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inductive signal is fed into a circuit that eliminates the noise and produces a square wave with an 

up time of about 2.0 milliseconds.   The circuit consists of three 1N4148 diodes, a BT149 SCR, 

one 10nF, one 100nF, one 47nF, one 1K ohm,  one 3K3 ohm, one 10K ohm and 18K ohm 

resistor and a NE555 555 Timer.  The 555 Timer produces the square wave signal with the 100 

nF capacitor and 18K ohm resistor which determines the duration of time the signal is at the high 

state.  This duration can be determined by the equation below. 

  

           (4.2) 

  

where R is the value of the resistor and C is the value of the capacitor.        

Substituting the values of the 18k ohm resistor and 100 nF capacitor into Equation (4.2) the 

results are seen in Equation (4.3). 

  

                  (4.3) 

  

                  s 

Therefore with the 555 Timer the signal output to the DAQ computer will stay high for 

about 2 ms.  Through inspection of a set of data the pulse high was 1.8 ms.  The spark duty cycle 

can be seen in Figure 4.27.  The spark timing relative to crank angle is presented in Figure 4.28. 

The shows the inductive clamp circuit and the purchased inductive clamp.  The clamp has 

a 3.5 mm jack that can be easily integrated with the circuit to gather the low inductive voltage.   
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Figure 4.25: Inductive Clamp Signal Conditioning Circuit 

  

 

Figure 4.26: Simulink Block for Injector Signal 

Figure 4.26 illustrates the injector signal Simulink programming blocks.  The injector signal is 

sampled as a digital signal using the block on the left.  The next two blocks enables the signal 

display on the target machine and the output block to the MatLab workspace for further 

processing.   
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 Preliminary Data from Inductive Clamp 4.5.6

  

Figure 4.27: Inductive Clamp Signal versus Time 

 

 

 

Figure 4.28: Spark Signal versus Crank Angle 
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 Single Cable Connection 4.5.7

To aid in the frequent movement of the data acquisition system a serial connection was 

implanted.  This male to female serial connection combines all of the wires going from the 

engine sensors to the data acquisition system.  These wires were placed in a DB-9 connector.  

The five connections are shown in Table 4.12 below.  The signals come from the injector, 

throttle position, and the analog output of the air to fuel ratio from the Zeitronix Wideband 

sensor. 

Serial Connection Pin Position Signal Type 

1 Injector 

2 Throttle Position LO 

3 Throttle Position HI 

4 Air to Fuel Ratio Signal Output LO 

5 Air to Fuel Ratio Signal Output HI 

Table 4.12: Serial Connection Position 

4.6 MatLab Code and System Status 

The MATLAB® file to acquire data from the target machine was modified in order to list 

more information about the experiment being run.  Information such as sample time (the overall 

sample time of the target machine), start time (the target machine starts), stop time (the target 

machine stops), number of log wraps (the number of times the target data buffer has wrapped 

over since the start of data acquisition), execution time (the amount of time since the task has 

started), and CPU overload (a value detected when a CPU overload occurs).  Specific target 

object commands are used to get target machine state information and are seen Figure 4.29.  The 

rest of the code is presented in the Appendix section of this report.   
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Figure 4.29: Matlab Code for xPC Target Statues 

%Acquires the sample time of the target 

sampletime=tg.sampletime; 

%Number of times the buffer data wrapped over 

numberofdatawraps=tg.numlogwraps; 

%Amount of time since task was started 

TET_Time=tg.ExecTime; 

%Gives a value of 'detected' a CPU overload occurs 

CPUoverload=tg.CPUoverload; 

%The Average Time for one execution of the model 

AverageExecution=tg.AvgTET; 
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 CHAPTER 5 

5   ENGINE MAPS 

Using the above mentioned data acquisition equipment engine maps will be created.  The 

maps will include fuel injection timing, ignition timing, intake air mass flow into manifold, 

throttle behavior, volumetric efficiency, air to fuel ratio correlated with engine speed, manifold 

pressure and throttle angle.  

5.1 Fuel Injection 

The fuel injection timing is recorded from the current Engine Management System brand 

electronic control unit (ECU).  This ECU is able to successfully keep the engine running.  The 

purpose of collecting the injection timing is to learn what does work in order to duplicate on 

future ECU designs that are planned for later research.  The fuel injection map will include the 

injection signal coming from the Engine Management System ECU, the current engine speed, 

intake manifold pressure, and engine crank angle.   

5.2 Spark Timing 

The spark timing was measured to get a nominal spark timing map.  The current spark 

timing is being controlled mechanically by a magneto positioned next to the fly wheel.  The fly 

wheel contains a magnet and as the fly wheel spins a charge is generated in the magneto that 

discharges at some angle.  This map will include a representation of the spark signal, engine 

speed, and intake manifold pressure.  The crank angle was measured to get the actual point when 

the spark fires relative to crank angle.  
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The engine testing was done by running the engine steady state conditions.  The steady 

state condition was achieved by maintaining a constant throttle opening from 0° to 20° in 5° 

increments.   

Changes in engine load are created by changing the resistance to the motor shaft turning.  

This resistance is created using a hydraulic dynamometer.  The resistance is varied by restricting 

the flow going to the hydraulic pump.  The pump is driven by the engine at a one to one gear 

ratio, therefore as the fluid flow is more restricted therefore the energy required to maintain a 

particular speed must increase.  To maintain the idle speed of 1200 rpm at larger throttle 

openings the load must increase with the throttle angel.   
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 CHAPTER 6 

6   EXPERIMENTAL DATA 

The data collected from experimental runs taking measurements of the crank angle, 

intake manifold pressure, intake mass air flow, injection, spark plug, throttle position, wideband 

O2 sensor and air temperatures using thermocouples.  The electrical signal recorded by the data 

acquisition system are converted into SI units.  Data from the engine testing was plotted and 

processed using Matlab.  Code used for this process is presented in Appendix C.   Plots at a set 

point of 1200 rpm and 0 to 20 are presented in Figure 6.1 through Figure 6.5 for intake mass air 

flow plotted versus crank angle of gasoline. The maximum mass air flow and crank angle 

position are shown designated in the figures as well.   At 1200 rpm and throttle percentage 

openings of 0, 5, 10, 15 and 20 percent open throttle the maximum intake air mass flow are 

2.679*10
-4

, 6.357*10
-4

, 4.799*10
-4

, 4.17*10
-4

, and 3.163*10
-4

 kg/s at positions of 198.4, 4.3, 

189.7, 239.5, 24.5 degrees respectively with respect to TDC at the 0 position. For E85 the same 

crank angle positions were used 2.465*10
-4

, 2.594*10
-4

, 2.312*10
-4

, 4.855*10
-4

, and 5.969*10
-4

 

kg/s respectively and crank angle points of 145.7, 18.76, -6.493, 110.4, and 21.64 with respect to 

TDC at the 0 position.  The Figure 6.6 through Figure 6.10 show plots from running E85 in the 

test engine. 

The rest of the engine dynamic measurements are presented in Appendix C for set point 

measurements at 1500, 1800, 2100, 2400  rpm at throttle angles of 5°, 10°, 15°, 20°  and 10°, 

15°, and 20° and 10°, 15°, 20°  respectively.  The average of this data is presented in Table C.1 

for E85 and Table C.2 for gasoline.  The data listed in this section will be used in Section 7 the 

results section, to find the constants need for the engine model discussed in Section 3. 
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The data in Appendix C in Table C.1 and Table C.2 are listed with respect to the average speed 

at that the steady state engine measurement.  The average speed ranges from 1187.35 rpm to 

2453.77 rpm for E85 in Table C.1 with lowest intake mass air flow of 2.39E-04 to 5.27E-04 kg/s 

and intake manifold air pressure of 584.69 to 789.89 Pa.    For Gasoline in Table C.2 the average 

speed ranges from 1235.85 to 2465.29 rpm, for intake mass air flow 2.70E-04 to 6.85E-04 kg/s 

for intake manifold pressure and 1333.76 to 1406.59 Pa.  . Averaging was done at every crank 

angle point and the plotted versus 720 degrees of engine crank angle.    

 The expected changes of the intake manifold pressure and mass air flow with respect to 

changes in engine crank angel were not present in the collected data. The results were a mistake 

in the expected frequency of change.  The Laminar Flow System is able to take measurements at 

measurement periods of up to every 0.1 seconds.  The measurement period is set in program 

block Px701.  The data can still be used to discern an average intake air mass flow and intake 

manifold pressure than can be used in creating a model.   

The maximum mass air flow during intake was found as seen in Figure 6.1 through 

Figure 6.10 at set-points of 1200 rpm to 2400 rpm in steps and 0 percent throttle opening to 20 

percent.  The graphed data in the figure below reflects one portion of the engine cycles and is not 

averaged as done previously with the data in Appendix C.   
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Figure 6.1: Gasoline: 1200 rpms at 0 Percent Open Throttle 

. 

 

Figure 6.2: Gasoline: 1200 rpms at 5 Percent Open Throttle. 
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Figure 6.3: Gasoline: 1200 rpms at 10 Percent Open Throttle. 

 

Figure 6.4: Gasoline: 1200 rpms at 15 Percent Open Throttle. 
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Figure 6.5: Gasoline: 1200 rpms at 20 Percent Open Throttle. 

 

Figure 6.6: E85: 1200 rpms at 0 Percent Open Throttle. 
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Figure 6.7: E85: 1200 rpms at 5 Percent Open Throttle. 

 

Figure 6.8: E85: 1200 rpms at 10 Percent Open Throttle. 
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Figure 6.9: E85: 1200 rpms at 15 Percent Open Throttle. 

 

Figure 6.10: E85: 1200 rpms at 20 Percent Open Throttle. 
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Figure 6.11: Gasoline: Contour Plot Engine Speed vs. Percentage of Throttle Opening and Intake Mass Air Flow 
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Figure 6.12: E85: Contour Plot Engine Speed vs. Percentage of Throttle Opening and Intake Mass Air Flow 
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  CHAPTER 7 

7   RESULTS 

The estimation for the intake air mass flow was done using Equation (3.3)  

through Equation (3.6).  The estimation ranges from 9.933*10
-4

 kg/s at closed throttle to 0.041 at 

20% throttle opening.  

 

Figure 7.1: Estimation of Intake Air Mass Flow of Briggs and Stratton Engine 

In order to characterize the engine, coefficients equations had to be determined using 

experimental means.  Measurements were taken of the intake air mass flow, throttle angle, intake 

manifold pressure, and engine velocity.  Using Equation (3.2)  through Equation (3.11)  for the 

mass air flow coefficient. The results of the system identification are found in Figure 7.2, Figure 

7.3 and Table 7.1.  The prediction made in Figure 7.2 and Figure 7.3 had to be adjusted creating 

a difference between the predictions.  The adjustment was made by decreasing the throttle area 

leak (Athleak) value.  This adjustment had to be made due to a previously unknown bend in the 

intake manifold.   
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Figure 7.2: E85 Adjusted Predicted Intake Mass Air Flow 

 

Figure 7.3: Gasoline Adjusted Predicted Intake Mass Air Flow  
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Coefficients Fuel Type: E85 Fuel Type: Gasoline 

Throttle Diameter dth 3.58E-03 3.68E-03 

 Throttle Leak Area Athleak 8.70E-07 8.70E-07 

Coefficient 1 γ0 2.62E+00 -5.55E-02 

Coefficient 2 γ1 -4.36E-03 2.45E-05 

Coefficient 3 γ2 1.79E-06 -4.15E-09 

Williansparamter 1 η0     

Williansparamter 2 η1     

Williansparamter 3 β0     

Williansparamter 4 β2     

Table 7.1: Steady State Coefficients for Briggs and Stratton Engine 

The engines throttle signal has become susceptible to repeated interference which is 

believed to be in sync with the injector signal. A plot of these two signals can be seen in  

Figure 6.11 and  

Figure 6.12.  The interference is not major and does not conflict with the usability of the 

throttle signal.  The repeatable noise can be seen to increase in frequency with respect to time 

and this is assumed that the noise is possibly produced by the injection signal or spark signal.  

Therefore with an increase in speed the frequency of the noise increase as seen in Figure 7.4 and 

Figure 7.7.   The throttle angle signal is then plotted with respect to crank angle in Figure 7.6 at a 

set point of 1200 rpm and 0% throttle opening.  The noise in the signal starts at 358.2 crank 

angle degrees and ends at 376.2 crank angle degrees.  To show how the signal changes with 

engine speed the throttle signal is also plotted at 2400 rpm and 20% throttle opening.  The set 

point is plotted as seen in Figure 7.7.  Where the noise occurs at 359.6 crank angle degrees and 

426.7 crank angle degrees.  These two set points show idle and the extreme of the test points.   
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Figure 7.4: Throttle Angle Signal Versus Time at 1200 rpm 

 

Figure 7.5: Throttle Angle Signal Versus Time at 2400 rpm 
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Figure 7.6: Throttle Angle Signal Versus Crank Angle at 1200 rpm and 0% Throttle Opening 
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Figure 7.7: Throttle Angle Signal Versus Crank Angle at 2400 rpm and 20% Throttle Opening 

 

The injector signal and spark ignition signal are plotted with respect to crank angle and 

time.   This data can be used later for the initially design of the ECU.  The data is presented in 

Table 7.2 through Table 7.5 for gasoline and Table 7.6 through Table 7.9 for E85.  Where Table 

7.2 is the average injection angle at each set point during the intake cycle for gasoline and Table 

7.6 is the average injection angle for running under E85.  Under gasoline the injection angle 

ranges form 18.85°  at 0°  throttle opening and 1200 rpm and 73.39° at 20% throttle opening and 

2400 rpm.  Data was also taken for the spark ignition signal as shown in Table 7.3 for gasoline 

engine test and Table 7.7 for E85 test.  Running under gasoline the ignition angle ranges from 

338.48° at 20% throttle angle and 1200 rpm to 343.68° at 15% throttle angle and 2400 rpm.  The 
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current ECU also injects later during the engine cycle and that data will be presented in 

Appendix C.  The duration of the injection timing high and low are presented in Table 7.4 and 

Table 7.5 respectively for gasoline and high and low under E85 in Table 7.8 and Table 7.9 

respectively.    

Percentage of 

Throttle 

Opening 

1200 (rpm) 1500 (rpm) 1800 (rpm) 2100 (rpm) 2400 (rpm) 

20 35 44 57 65 73 

15 30 37 46 53 60 

10 24 30 37 42   

5 23 31 37     

0 19         

Table 7.2: Gasoline: Average Injection Angle During Intake Stroke 
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Percentage of 

Throttle 

Opening 

1200 (rpm) 1500 (rpm) 1800 (rpm) 2100 (rpm) 2400 (rpm) 

20 338 340 341 342 343 

15 339 339 341 342 344 

10 339 340 341 342   

5 339 340 341     

0 339         

Table 7.3: Gasoline: Average Ignition Angle During Expansion Stroke 

Percentage of 

Throttle 

Opening 

1200 (rpm) 1500 (rpm) 1800 (rpm) 2100 (rpm) 2400 (rpm) 

20 0.0043 0.0045 0.0041 0.0045 0.0045 

15 0.0037 0.0039 0.0037 0.0037 0.0037 

10 0.0031 0.0031 0.0031 0.0030   

5 0.0029 0.0030 0.0031     

0 0.0026         

Table 7.4: Gasoline: Average Low Injection Duration 

Percentage of 

Throttle 

Opening 

1200 (rpm) 1500 (rpm) 1800 (rpm) 2100 (rpm) 2400 (rpm) 

20 0.0428 0.0348 0.0217 0.0230 0.0197 

15 0.0432 0.0366 0.0284 0.0240 0.0212 

10 0.0446 0.0365 0.0293 0.0248   

5 0.0460 0.0354 0.0294     

0 0.0494         

Table 7.5: Gasoline: Average High Injection Duration 
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Percentage of 

Throttle 

Opening 

1200 (rpm) 1500 (rpm) 1800 (rpm) 2100 (rpm) 2400 (rpm) 

20 45 52 55 63 64 

15 43 47 51 55 60 

10 33 42 44 49   

5 32 34 40     

0 23         

Table 7.6: E85: Average Injection Angle 

Percentage of 

Throttle 

Opening 

1200 (rpm) 1500 (rpm) 1800 (rpm) 2100 (rpm) 2400 (rpm) 

20 338 340 341 342 343 

15 340 340 341 342 343 

10 339 340 341 342   

5 340 340 341     

0 339         

Table 7.7: E85: Average Ignition Angle 

Percentage of 

Throttle 

Opening 

1200 (rpm) 1500 (rpm) 1800 (rpm) 2100 (rpm) 2400 (rpm) 

20 0.043592 0.034254 0.028046 0.023556 0.020921 

15 0.041123 0.033073 0.028559 0.023945 0.021301 

10 0.045381 0.035161 0.029589 0.024318 

 5 0.043422 0.035684 0.029086 

  0 0.04769 

    Table 7.8: E85: High Average: Injection Duration in Seconds 
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Percentage of 

Throttle 

Opening 

1200 (rpm) 1500 (rpm) 1800 (rpm) 2100 (rpm) 2400 (rpm) 

20 0.005864 0.005286 0.004558 0.004497 0.004008 

15 0.005154 0.004583 0.004284 0.003828 0.003801 

10 0.004325 0.004263 0.003679 0.003477 

 5 0.004035 0.003467 0.003314 

  0 0.003049 

    Table 7.9: E85: Low Average: Injection Duration in Seconds 
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CHAPTER 8 

8  CONCLUSION 

 

In conclusion the data acquisition system was able to measure the dynamics of the 

engine.  Data such as mass air flow, intake manifold pressure, engine speed and crank angle,  

engine injection and ignition signals.  Engine coefficients need to discern an accurate model 

could be determined using the data gathered with this system.   Further, work will need to be 

done to determine all of the coefficients need for an accurate model.  Engine model coefficients 

that require dynamic none steady statements need to be determined such as injection to top 

center transportation delay, engine inertia and volume of the intake manifold.   
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 APPENDICES 

Appendix A  LINEARIZATION 
 

Idle Speed Linearize 

These equations are from   

  (   )  
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(A.2) 

  

Equation (A.1) was algebraically manipulated to separate the cosine with the αth variable from 

the rest of the constants. Equation (A.2) was also inserted into Equation (A.1).  The results can 

be seen in Equation (A.3).  
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 Next, Equation (A.3) was substituted into Equation (A.5) The results can be seen in Equation 

(A.5). 
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A Maclaurin Equation (A.6) series approximation was then used for the cosine function in 

Equation (A.5) as seen below in Equation (A.6) and Equation (A.7).  With the substitution in 
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Equation (A.6) there is an error difference between the right and left hand side of the equation.  

The percent difference is 4.17E-08% with no input signal and at wide open throttle the error is 

3.82E+17 % which is unacceptable.  Assuming the throttle will only open at a maximum of 30% 

the error is 0.24 %.   
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Then the cosine function is linearized because of the   
  term as seen in Equation (A.10) 

Equation (A.11).  
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This equation simplifies into  
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Then Equations (A.15) and Equation (A.16) where substituted into Equation (A.14) then the 

results were placed in Equation (A.13) The results of these multiplications can be seen in 

Equation (A.17).    
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 Then Equation (A.15) and Equation (A.16) was distributed throughout Equation (A.14) 

through Equation (A.21) 
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The pe (exhaust manifold pressure) divide by pm(t) (manifold pressure) to the 1/k power was 

separated to get the manifold pressure alone.  Then pm and ωe (engine speed) were distributed as 

necessary as seen blow.  Equation (A.27) through Equation (A.30) was then algebraically 

manipulated to see effects of state spaces variable upon each other.   
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Next, the   
   

 term and (
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 are multiplied to result as seen in Equation (A.20).  

  
   

 (
 

  ( )
*

 

 

   

   

  

(A.20) 

  

This results in Equation (A.21).    
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The above equation was then inserted into Equation (A.22)    
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The results are seen below.    
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Then the above equation was linearize by taking partial derivatives with respect to the manifold 

pressure pm and then the engine speed ωe.  The results can be seen in Equation (A.24) and 

Equation (A.25). 
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Then the two Equation (A.24) and Equation (A.25) are linearized about engine manifold pressure 

and engine speed set points.  The results of the linearization are the placed into the Equation 

(A.26)   
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Next, the engine torque equation is linearized using the Equations (A.27) through Equation 

(A.31)   
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The engine torque equation fully expanded is shown in the Equation (A.31).  
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Next,  ̇  is replaced with its represented equation. The results are seen in Equation (A.32).  
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The engine volume over four times pi is distributed and the equation is simplified and values 

distributed as necessary.   
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The terms (        )  and 
 

  
are distributed thru the equation as seen in Equation (A.34). 
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The torque equation was then inserted into the engine inertia equation as seen in Equation 

(A.36). 
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Next, the partial derivative was taken with respect to manifold pressure and then with respect to 

engine speed.  It was assumed that the torque load was zero for the time being.  The results are 

seen in Equations (A.38) through Equation (A.44). 
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Appendix B  SIGNAL GATHERING CODE 
 

B.1 Injection and Ignition angle and timing

 

%Injection Timing 

%Change the save of matrix to multiple vectors.  

%Let PC Warm-up for 15 minutes 

outputlog=tg.outputlog; 

  

time=tg.timelog; 

%Acquires the overall sample time of the target daq session 

sampletime=tg.sampletime;            

  

%Number of times the buffer data wraped over 

numberofdatawraps=tg.numlogwraps;    

%Amount of time since task was started 

TET_Time=tg.ExecTime;          

%Gives a value of 'detected' a CPU overload occurs 

CPUoverload=tg.CPUoverload;           

%The Average Time for one execution of the model 

AverageExecution=tg.AvgTET;           

MATfilename=inputdlg('MAT-file File Name (.mat)','Input Current File 

Name of Excel File'); 

%User Input 

SteadyStateEngineSpeed=inputdlg('Engine Speed','Current Engine 

Speed');  

DynoPres=inputdlg('Load (PSI)','Dyno Pressure'); 

DynoTemp=inputdlg('Dyno Temperature (degrees C)','Temperature'); 

IMT=inputdlg('Intake Manifold Temperature','Intake Manifold 

Temperature (Degrees C)'); 

EngOilTemp=inputdlg('Engine Oil Temperature','Engine Oil Temperature 

(Degrees C)'); 

AFR=inputdlg('Lambda','Air to Fuel Ratio'); 

counts=outputlog(:,1);              %Crank Angle 

Spark=outputlog(:,2);               %Spark Signal 

Injection=outputlog(:,3);           %Injection Signal 

throttle=outputlog(:,4);                 %Intake Manifold Pressure 

Range=size(time); 

MinTET=tg.MinTET; 

MaxTET=tg.MaxTET; 

%matrix of time and logged signals 

A=[time counts Spark Injection throttle ];                  

%Matrix of target pc status 

%Create the cell array containing the column headers 
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statusHeader1={'Sample Time (sec)','Number of Circular Buffer 

Wraps','MinTET',... 

    'Ideal Engine Speed (rpms)','Dyno Temperature (degrees C)', 'Air 

to Fuel Ratio'}; 

targetstatus1=[sampletime numberofdatawraps MinTET 

SteadyStateEngineSpeed DynoTemp AFR];  

statusHeader2={'Average Execution Time (sec)','Execution 

Time','MaxTET','Load (PSI)',... 

    'Intake Manifold Temperature (degrees C)','Engine Oil Temperature 

(Degrees C)'}; 

targetstatus2=[AverageExecution TET_Time MaxTET DynoPres IMT 

EngOilTemp];    

  

columnHeader={'Time (sec) ', 'Counts', 'Spark 

Signal','Injection','throttle'}; 

%Changes the numerical array into a cell array 

numericalData= num2cell(A);    

%Combines both status data and numerical data with headings 

Combinedata=[columnHeader; numericalData]; 

statusofdaq=[statusHeader1;targetstatus1;statusHeader2;targetstatus2]

; 

%When compining cells number of colums must be the same 

% http://www.mathworks.com/help/techdoc/import_export/braidzi-1.html 

% http://www.mathworks.com/help/techdoc/import_export/braidzi-

1.html#br_4ten 

% -------------------------------------------------------------------

------ 

% -------------------------------------------------------------------

------ 

 savefile=char(MATfilename);%-------------------------------------- 

% -------------------------------------------------------------------

------ 

% -------------------------------------------------------------------

------ 

  

 save(savefile, 'Combinedata', 'time','statusofdaq','counts', 

'Spark', 'Injection', 'throttle') 
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B.2 Mass Air Flow 

 

%Throttle Dynamic and Volumetric Efficenecy Measurement 

%Let PC Warm-up for 15 minutes 

outputlog=tg.outputlog; 

  

time=tg.timelog; 

%Acquires the sample time of the target 

sampletime=tg.sampletime;            

MinTET=tg.MinTET; 

MaxTET=tg.MaxTET; 

% not execute 

%Number of times the buffer data wraped over 

numberofdatawraps=tg.numlogwraps;    

%Amount of time since task was started 

TET_Time=tg.ExecTime;          

%Gives a value of 'detected' a CPU overload occurs 

CPUoverload=tg.CPUoverload;           

%The Average Time for one execution of the model 

AverageExecution=tg.AvgTET;           

MATfilename=inputdlg('MAT-file File Name (.mat)','Input Current File 

Name of Excel File'); 

%      a={'ab','cde','fghi'}; 

%      as1=char(Excelfilename) % note: a char mat 

%      as2=cat(2,Excelfilename{:}) % note: no spaces between cells 

%      as3=sprintf('%s|',Excelfilename{:}); % the most versatile 

%      as3(end)='' 

SteadyStateEngineSpeed=inputdlg('Engine Speed','Current Engine 

Speed'); 

DynoPres=inputdlg('Load (PSI)','Dyno Pressure'); 

DynoTemp=inputdlg('Dyno Temperature (degrees C)','Temperature'); 

IMT=inputdlg('Intake Manifold Temperature','Intake Manifold 

Temperature (Degrees C)'); 

EngOilTemp=inputdlg('Engine Oil Temperature','Engine Oil Temperature 

(Degrees C)'); 

AFR=inputdlg('Lambda','Air to Fuel Ratio'); 

MAF=outputlog(:,2);                     %Volume Air Flow L/m 

Pressure=outputlog(:,1);              %Intake Manifold Pressure mbar 

Throttle=outputlog(:,3);              %Throttle Angel 

ENCounts=outputlog(:,4);              %Encoder output count 

Datamatrix=[time ENCounts Pressure MAF Throttle]; %matrix of 
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time and logged signals 

%Create the cell array containing the column headers 

        

%Create the cell array containing the column headers 

statusHeader1={'Sample Time (sec)','Number of Circular 

Buffer Wraps','MinTET',... 

    'Ideal Engine Speed (rpms)','Dyno Temperature (degrees 

C)', 'Air to Fuel Ratio'}; 

targetstatus1=[sampletime numberofdatawraps MinTET 

SteadyStateEngineSpeed DynoTemp AFR];  

statusHeader2={'Average Execution Time (sec)','Execution 

Time','MaxTET','Load (PSI)',... 

    'Intake Manifold Temperature (degrees C)','Engine Oil 

Temperature (Degrees C)'}; 

targetstatus2=[AverageExecution TET_Time MaxTET DynoPres 

IMT EngOilTemp];    

columnHeader={'Time (sec) ', 'Encoder Counts', 'Intake 

Manifold Pressure','Volume Air Flow'... 

    'Throttle Angel'}; 

%Changes the numerical array into a cell array 

%Combines both status data and numerical data with headings 

%Changes the numerical array into a cell array 

numericalData= num2cell(Datamatrix); 

%combube the two cell arrays into one 

throttledynamic= [columnHeader; numericalData];       %Puts 

all data and heading in Matrix 

%Shows status of data collection 

statusofdaq=[statusHeader1;targetstatus1;statusHeader2;targ

etstatus2]; 

savefile=char(MATfilename);%-------------------------------

------- 

% ---------------------------------------------------------

---------------- 

% ---------------------------------------------------------

---------------- 

 save(savefile, 'throttledynamic', 'statusofdaq', 

'Pressure', 'MAF', 'Throttle', 'ENCounts'); 
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B.3 Processing for throttle dynamic and volumetric efficiency coefficients 

%Analysis of the first 180 degrees.  Averageing over the first 180 

degrees. 

%% Loads each file to execute 

% function intakeplotdynamic2() 

clear 

 maActV=zeros(18,1);%the row value is the total number of data points 

 ThrActV=zeros(18,1); 

 PaActV=zeros(18,1); 

 weAct=zeros(18,1); 

 inTempAct=zeros(18,1); 

savedir='C:\Documents and Settings\Cory\Desktop\Image'; 

 Index=1;          

rootname='thr_04212011_gas';%Root folder location of .mat files 

 fueltype='gas'; 

 filename='thr_04212011_'; 

  

for I=0:5:20                            %Loads the different files 1200 

%     directory=''; 

    testpoint='1200'; 

    ffilename=['_',int2str(I),'.mat']; 

    filenamesave=[filename, fueltype,'_', testpoint, ffilename]; 

    file=[rootname filesep filenamesave] 

[IMPmean0_180 MAFmean0_180 THRmean0_180 intaketemp 

enginespeed]=searchandfifotest5(file,testpoint);     

weAct(Index,1)=mean(enginespeed); 

maActV(Index,1)=mean(MAFmean0_180); 

    ThrActV(Index,1)=mean(THRmean0_180); 

    PaActV(Index,1)=mean(IMPmean0_180); 

    inTempAct(Index,1)=intaketemp; 

    Index=Index+1; 

      

end 

  

for I=5:5:20%1500 

    testpoint='1500'; 

    ffilename=['_',int2str(I),'.mat']; 

    filenamesave=[filename, fueltype,'_', testpoint, ffilename]; 

    file=[rootname filesep filenamesave] 

[IMPmean0_180 MAFmean0_180 THRmean0_180 intaketemp 

enginespeed]=searchandfifotest5(file,testpoint);     

weAct(Index,1)=mean(enginespeed); 

maActV(Index,1)=mean(MAFmean0_180); 

    ThrActV(Index,1)=mean(THRmean0_180); 

    PaActV(Index,1)=mean(IMPmean0_180); 

        inTempAct(Index,1)=intaketemp; 

    Index=Index+1; 

end      
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for I=5:5:20%1800 

    testpoint='1800'; 

    ffilename=['_',int2str(I),'.mat']; 

    filenamesave=[filename, fueltype,'_', testpoint, ffilename]; 

    file=[rootname filesep filenamesave] 

[IMPmean0_180 MAFmean0_180 THRmean0_180 intaketemp 

enginespeed]=searchandfifotest5(file,testpoint);     

weAct(Index,1)=mean(enginespeed); 

maActV(Index,1)=mean(MAFmean0_180); 

    ThrActV(Index,1)=mean(THRmean0_180); 

    PaActV(Index,1)=mean(IMPmean0_180); 

        inTempAct(Index,1)=intaketemp; 

  

    Index=Index+1; 

   end   

  

for I=10:5:20%2100 

    testpoint='2100'; 

    ffilename=['_',int2str(I),'.mat']; 

    filenamesave=[filename, fueltype,'_', testpoint, ffilename]; 

    file=[rootname filesep filenamesave] 

[IMPmean0_180 MAFmean0_180 THRmean0_180 intaketemp 

enginespeed]=searchandfifotest5(file,testpoint);     

weAct(Index,1)=mean(enginespeed); 

maActV(Index,1)=mean(MAFmean0_180); 

    ThrActV(Index,1)=mean(THRmean0_180); 

    PaActV(Index,1)=mean(IMPmean0_180); 

        inTempAct(Index,1)=intaketemp; 

    Index=Index+1; 

end  

  

for I=15:5:20%2400 

    testpoint='2400'; 

    ffilename=['_',int2str(I),'.mat']; 

    filenamesave=[filename, fueltype,'_', testpoint, ffilename]; 

    file=[rootname filesep filenamesave] 

[IMPmean0_180 MAFmean0_180 THRmean0_180 intaketemp 

enginespeed]=searchandfifotest5(file,testpoint);     

weAct(Index,1)=mean(enginespeed); 

maActV(Index,1)=mean(MAFmean0_180); 

    ThrActV(Index,1)=mean(THRmean0_180); 

    PaActV(Index,1)=mean(IMPmean0_180); 

    inTempAct(Index,1)=intaketemp; 

    Index=Index+1;   

end  
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%% Determines the start of crank based in engine speed 

function [IMPmean0_180 MAFmean0_180 THRmean0_180 intaketemp 

enginespeed]=searchandfifotest5(file,testpoint,~, ~, ~) 

  

% file ='thr_04212011_gas\thr_04212011_gas_2100_20.mat'; 

  

%Loads the .mat file w/ vectors ENCounts MAF Pressure Throttle       

vars={'ENCounts', 'Pressure', 'Throttle', 'time', 

'MAF','statusofdaq'}; 

load(file, vars{:}); 

%X is the encoder count and Y is the value to be interpulated 

v=1; 

X=zeros(size(ENCounts(:))); 

ytime=zeros(size(ENCounts(:))); 

yIMP=zeros(size(ENCounts(:))); 

yMAF=zeros(size(ENCounts(:))); 

yThr=zeros(size(ENCounts(:))); 

ENCounts=abs(ENCounts); 

  

for Index=1:length(ENCounts) 

        if Index == length(ENCounts)    %To Aquire the last value 

in the vector 

            v=v+1; 

            X(v,1)=ENCounts(Index,1); 

            ytime(v,1)=time(Index,1);   

            yIMP(v,1)=Pressure(Index,1);   

            yMAF(v,1)=MAF(Index,1); 

            yThr(v,1)=Throttle(Index,1); 

        end 

    %Current and Next evaluated counts are the same value.  Nothing 

    %changes new value is placed in to vector X. 

    if Index<=length(ENCounts)-1      

        if ENCounts(Index,1) == ENCounts(Index+1,1)  

            X(v,1)=ENCounts(Index,1); 

            ytime(v,1)=time(Index,1); 

            yIMP(v,1)=Pressure(Index,1);   

            yMAF(v,1)=MAF(Index,1); 

            yThr(v,1)=Throttle(Index,1); 

            v=v+1; 

        end 

        %The next count value has increased by one. Count based to 

X vector 

        if ENCounts(Index+1,1) == ENCounts(Index,1)+1 

            X(v,1)=ENCounts(Index,1); 

            ytime(v,1)=time(Index,1); 
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            yIMP(v,1)=Pressure(Index,1);   

            yMAF(v,1)=MAF(Index,1); 

            yThr(v,1)=Throttle(Index,1); 

            v=v+1; 

        end 

        %If the next value is not the same and a difference on one a 

value 

        %needs to be added in the next slot.  Could Assume the next 

value 

        %has a difference of only 2 and the difference of one value 

needs 

        %to be added.   

        if ENCounts(Index,1) ~= ENCounts(Index+1,1) 

            if ENCounts(Index+1,1) ~= ENCounts(Index,1)+1 

                X(v,1)=ENCounts(Index,1);      

                ytime(v,1)=time(Index,1); 

                yIMP(v,1)=Pressure(Index,1);   

                yThr(v,1)=Throttle(Index,1); 

            yMAF(v,1)=MAF(Index,1); 

  

                v=v+1; 

  

            ytime(v,1) =(0.5)*(time(Index,1)-

time(Index+1,1))+(time(Index+1,1)); 

            yIMP(v,1)=(0.5)*(Pressure(Index,1)-

Pressure(Index+1,1))+(Pressure(Index+1,1)); 

            yMAF(v,1)=(0.5)*(MAF(Index,1)-

MAF(Index+1,1))+(MAF(Index+1,1)); 

            yThr(v,1)=(0.5)*(Throttle(Index,1)-

Throttle(Index+1,1))+(Throttle(Index+1,1)); 

  

                if ENCounts(Index,1)==499 && ENCounts(Index+1,1)~=0 

                    X(v,1)=0; 

                    X(v,2)=1; 

                    v=v+1; 

                end 

                if ENCounts(Index,1)+1 ~= 500  

                    X(v,1)=ENCounts(Index,1)+1; 

                    X(v,2)=1; 

                    v=v+1; 

                end 

             end 

       end 

     end 

 end 

 junk0=find(ytime(:,1)== 0) 

junkNaN = find(isnan(ytime(:,1))==1) 
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%% Find the  

clear ENCounts time Pressure MAF 

ENCounts=X(:,1); 

time=ytime(:,1); 

Pressure=yIMP; 

MAF=yMAF; 

Throttle=yThr; 

clear X ytime yIMP yMAF 

  

ind0=find(ENCounts == 0);          %Position of zero values 

zerotime=time(ind0); 

zerocount=[zerotime,ind0,zeros(length(ind0),1)]; 

       

ind499=find(ENCounts == 499);      %Position of 499 aka end of 

count 

endtime=time(ind499); 

endcount=[endtime,ind499,ones(length(ind499),1)*499]; 

sorted=sortrows([zerocount;endcount],1);  

if sorted(1,2)>sorted(2,2) 

    sorted(1,:)=[]; 

end 

%% Determining engine stroke based on encoder position and time 

stamp  

    %Preallocation 

    cycle=zeros(10000,10); %Number of rows arbtrarily selected 

    K=0; 

    T=0; 

    %Determine the stroke four strokes. 

% while loop continues until slower cycle ie (1) is smaller than 

cycle(2) 

%Where cycle(1) is considered the the 360 degrees of intake and 

compression 

%stroke and cycle(2) is the expansion to exhaust stroke.   

if K<= length(sorted)%loop continues until the speed in cycle 1 is 

greater than the speed in cycle 2 

K=K+1;  %Increments the K value. 

T=T+1; 

while (cycle(T,1) >= cycle(T,2)) && (K<length(sorted))%Stops the 

loop when cycle(1) is greater than cycle(2)    

    if cycle(T,1) == 0 

        if sorted(K,3) == 0 && cycle(T,3) == 0 

            cycle(T,3) = sorted(K,1) ;             %The first zero 

value 

            cycle(T,5) = sorted(K,2) ;          %The index of the 

first value 

            K=K+1; 

         end 

    end 

    %Logic to acquire the end value for the cycle 
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   if sorted(K,3) == 499 &&  sorted(K+1,3) == 0 && cycle(T,5) > 0 && 

cycle(T,4) == 0 

        cycle(T,4) = sorted(K,1);                 %The end value of the 

first revloution 

        cycle(T,6) = sorted(K,2);                %The index of the end 

first revolution 

        cycle(T,1)=cycle(T,4)-cycle(T,3);              %The difference 

between end values 

    end 

    if sorted(K,3) == 0 && sorted(K-1,3) ~= 0 && cycle(T,6) > 0 

        cycle(T,7) = sorted(K,1);             %The first zero value of the 

second revolution 

        cycle(T,9) = sorted(K,2);          %The index of the first value 

second revolution 

    end 

    if sorted(K,3) == 499 &&  sorted(K+1,3) == 0 && cycle(T,7) > 0  

        cycle(T,8) = sorted(K,1);                 %The end value of the 

second revolution 

        cycle(T,10) = sorted(K,2);                %The index of the end 

value of the second revolution 

        %Does not execute the subtraction until there is a value above zero 

in column 8  

        if cycle(T,8)>0  

            cycle(T,2)=cycle(T,8)-cycle(T,7);              %The difference 

between end values 

        end 

    end 

    K=K+1; 

    %Shift cycle(1) to cycle (2) if condition cycle(1)>cycle(2) is not met 

    if cycle(T,1) < cycle(T,2)  %If the cycle(1) value is less than 

cycle(2) shift cycle(1) to cycle(2) 

        cycle(T,1) = cycle(T,2);  

        cycle(T,3) = cycle(T,7);             %The first zero value 

        cycle(T,5) = cycle(T,9); 

        cycle(T,4) = cycle(T,8);           %The end value of the second 

revolution 

        cycle(T,6) = cycle(T,10); 

        cycle(T,7) = 0;             %The first zero value 

        cycle(T,8) = 0;              %The end value of the cycle 

        cycle(T,9) = 0;                  

        cycle(T,10) = 0; 

        cycle(T,2) = 0; 

    end 

 

    If cycle(T,1)>cycle(T,2) && cycle(T,2) > 0 

        T=T+1; 

    end 

end 

end 

clear T K 

%Clears not full cycles and remaining zeros. 

  

G= cycle(:,1)== 0;  

cycle(G,:)=[]; 

G= cycle(:,2)== 0;  

cycle(G,:)=[]; 

cycle2=cycle; 

% Deletes rows of incorrect cycles  

% delrows= 

find(cycle(:,1)>((1/str2double(testpoint))*60)+0.005) 

% cycle2(delrows,:)=[]; 

  

delrows= cycle(:,1)>((1/str2double(testpoint))*60)+0.005; 

cycle2((delrows==1),:)=[]; 

%% Extract the first 180 degrees of crank angle (complete) 

MAFlist=zeros(length(cycle2),1); 

IMPlist=zeros(length(cycle2),1); 

THRlist=zeros(length(cycle2),1); 

  

for v=1:size(cycle2,1) 

    %Gives the index ie row value of count 250 

 search1=find((ENCounts(cycle2(v,5):cycle2(v,6))== 250)); 

 search2=find((ENCounts(cycle2(v,5):cycle2(v,6))== 251)); 

 searchmin=min([search1;search2])+cycle2(v,5)-1; 

 MAFlist(v,1)=nanmean(MAF(cycle2(v,5):searchmin)); 

  IMPlist(v,1)=nanmean(Pressure(cycle2(v,5):searchmin)); 

 THRlist(v,1)=nanmean(Throttle(cycle2(v,5):searchmin)); 

end 

 

IMPmean0_180=(IMPlist); 

MAFmean0_180=(MAFlist); 

THRmean0_180=(THRlist); 

enginespeed=2.*((1./(cycle2(:,1)+cycle2(:,2))).*60); 

intaketemp=str2double(statusofdaq(4,5))+273.19; 
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B.4 Willan's Line 

  

The Willan’s Line is a method of approximating indicated power for either a multi or 

single cylinder engine.  The method is based on that at light engine load a little fuel is pumped 

into the air stream entering the engine cylinder.  Therefore there is a lot of air available for 

combustion resulting in almost constant combustion efficiency.  Greene and Lucas (1969) states 

"this method is not suitable for use with petrol engines.‖ (Greene & Lucas, 1969) With the 

constant speed approximation made by Guzzella and Onder (2004).    This is approximation is 

used in  
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Appendix C EXPERIMENTAL DATA 
 

Average Engine Speed (rpm) Intake Mass Air Flow (kg/s) Intake Manifold Pressure (Pa) 

1303 2.39E-04 584.69 

1259 3.11E-04 616.19 

1187 3.21E-04 712.56 

1240 3.57E-04 727.31 

1226 3.88E-04 806.05 

1555 3.41E-04 633.08 

1579 3.81E-04 705.69 

1470 3.83E-04 737.52 

1513 4.24E-04 789.89 

1866 3.74E-04 663.75 

1862 4.11E-04 703.65 

1869 4.36E-04 748.78 

1823 4.58E-04 785.92 

2154 4.39E-04 676.53 

2155 4.63E-04 750.88 

2194 5.15E-04 771.90 

2443 4.95E-04 763.08 

2454 5.27E-04 769.76 

Table C.1: E85- Mass Air Flow and Intake Manifold Pressure 
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Average Engine Speed (rpm) Intake Mass Air Flow (kg/s) Intake Manifold Pressure (Pa) 

1236 2.70E-04 1333.76 

1278 4.76E-04 1378.07 

1268 4.14E-04 1380.50 

1276 4.67E-04 1394.24 

1285 5.22E-04 1398.07 

1534 4.90E-04 1379.79 

1563 4.39E-04 1384.29 

1541 4.69E-04 1398.54 

1500 5.08E-04 1398.47 

1848 5.26E-04 1375.69 

1872 4.88E-04 1396.18 

1846 5.02E-04 1344.57 

1834 5.77E-04 1406.59 

2172 5.19E-04 1395.18 

2172 5.44E-04 1330.65 

2169 6.28E-04 1390.97 

2372 5.70E-04 1346.79 

2465 6.85E-04 1389.41 

Table C.2: Gasoline-Mass Air Flow and Intake Manifold Pressure 
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Figure 0.1: Mass Air Flow and 1200 rpm and 0% Throttle 
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Figure 0.2: Mass Air Flow and 1200 rpm and 5% Throttle 

 

Figure 0.3: Mass Air Flow and 1200 rpm and 10% Throttle 
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Figure 0.4: Mass Air Flow and 1200 rpm and 15% Throttle 

 

Figure 0.5: Mass Air Flow and 1200 rpm and 20% Throttle 
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Figure 0.6: E85 Mass Air Flow and 1200 rpm and 0% Throttle 
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Figure 0.7: E85 Mass Air Flow and 1200 rpm and 0% Throttle 
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Figure 0.8: E85 Mass Air Flow and 1200 rpm and 10% Throttle 

 

Figure 0.9: E85 Mass Air Flow and 1200 rpm and 15% Throttle 
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Figure 0.10: E85 Mass Air Flow and 1200 rpm and 20% Throttle 

 

Injection and Spark  

Throttle Angle 1200 (rpm) 1500 (rpm) 1800 (rpm) 2100 (rpm) 2400 (rpm) 

20 383 392 405 413 422 

15 381 387 397 403 408 

10 377 382 389 395   

5 376 383 390     

0 374         

Table C.3: Gasoline: Minimum Injection Angle 

Throttle Angle 1200 (rpm) 1500 (rpm) 1800 (rpm) 2100 (rpm) 2400 (rpm) 

20 390 405 606 431 441 

15 389 396 408 418 425 

10 384 392 401 408  

5 382 392 401   

0 380     

Table C.4: Gasoline: Maximum Injection Angle 
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Throttle Angle 1200 (rpm) 1500 (rpm) 1800 (rpm) 2100 (rpm) 2400 (rpm) 

20 699 700 702 702 703 

15 700 700 701 702 703 

10 699 701 701 702 

 5 699 702 701 

  0 699 

    Table C.5: Gasoline: Average Ignition Angle 

Throttle Angle 1200 (rpm) 1500 (rpm) 1800 (rpm) 
2100 

(rpm) 

2400 

(rpm) 

20 703 705 707 708 710 

15 703 705 707 718 710 

10 703 705 707 708 

 5 703 705 707 

  0 703 

    Table C.6: Gasoline: Maximum Ignition Angle 

 

Throttle Angle 1200 (rpm) 1500 (rpm) 1800 (rpm) 2100 (rpm) 2400 (rpm) 

20 39 51 6 73 83 

15 35 42 52 60 68 

10 29 36 43 51 

 5 26 35 43 

  0 23 

    Table C.7: Gasoline: Maximum Injection Angle 

Throttle Angle 1200 (rpm) 1500 (rpm) 1800 (rpm) 2100 (rpm) 2400 (rpm) 

20 386 398 472 420 431 

15 384 392 406 411 416 

10 381 387 395 401 

 5 379 388 396 

  0 377 

    Table C.8: Gasoline: Average Injection Angle 
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Throttle Angle 1200 (rpm) 1500 (rpm) 1800 (rpm) 2100 (rpm) 2400 (rpm) 

20 31 38 51 56 64 

15 27 32 40 46 52 

10 21 26 31 36   

5 19 27 31     

0 16         

Table C.9: Gasoline: Minimum Injection Angle 

Throttle Angle 1200 (rpm) 1500 (rpm) 1800 (rpm) 2100 (rpm) 2400 (rpm) 

20 695 695 696 695 695 

15 695 695 695 696 695 

10 695 695 695 695   

5 695 696 695     

0 695         

Table C.10: Gasoline: Minimum Ignition Angle 

Throttle Angle 1200 (rpm) 1500 (rpm) 1800 (rpm) 2100 (rpm) 2400 (rpm) 

20 342 343 346 348 350 

15 342 343 346 348 349 

10 343 344 346 348   

5 343 345 346     

0 342         

Table C.11: Gasoline: Maximum Ignition Angle 

Throttle Angle 1200 (rpm) 1500 (rpm) 1800 (rpm) 2100 (rpm) 2400 (rpm) 

20 335 335 335 335 335 

15 335 335 336 336 336 

10 336 335 335 336   

5 336 335 336     

0 335         

Table C.12: Gasoline: Minimum Ignition Angle 

Throttle Angle 1200 (rpm) 1500 (rpm) 1800 (rpm) 2100 (rpm) 2400 (rpm) 

20 0.0040 0.0040 0.0010 0.0040 0.0040 

15 0.0030 0.0030 0.0030 0.0030 0.0030 

10 0.0030 0.0030 0.0030 0.0030 

 5 0.0020 0.0030 0.0030 

  0 0.0020 

    Table C.13: Gasoline: Minimum Low Injection Duration 
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Throttle Angle 1200 (rpm) 1500 (rpm) 1800 (rpm) 2100 (rpm) 2400 (rpm) 

20 0.0050 0.0050 0.0050 0.0050 0.0050 

15 0.0040 0.0040 0.0040 0.0040 0.0040 

10 0.0040 0.0040 0.0040 0.0040 

 5 0.0030 0.0040 0.0040 

  0 0.0030 

    Table C.14: Gasoline: Maximum Low Injection Duration 

Throttle Angle 1200 (rpm) 1500 (rpm) 1800 (rpm) 2100 (rpm) 2400 (rpm) 

20 0.0460 0.0370 0.0290 0.0240 0.0210 

15 0.0470 0.0390 0.0300 0.0250 0.0220 

10 0.0480 0.0380 0.0310 0.0260 

 5 0.0490 0.0370 0.0310 

  0 0.0520 

    Table C.15: Gasoline: Maximum High Injection Duration 

Throttle Angle 1200 (rpm) 1500 (rpm) 1800 (rpm) 2100 (rpm) 2400 (rpm) 

20 0.0390 0.0320 0.0100 0.0220 0.0190 

15 0.0400 0.0350 0.0270 0.0230 0.0200 

10 0.0420 0.0350 0.0280 0.0240 

 5 0.0430 0.0340 0.0280 

  0 0.0470 

    Table C.16: Gasoline: Minimum High Injection Duration 

Throttle Angle 1200 (rpm) 1500 (rpm) 1800 (rpm) 2100 (rpm) 2400 (rpm) 

20 336 336 336 336 336 

15 336 336 336 336 336 

10 336 336 336 336   

5 336 336 336     

0 336         

Table C.17: E85: Minimum Ignition Angle 

Throttle Angle 1200 (rpm) 1500 (rpm) 1800 (rpm) 2100 (rpm) 2400 (rpm) 

20 399 411 416 426 429 

15 399 408 413 419 426 

10 391 403 407 414   

5 394 395 404     

0 384         

Table C.18: E85: Maximum Injection Angle 
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Throttle Angle 1200 (rpm) 1500 (rpm) 1800 (rpm) 2100 (rpm) 2400 (rpm) 

20 392 400 405 412 415 

15 392 398 401 405 410 

10 384 392 395 400   

5 382 386 393     

0 377         

Table C.19: E85: Minimum Injection Angle 

Throttle Angle 1200 (rpm) 1500 (rpm) 1800 (rpm) 2100 (rpm) 2400 (rpm) 

20 696 696 695 695 696 

15 695 695 696 696 696 

10 696 695 695 696   

5 695 695 696     

0 696         

Table C.20: E85: Minimum Ignition Angle 

Throttle Angle 1200 (rpm) 1500 (rpm) 1800 (rpm) 2100 (rpm) 2400 (rpm) 

20 342 344 346 348 350 

15 343 345 346 348 350 

10 342 344 346 348   

5 343 344 346     

0 343         

Table C.21: E85: Maximum Ignition Angle 

Throttle Angle 1200 (rpm) 1500 (rpm) 1800 (rpm) 2100 (rpm) 2400 (rpm) 

20 396 405 410 419 422 

15 395 402 407 412 418 

10 388 398 401 408   

5 388 391 399     

0 381         

Table C.22: E85: Average Injection Angle 

Throttle Angle 1200 (rpm) 1500 (rpm) 1800 (rpm) 2100 (rpm) 2400 (rpm) 

20 49 58 61 70 71 

15 47 53 58 63 68 

10 37 48 51 56   

5 40 40 45     

0 27         

Table C.23: E85: Maximum Injection Angle 
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Throttle Angle 1200 (rpm) 1500 (rpm) 1800 (rpm) 2100 (rpm) 2400 (rpm) 

20 42 46 49 56 56 

15 38 43 45 48 53 

10 30 37 37 43   

5 26 29 35     

0 19         

Table C.24: E85: Minimum Injection Angle 

Throttle Angle 1200 (rpm) 1500 (rpm) 1800 (rpm) 2100 (rpm) 2400 (rpm) 

20 701 701 701 703 703 

15 700 700 701 702 703 

10 699 700 701 702   

5 699 701 701     

0 699         

Table C.25: E85: Average Ignition Angle 

Throttle Angle 1200 (rpm) 1500 (rpm) 1800 (rpm) 2100 (rpm) 2400 (rpm) 

20 703 705 707 708 711 

15 703 706 707 708 710 

10 703 705 706 709   

5 703 705 707     

0 703         

Table C.26: E85: Maximum Ignition Angle 

Throttle Angle 1200 (rpm) 1500 (rpm) 1800 (rpm) 2100 (rpm) 2400 (rpm) 

20 336 336 336 336 336 

15 336 336 336 336 336 

10 336 336 336 336   

5 336 336 336     

0 336         

Table C.27: E85: Minimum Ignition Angle 

Throttle Angle 1200 (rpm) 1500 (rpm) 1800 (rpm) 2100 (rpm) 2400 (rpm) 

20 0.0400 0.0320 0.0270 0.0230 0.0200 

15 0.0390 0.0320 0.0270 0.0230 0.0200 

10 0.0430 0.0330 0.0280 0.0230 

 5 0.0400 0.0340 0.0280 

  0 0.0450 

    Table C.28: E85: High Minimum: Injection Duration 
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Throttle Angle 1200 (rpm) 1500 (rpm) 1800 (rpm) 2100 (rpm) 2400 (rpm) 

20 0.0470 0.0370 0.0290 0.0240 0.0220 

15 0.0440 0.0350 0.0300 0.0250 0.0220 

10 0.0480 0.0380 0.0310 0.0250 

 5 0.0470 0.0370 0.0300 

  0 0.0500 

    Table C.29: E85: High Maximum: Injection Duration 

Throttle Angle 1200 (rpm) 1500 (rpm) 1800 (rpm) 2100 (rpm) 2400 (rpm) 

20 0.0050 0.0050 0.0040 0.0040 0.0040 

15 0.0050 0.0040 0.0040 0.0030 0.0030 

10 0.0040 0.0040 0.0030 0.0030 

 5 0.0030 0.0030 0.0030 

  0 0.0030 

    Table C.30: E85: Low Minimum: Injection Duration 

Throttle Angle 1200 (rpm) 1500 (rpm) 1800 (rpm) 2100 (rpm) 2400 (rpm) 

20 0.0060 0.0060 0.0050 0.0050 0.0050 

15 0.0060 0.0050 0.0050 0.0040 0.0040 

10 0.0050 0.0050 0.0040 0.0040 

 5 0.0050 0.0040 0.0040 

  0 0.0040 

    Table C.31: E85: Low Maximum: Injection Duration 
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