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Abstract

A stochastic SIR epidemic dynamic model with distributed-time-delay, for a
two-scale dynamic population is derived. The distributed time delay is the va-
rying naturally acquired immunity period of the removal class of individuals
who have recovered from the infection, and have acquired natural immunity
to the disease. We investigate the stochastic asymptotic stability of the disease
free equilibrium of the epidemic dynamic model, and verify the impact on the
eradication of the disease.

Keywords

Disease-Free Steady State, Stochastic Asymptotic Stability,
Threshold Value, Positively Self Invariant Set,
Lyapunov Functional Technique

1. Introduction

The recent advent of high technology in the area of communication, transpor-
tation and basic services, multilateral interactions have afforded efficient global
mass flow of human beings, animals, goods, equipments and ideas on the earth’s
multi-patches surface. As a result of this, the world has become like a neighbor-
hood. Furthermore, the national and binational problems have become the
multinational problems. This has generated a sense of cooperation and under-
standing about the basic needs of human species in the global community. In
short, the idea of globalization is spreading in almost all aspects of the human
species on the surface of earth. The world today faces the challenge of increas-

ingly high rates of globalization of new human infectious diseases and disease
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strains [1] associated with the high number of inter-patch connections modern
efficient global human transportation. For instance, the recent 2009 HIN1 flu
pandemic [2] is closely interrelated with the many inter-patch connections
facilitated human transportation of the disease. Attempts to study human
infectious disease dynamics influenced by human mobility process in complex
human meta-population structures are made [3]-[15].

The inclusion of the effects of disease latency or immunity into the epidemic
dynamic modeling process leads to more realistic epidemic dynamic models.
Furthermore, epidemic dynamic processes in populations exhibiting varying
time disease latency or immunity delay periods are represented by differential
equation models with distributed time delays. Several studies [16] [17] [18] [19]
[20] incorporating distributed delays describing the effects of disease latency or
immunity in the dynamics of human infectious diseases have been done. A
mathematical SIR (susceptible-infective-removal) epidemic dynamic model with
distributed time delays representing the varying time temporal immunity period
in the immune population class is studied by Blyuss and Kyrychko [19]. In their
study, the existence of positive solution is exhibited. Furthermore, the global
asymptotic stability of the disease free and endemic equilibria are shown by
using Lyapunov functional technique. Moreover, they presented numerical
simulation results for a special case SIR epidemic with temporal immunity. The
temporal immunity was represented in the epidemic dynamic model by letting
the Dirac delta-function be the integral kernel or the probability density function
of the distributed time delay.

Stochastic models also offer a better representation of the reality. Several
stochastic dynamic models describing single and multi-group disease dynamics
have been investigated [20]-[29]. In [21], a stochastic multi-group SIRS epide-
mic dynamic models is derived and studied. The random environmental
fluctuations manifest as variability in the disease transmission process. In addi-
tion, the global positive solution existence is exhibited by the Lyapunov energy
function method and a positively self invariant set is defined. Moreover, the the
stochastic asymptotic and mean square stability of the disease free equilibrium
are exhibited by applying Lyapunov second method. In [22], D. Wanduku and
G.S. Ladde derived and studied a stochastic two-scale network constant tem-
porary delayed SIR epidemic model. The temporary immunity period accounts
for the time lag during which newly recovered individuals from the disease with
conferred infection acquired or natural immunity lose the immunity and regain
the susceptible state. They utilized the Lyapunov energy function method to
prove the global positive solution process existence, and defined a positively self
invariant set. Moreover, the the stochastic asymptotic and mean square stability
of the disease free equilibrium are exhibited by applying Lyapunov functional
technique. In [20], a stochastic SIR epidemic dynamic model with distributed
time delay is studied. Moreover, the stochastic asymptotic stability of the disease

free equilibrium is also exhibited by applying the Lyapunov functional techni-

K2
035: Scientific Research Publishing

1151



D. Wanduku, G. S. Ladde

que.

In this paper we extend the two-scale network SIR temporary delayed epide-
mic dynamic model [22] into a two-scale network SIR delayed epidemic dyna-
mic model with varying natural immunity period. The varying immunity period
accounts for the varying time lengths of immunity within the immune popula-
tion class. This means that individuals recovering from the disease acquire
natural immunity against the disease. Moreover, the immunity period varies for
individuals in the immune population class. Furthermore, the acquired im-
munity wanes with time and the temporary immune individuals are reconverted
to the susceptible state.

This work is organized as follows. In Section 2, we derive the distributed time
acquired immunity delay epidemic dynamic model. In Section 3, we present the
model validation results of the epidemic model. In Section 4, we show the

stochastic asymptotic stability of the disease free equilibrium.

2. Derivation of the SIR Distributed Delay
Stochastic Dynamic Model

In this section, we derive the varying immunity delay effect in the SIR disease
dynamics of residents of site s/ in region C, of the two-scale population. We
recall the general large scale two level stochastic SIR constant temporary delayed
epidemic dynamic model studied is given ([22], (2.7)-(2.9)). We extend the
constant temporary immunity effect in [22] into the varying time temporary
immunity effect as follows: we assume that for each r el (1, M ) ,and
iel(1,n.), infectious (Ii;“) residents of site S/ in region C, visiting site
Nt

. in region C, recover from the disease and acquire natural immunity

against the disease immediately after recovery. The recovered individuals further
loose immunity and become susceptible to the disease after a period of time s,
where the immunity period sis an infinite random variable with values between
0 and o for the different individuals in the immune population class. Using
ideas from [19], we derive and incorporate the varying time acquired immunity
delay effect into the epidemic dynamic model ((2.7)-(2.9), [22]) by introducing

the term
PN (t=5) i (s)e % ds

_sy
where e %°

is the probability that an individual who recovered from disease at
an earlier time t—s is still alive at time # Furthermore, f_’(s) is the integral
kernel [19] representing the probability density of the time s to loose acquired
immunity by residents of site s/ in region C, who were previously infectious
at their visiting site s, in region C,, and who have recovered from disease
acquiring natural immunity with varying time lengths. Moreover, J: fi' (s)ds =1,
and f' >0. The two level large scale stochastic SIR delayed epidemic dynamic

model with varying natural immunity period and which is influenced by the

human mobility process [30] is as follows:
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dsi;u =

(B S A S+ L A o [ (t-5) 1 (s)e ds

R R CHED I SR

Xy vEssaw (1) u=r.a=i

oSy g 15 (t=9) 87 (s)e s~ (o] +57)s) @)
YT RSy Ja-[ S sy e () | u=r.a= j,j £
[;/,,“S"+g, [or(t=s )f.q(s)e""sds—(pijq+5,q)8iﬁq

S ARSI Jdt-| S s (1) u=g,a=1g =,
DIHHED Yo N B

—(;/i' +o +6 +di’) 1 +Zu2122“: ,f;“S,frl;rJdt

[V vy (1) u=r.a=i

i = Lo =1 (o] + o] +d] )T+ TS VARSIt 22)
Uy s (1) [u=r.a=j,j i,

7T =1 = (P + 8+ ) 1 T A ot

[ E S s aw (1) u=a.a=1.q=r,

[ ORI Y S pRI g 1 =l [ (t=3) £ (s)e " ds

(7 +o! +5{)Ri§']dt,u =ra=i

. 2.3
: _(pi;f +5;)Ri;']dt,u =ra=j,j#i,
[Viﬁq Ri? + quli:q _qu J:lﬁq (t - S) fiqu (S)e_(ﬂqsds

~(pi+07)RY Jdtu=g.a=La=r,

where all parameters are previously defined. Furthermore, for each rel(1,M),

and iel (1, n ), we have the following initial conditions

(Sirau (t)1 i ( )’ Ra ( )) = ((Pigj1 (t)l(ﬂi;uz (t)!(PigJa (t)),t € [_Oo!to]'

om €C([—ot, ] R, ), vk =1,2,3,vr,qel(1,M),aecl(Ln,)iel(Ln), (24)
(D.ak( )>O vk =1,2,3,

where C([-o0,t,],R,) is the space of continuous functions with the supremum

norm

(1) (2.5)

and w is a Wierner process. Furthermore, the random continuous functions

P k=123 are F,-measurable, or independent of w(t) forall t>t,.

Il = Sup-.s,
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We express the state of system (2.1)-(2.3) in vector form and use it, subse-

quently. We denote
X =(S2 12 RY) e R

ia ' Via !

T
ru__ ruT ruT ruT 3n,
Xio —(xi1 Xig e X ) e R,

T
Xy = (XiaT x0T X ) e RO (2.6)
r0 [ riT o r2T ™T T an M,
Xoo =\ Xoo +Xoo +"1 Xgo eR ,
T pistalsia)
00 10 20 MO r=1'r u=lu
Xo0 :( 0+ X001 Xoo ) eR '
. r oM
where I’,UGI(l,M), Iel(l,nr), ael(1,n,). Weset n_zu=1nu'

Definition 2.1.
1. p-norm in R* : Let 7% cR™ be an arbitrary vector defined in (2.6),
T .
where 7} :(zi’a“lo, zig‘zo, Zir;3°) whenever r,uel (1, M) , el (1,n,) R
2
ael(1,n,). The p-norm on R*" s defined as follows
1

|22 ||p = [iiiii A p]p (2.7)

r=lu=li=1a=1 j=1

whenever 1< p <o, and

- _ 00 ru0
Z= ||z00 || = max 1% | (2.8)
P 1<rusM I<i<ng I<a<n 1<j<3
whenever P =00, Let
K = Koomin = k|- (2.9)
00min 1<r,u<M JI<i<n, l<a<n, a

2. Closed Ball in R¥ : Let 7% e R*" be fixed. The closed ball in R*"
with center at z,' and radius >0 denoted B a2 (z;§°; r) is the set
R n

B . (0r) = {zgg R a7 < r} (2.10)
In addition, from (2.1)-(2.3), define the vector yo cR™ as follows: For
iel(Ln), le Ii’(l,nq), rel(LM) and gel”(1L,M),
Yio =Sia +1a +Ry eR, = [O’OO)

ye = (v vy, ) e RY,

Vi = (Vi VA Vi) <RIV, .
Vil = (Ve e ey ) e R,
Y% = (e Y&y )T c Rgzﬂlnr)(zﬁimu),
and obtain
[Bir DITHTED WD IV S R R M dir|ﬁrJdt, forq=r,l=i
dy;' =4[ oy i = (o5 +7) vy —dj1y Jdt, forg=r,a=jandi= j, (2.12)

[7ir|q Vi = (Pﬁq +6/ )) yy —d; Iiliq:|dt, forq=r,y'(t)>0,

K2
1154 ‘:fg Scientific Research Publishing



D. Wanduku, G. S. Ladde

3. Model Validation Results

In the following we state and prove a positive solution process existence theorem
for the delayed system (2.1)-(2.3). We utilize the Lyapunov energy function
method in our earlier study [22] to establish the results of this theorem. We
observe from (2.1)-(2.3) that (2.3) decouples from the first two equations in the
system. Therefore, it suffices to prove the existence of positive solution process
for (Sr” | '”) We utilize the notations (2.6) and keep in mind that

ia ! Tia

X = (s

Theorem 3.1. Let r,uel(1,M), iel(L,n,) and acl(l,n,). Given any
Initial conditions (2.4) and (2.5), there exists a unique solution process
X (tw) = (Sira“ (t,w), 1 (t,W))T satistying (2.1) and (2.2), for all t>1t,. More-

' Via

over, the solution process is positive for all t>t, a.s. That is,

Sa (t,w)>0,10, ., >0, Vt>t, as.

' Via(t,w)

Proof:

It is easy to see that the coefficients of (2.1) and (2.2) satisfy the local Lipschitz
condition for the given initial data (2.4). Therefore there exist a unique maximal
local solution X' (t,w) on te[—oo,z,(w)], where 7,(w) is the first hitting
time or the explosion time [31]. We show subsequently that S[' (t,w), I}’ (t,w) >0
forall te [—oo, 7, (W):| almost surely. We define the following stopping time

>0and I}

T, = Sup{t € (tO! Te (W)) : Sirau [to.t]

z,(t)=min(t,z,), fort>t,

> 0},
[to.t] (3.1)

and we show that 7, (t)=7,(W) a.s. Suppose on the contrary that
P(z, (t)<z,(w))>0.Let we{r, (t)<z,(w)},and te[t,z, (t)). Define

V(Xe) = ZEELELELY (X2),
V(XE)=In(Sg)+In(15), vt <z, (t).

We rewrite (3.2) as follows

Vi) -EE ) By (xp) e SEvia | e

r=li=1 j# g=r 1=1

(3.2)

And (3.3) further implies that

v (x2) = ZZ{dV( )%dv(xi;r)Jr:A;anl“dv(xij“)}, 69

where dV is the Ito-Doob differential operator with respect to the system
(2.1)-(2.3). We express the terms on the right-hand-side of (3.4) in the following:

Site Level: From (3.2) the terms on the right-hand-side of (3.4) for the case of
u=r,a=i
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rr

v (xr)-| SoBor S0 Eon S L [ 0y 17 ) o

m a m r
ki S gq=rl=1 S S

R AT D WA EEE WY COR(E )Z}dt

u=la=1 u=la=1

n, 4 M "
4[2 i qu:pqu N —0 (;/i’+o-i’+5ir+di') (3.5)

Pi rr a arr
k=i S q=ril=1 S

2
rru S.:r ur rru S” ur
_Zzﬂ"a Irr al _—zz( ia ) ( ) (Iai )zidt
u=la=l u=la=l (|ii )
M Ny g
—ZZV.'.Z“ a Wi’ () + 2 > vii I','r 15 dwig' (1)
u=la=1 u=la=1

Intra-regional Level: From (3.2) the terms on the right-hand-side of (3.4) for
thecaseof u=r,a=j,j=i

rr rr Si? Qir o rr rr -8fs
dV(Xij ): o ot g s I (t—s) £, (s)e °ds
ij ij

NPT » AT » Y AN )ﬂdt

u=la=1 ulal

1
{afr T (457 +d) (3.6)

] Irr
(5)

2(':;)2]dt

rru l;r ur 1 U rru 2
+Zzﬂjla Irr aJ _ZZZ(Viia)

u=la=1 u=la=1 (li;r)

& TI’IJ ur rru & rru S';r ur rru
_szjla aj dWJIa ( )+szjla T IaJ dWJIa ( )
u=la=1 u=la=1 I.J

Regional Level: From (3.2) the terms on the right-hand-side of (3.4) for the
caseof u=q,q=r,a=I,

dV(Xiﬁq)z{yijq:%q o jol,j“(t s) £, ()e"g'qsds

iq il
(i +at) -3 A EM;l"zl(vﬁ;“)z(I:ﬁ)z}dt

rr

r I|| I
{J/nq 119 -0 (pnq + +d|q) (3.7)

r

DI R ) (7] (lg,qf]dt

u=la=1 u=la=1 (II| )

M ny
DS EIEGN (1)+ 3> 'r'q Latdwiiy’ (t)

u=la=1 u=la=1

It follows from (3.5)-(3.7), (3.4), and (3.1) that for t<7, (t) ,
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V(Xe8 (1) -V (X (1))

z;y Sf’;rjohr(t s) 177 (s)e Vds—(y + o +7)
_UZ;; ol :If__uz;;( ;;”) (18 )}dSJF;.Zl"J.O{ ~(r +of +5] +df)

rru S:I'f UI' I’I’U (Srr )2 rru ur rru
ERA S RE O (e - RS e
+iZZZI Via ,L', L dwiz’ (s iZJZJ L” [0 (t=s) 1" (s)e s

SCEARD ML » (T

S»M) {@, (o 7 +;) -5 23 (v ) :(81) (':,f)zids

r=1i=1 j#i u=la=1 (|IJ )

DR RRRNRGHECT )ZiZZZLEﬁﬂwa)

r=1i=l j#iu=la=1 r=1i=1l j#iu=la=1

[ (t=5) 177 (s)e s (o +o7)

33354

=1 i=1g=r I=1

u=la=1 ulal r=li=lg=rl=1

S5 g - zz@w)@q}¢+zizzf[ (a0 )

(3.8)

__zi(g)““( )Fszzzzzzhmﬁww (5)

u=la=1 ( |II ) =1i=1g=#r I=lu=la=1

n M Mg M ny

FITTSTS: foe I','q L'dwi ()

r=li=lg=r I=lu=la=1

Taking the limit on (3.8) as t —> 7, (t) it follows from (3.2) and (3.1) that the
left-hand-side V( ) ( )) —oo (since from (3.2) and (3.1),
v (Xira” (T+ (t))) =In Sru ( 7, (t))+ In | (7 ( ) =— ). This contradicts the
finiteness of the right-hand-side of the inequality (3.8). Hence 7, (t)=17, (W)
a.s. We show subsequently that 7, (w)=co.

Let k>0 be a positive integer such that "(000 ” <k, where the vector of
initial values @ = ((p,a ) eR™ s defined in (2.4). Furthermore,

1<r,u<M I<i<n; I<a<n,
|| ||l is the p-sum norm (2.7) for the case of p =1. We define the stopping time

Ty :sup{te t), 7, :||X[JO s) ||1Sk,S€[0,t]}

(3.9)
7 (t)=min(t, 7).
where from (2.7),
M N Ny
[ (s)] = 253 52 (5) 12 (5) 610

It is easy to see that as K —>o, 7, increases. Set lim,_ 7, (t) =7,. Then
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7, <7, as. We show in the following that: (1) 7, =7, as < P(z,#7,)=0,
2) 7,=0 as < P(z’oc :oo):l,
Suppose on the contrary that P (7, <7,)>0.Let we{r, <z} and t<r,.
In the same structure form as (3.2) and (3.4), define
v (X2)= 3353V (%),
r=1 i=1 u=la-l (3.11)
Vi (X )= e (S 1) Ve <o (1),

1a

From (3.11), using the expression (3.4), the Ito-Doob differential dV, with
respect to the system (2.1)-(2.3) is given as follows:
Site Level: From (3.11), the terms of the right-hand-side of (3.4) for the case

of U=r,a=i
dv, (X1) = “{B’ +Zp.L’S.’k’ +ZZP.;“S.2?
k=i q=r 1=1
[0 (=9 7 (e sy a5 | 312

M Ng
+95{ZP."|" +2.2 pali —ol i _(7’ir +of +dir) '5’}“

ki g=r 1=1

Intra-regional Level: From (3.11), the terms of the right-hand-side of (3.4)
forthecaseof u=r,a=j,j=i

v, (Xg7) =™ | oy'ST 4 g5 [ 157 (=) 7 (s)e s - oS [t
+e Lot + o1y = (o +d) 1 ot

Regional Level: From (3.11), the terms of the right-hand-side of (3.4) for the
caseof u=q,q=r,a=|I

dvy ( X! ) =t [Viquirir + Qﬁj I (t—s) f%(s )ef‘s'qst - Pi'Sy } dt
+et [;f,lq L+ 010 —(piﬁq +d/ ) Iﬁq}dt

From (3.12)-(3.14), (3.4), integrating (3.4) over [to, r] leads to the following

(3.13)

(3.14)

Vi (Xap (T))
=V ( ) Z_;;I s {Br +Zplfsfk’ +§§p{fsg +0 J'O 1" (t—s) £, (s)e™ds
_( ) }ds+2}2}j e {Zp,' +ZIZ;p,;qI,:‘ o' —(7/{ +o) +d{)|£’}ds
e G
+ZZZI e’ [ oy i+ o) [ 1} (t=s) £ (s )e"i’rsds—pij'si}’}ds (3.15)
i
+zlzljzj a1 = ofly (o +d} )1y |ds
+Zﬁ;ilnzl:jfe5' |:;/,"‘S" +o! [T (t=s) £ (s)eV*ds —pirqui:q}dS
e
+§§(§;reb' [y,,“ i =013~ (o7 +d7) Iijq]ds
1158 % scientific Research Publishing
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From (3.15), we let 7 =1, (t) , where 7, (t) is defined in (3.9). It is easy to
see from (3.15), (3.9), (3.10), and (3.11) that

=[x (7 ()], <V (X8 (5 (1)) (3.16)

Taking the limit on (3.16) as k — o leads to a contradiction because the
left-hand-side of the inequality (3.16) is infinite, and the right-hand-side is finite.
Hence 7,=17, as. In the following, we show that 7, =7, =00 as. We let
We{re <oo}. Applying some algebraic manipulations and simplifications to

(3.15), we have the following

I{Te<oo}vl (ng (T))
= I{re<oc}vl(xgg( )) {zg<oo Zzl ( - )
ZZZ.Z [ [ [0 ()™ ds — g 137 () ot
g
Te<w ZZJ. |: r t)| rr :|(Srr Ill;r)ds (3'17)
r=li=1 ]¢|
- re<oo ZZJ. |:7| Zzylrlqeal j|(S||;r + Ii? )dS
r=li=1 g=11=1
M ng St
eSS aretas -1, 33 [1yeas
r=1i=1 r=1i=1 j#i
T <3o zzzz d qJ. |I'iqe5q ds
R
where 1, isthe indicator function of the set A.
We recall [30], of =), of and y = Zirz.ﬂl 7i". Hence the fourth and
fifth terms on the right-hand-side of (3.17) are such that
[ ZW oj'e” }20, VS 28], j#i
and

[. =Y -1Z|—1 yie’ }>O, Vol =5, q=rlel(Ln,)

We now let =7, (t)AT in (3.17), 3T >0, where 7, (t) is defined in
(3.9). The expected value of (3.17) is estimated as follows

£, V(X8 (5 () AT))]

Svl(xgg (to ))+ zr%eb}rrk(l)ﬂ (3.18)

vy

SIS 0 o it (5)e e

r=li=lg=11=1

Furthermore, from (3.10), (3.11) and the definition of the indicator function
I, it follows that

emmtr X8 (8 Q)] e (XE (5 (DAT)) - G19)
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B
R

It follows from (3.18), (3.19) and (3.9) that

P({z’e <o0,7, (t)ST})k

= E['{W,Tk oy X6 (7 )], }S E[I{, V(X8 (z (t)/\T))] (3.20)
SV (X8 (1)) + 3 e +;§;;fo £ (1) a1 ot (5)e s [t

It follows immediately from (3.20) that P ({z-e <0,7, ST}) —>0 as k>,
Furthermore, since T <o is arbitrary, we conclude that P ({re <o0,7, < oo}) =0.
Finally, by the total probability principle,

P({z, <®})=P({z, <o0,7, =0})+P({r, <0, 7, <o0})

< P({Te ¢z’w})+P({Te <o,7, <oo})= (321

Thus from (3.21), 7, =7, = a.s. as was required to show.

Remark 3.1. For any rel(1,M) and iel(1,n ), Theorem 3.1 signifies
that the number of residents of site S| of all categories present at home site S|,
or visiting intra and inter-regional sites s] and s respectively, are nonne-
gative. This implies that the total number of residents of site S| present at
home site and also visiting sites in regions in their intra and inter-regional
accessible domains [21], given by the sum N (t)= ZLZ Vi, is nonnega-
tive. Moreover, the total effective population [21], defined by
eff (Niror )(t) = ZLZ 2“:1 Ya » atany site S| inregion C, is also nonnegative at
all time t>t,.

The following result defines an upper bound for the solution process of the
system (2.1)-(2.3). We utilize Theorem 3.1 to establish this result.

Theorem 3.2. Suppose the hypotheses of Theorem 3.1 is satisfied. Let
p=ming, J<asn, (5: ) f

M n,

STy ()<L Y e (322)

1
r=lu=li=1 a=1 Hor=1i=1
then
M M n ny
DIy () < _ZZ B, fort>t, as. (3.23)
r=lu=li=la=1 r=li=1
Proof: See ([22], Lemma 3.2)
Remark 3.2. From Theorem 3.1 and Theorem 3.2, we conclude that a closed

ball % 2 (6'r) in R under the sum norm ||||1 centered at the origin

Oe R3n , with radius T = —Zr 12 In'lB,r is self-invariant with regard to a two-

scale network dynamics of human epidemic process (2.1)-(2.3) that is under the

influence of human mobility process [30]. That is,

(6:r):{(s.;“,l.':, RE): 2 (1)2 0and 8], = 3375 v ()<—ZZB} (3:29)

r=lu=li=la=l =1i=1

is a positive self-invariant set for system (2.1)-(2.3). We shall denote

2B (3.25)
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4. Existence and Asymptotic Behavior of Disease
Free Equilibrium

In this section, we study the existence and the asymptotic behavior of the disease
free equilibrium state of the system (2.1)-(2.3). The disease free equilibrium is
obtained by solving the system of algebraic equations obtained by setting the
drift and the diffusion parts of the system of stochastic differential equations to
zero. In addition, we utilize the conditions that | =R =0 in the event when
there is no disease in the population. We summarize the results in the following.
Forany r,ue I(l,M), iel (l,nr) and ael (l,nu),let

r__rr M ny r, ru

D_r — _r+o__r+5_r p|a ia_ playla >5.r >0_ 4.1
i }/| i i ; rr+5r ;; ,D|a 5u ! ( )

a

Furthermore, let (S,;“*, 12, R“’*) be the equilibrium state of the delayed
system (2.1)-(2.3). One can see that the disease free equilibrium state is given by

E —(Sr“* 0, O) where

la

F' foru=r,a=i,
. Br alrr )
Si = Dr 0 15“ foru=r,a#i, (4.2)
BI’
F ru7'35u, foru=r

The asymptotic stability property of E.' will be established by verifying the
conditions of the stochastic version of the Lyapunov second method given in
([31], Theorem 2.4), [32], and ([31], Theorem 4.4), [32] respectively. In order to
study the qualitative properties of (2.1)-(2.3) with respect to the equilibrium
state (S,;“*,O 0) first, we use the change of variable that shifts the equilibrium
to the origin. For this purpose, we use the following transformation:

Uirau = Sirau - Sigj*
Vi =1 (4.3)
W' =R

By employing this transformation, system (2.1)-(2.3) is transformed into the

following forms

[Zq L PRUE o [V (t=s) £ (s)e ods
(7/| +0; +5T)U rr _Zu lZ ,rru (Srr*+U") a'-i"’:|dt
[ v (s +ur e aw (4], forg-rd -

[O-I’U.r.r ol [V

(t=5) " (s)e Pds— (o +07)uy

du;’ = (4.4)
MO I CHERUH A :
[ i (s U Varawi ()], forg=r =, j £
[ylqu" Fof [V (t=s) £ (s)e W ds (o + 67 JUp -3 S 4 qrusrqwq}d
XS (s U vaw (1), forg e,
1161
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[ > o = (o + 77+ 07 + 87+l )Wy

F Y B (S UV et
[Zu L (ST U Vdwi (¢ )] forq=r,l=i

AVt =1 o = (o] + oy + 6] + ATV 2T i (ST UVl Jdt (4.5)
| S i (S U Vardwi ()], forg=ril =, j =i,

[ R R R0 \VAEh S S0 vl (S u,:ﬂv;,ﬂdt

TS (i U Vi (1), forg <,

and
[Z _12 S PEW VT — g J Vi (t-s) )e’”irsds—(;/ir +o +6 )W“"}dt, forq=r,l=i
dw,® = [ai;'w"" + oV = o] [ V" (t=s) " (s)e"s’sds ~(pj +5 )Wij"}dt, forq=rl=j, j=i (4.6)

|:7|qu "oVt —of :Viqu (t—s) (s)eﬂqsds - (pirlq +6) )Wiqu:ldt' forq=r

We state and prove the following lemmas that would be useful in the proofs of
the stability results.
Lemma 4.1. Let V,: R* x R, > R, bea function defined by

V(%) = T (%2,
i(52)= (s s 1) el (1) + (Re) ()

~00 (U SRVACRYVAL )T and ¢ >0.

ia’Via ? 1a la -

Then V, e C* (R3"2 xR, R+) , and it satisfies

o[ [) <s (%2 (1) = a([82]) (439)
where
u M M N Ny
(||233||)=m,usMrgL':,,mu{zizg};ggg[(u:)z+(vi;u)2+( oY) .
M M n Ny :
(”igé)”) - I<r,us<M L|<n, J<a<n, {Cir: + 2} éé;;[(u ira‘u )2 + (Vi?rlu )2 + (Wie;u )2 :|

Proof: See ([22], Lemma 4.1).

Remark 4.1. Lemma 4.1 shows that the Lyapunov function V defined in (4.7)
is positive definite, decrescent and radially unbounded (4.8) function [31] [32].

We now state the following lemma.

Lemma 4.2. Assume that the hypothesis of Lemma 4.1 is satisfied. Define a
Lyapunov functional

V=V, +V,, (4.10)

where V, is defined by (4.7), and

1162 o‘o‘ Scientific Research Publishing
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)2

V=YY () fw( “(s)etE [ (v (o)) dﬂ)d o (@11)
r=li=lu=la=1 ia
Furthermore, let
‘ <a" i (e f .
Z —12 a=/ |a Zaﬂ Za¢rz n +2;uii
= - - - , foru=r,i=za
(7i +oy +6 )
M 2
G
U =3 oy 27" (4.12)
= , foru=r,a=i
(pi:ar +5£)
M 2
COr
II;J " 2 a
= - , foru=r,
(P +57)
rn/ rr* m m 1 r
*Z _12 a1 Hia *Z _le 1 Piib (S Hii + K )+§dii )
, fora=i,u=r
o +y +o +6 +d]
LIS (s )+ Sl
g = 2 — 2 , forazi,u=r (4.13)
on+pn +6, +d;
m 1 Ny v ru r 1 r
A Hii +§Z\':Aflz -1 ;Ib (S ‘ /“llau +/uiau)+5d:i
— , foru=r.
0s + P +6, +d;
and
2 2
law on () 1w (of)
72 _1Za1 Hia EZu;ﬁrZa:l ;Zrir +52a¢i I?rir +'ui:r
= , foru=r,a=i,
(yir+o_ir+5ir)
B 2
1(pl) 1,
ru Py r + My T i
W' =<2 Ha 2 (4.14)
= , foru=r,a=i,
(pla +5a)
i ru 2
116 1
2( I_aru> +§ i +:ui;u
= ( - 5u) , foru=r
pia + a
for some suitably defined positive numbers ) and d. , where ' depends

on &, ,
U <1,
P
stochastic system (2.1)-(2.3) satisfies the following inequality

for all r,uel”(1,M), iel(l n) and aelf(1,n;). Assume that
P <1 and 20" <1. There exist positive numbers @', w.' and
such that the differential operator LV associated with Ito-Doob type
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LV (%) < ZZH¢ (Ur) v () o (wi)'|

gy vy )] @)
S () o () ﬂ
Moreover,
LV (%) < Vi (%5 ) (4.16)

where a positive constant cis defined by

H ru ru
mm]sr,usM,Jsisnr,Jsasnu {¢|a Via » (pla}

— (4.17)
maXKr,usM,]sisn,,Jsasnu {Cia + 2}

C=

Proof:

The computation of differential operator [31] [32] applied to the Lyapunov
function V, in (4.7) with respect to the large-scale system of Ito-Doob type
stochastic differential Equations (2.1)-(2.3) is as follows:

o (8)- 38w )+ Seu () S| s

r=li=l ji uzra=1

where,

LV, (%) = 222[(“ Cif ) PEVEVIT + pRURUT + pEVIUT + U + pW W, |
+u21‘g;L1JT’ V"rr (t-s)f" (s)e“sirsds +20'V,) ’jwvii" (t—s) £ (s)e™ds
= 20/W," [V (t—s) " (s)e °ds — 20/V,"W,"
~2[(of +d7)+2(y +of +o )]vii"ui;r ~2(yf +or +o7) Uy ) (4.19)
- 2[(0{{ +1)gir + 2(0{{ +1)(7i’ +o] +0] +d/ )}( i )2

-2 (7ir +oj +ai +0] )(Wi 3 ) +2¢; ZZ Bia (Si:r* +Uji )Valfrvurr

u=la=l

+C"ZZ( o )2 (si™+uy )2 (var )2  foru=r,a=i

u=la=1

Z LV () Z {2(1+ cr ) oV +26TUUT 4+ 26TVUTT 4+ 26U VT 4+ 20T WTWT

1a 1a ii la "1a
a#i azr
+20/U7 vi;f (t—s) f7 (s)e*ds + 2.V, " vrr t—s % ds
— 200 [V (t-5) 7 (s)e Fds — 2] (e +1)ef + 2(cia +1)( o+ ) |(vir)’
2 (4.20)
—2(pg +31)(Ug) -2(p5 +07) (W, ) +20IV,W,T
_ r r .I’I’ r _ rr _rr rrv r* m vr 118
2[ (of +a5)+2(p7 +67) Vo }+ 2§c zlbzll (S U Vv,
+Zc ii( a,b) (e +Ui’;)2 (vaar)z  foru=r,azi
a#i v=lb=1
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M Ny M Ny
ZZ LVl ()‘ZirﬁtJ ) = 22{2(1+ Cir ) ':VI;UV”” + 27/|rauulrauU|:r + Zyl';lvlar\uu 3 + 27/II'UU I'UV "

uzra=1 uzra=1 a “ia i
+27.2”W.£”W."+2@aU'“ Vi (t-s) £l (s)e%ds
+29aV rUJ. V ) éasd5 ZQ;JW ru Vi;u (t—S) f_ru (S)efa‘gsds
~2[(c +1)2} +2(°ia +1)(p.a +or+d) (Vi) -2 +or) (Ui ) (4.21)

~2(pf +al + 87 ) (W, ) + 200V, W —2[(95 +dg)+2(pp +5“)] f“u;;}

M ny
+ZZZC ZZ “{V(sf“ +Uf“)vbva“v,;“

u¢ra—1 v=1b=1
STy ) (s eur) (w2 forusr

By using (3.25) and the algebraic inequality
2

a
2ab <
g(c)

where a,b,ceR, and the function g is such that g(c)>0. The fourteenth
term in (4.19)-(4.21) is estimated as follows:

M Ny
2> B (S + U Vv

+b?g(c) (4.22)

V= lb 1
<Z_;bZ;C ﬁlrl?l(srr* (5{)+ or (@r))(vn" )2
rrv Srr* EZ vr 2
+v§;;c Bis [g (5,)+ " (@r)J(vbi )
2375 Y A (5L U v
< aZ;VZ;bZ; Crr arlr';/ (Srr* r (5;)+ gir (5ar ))(Vi;r )2
< v Sirar* EZ vr)?
TR {g @) o (5;)}% )
and
M Ny M Ny .
zéazlvz_;bZ;Cru :Irt;/ (Sru +U ru) b\;uVI;u

M Ny, M Ny

<Y el (s (62)+ of (62)) (Vi) (4.23)

uzra=1lv=1b=1

ny ny rux n?2
Yy { %, B )](vbv:)z

uzra=lv=1b=1 gir (5:) gir (5;

Furthermore, by using Cauchy-Swartz and Hoélder inequalities and (4.22), the

sixth, seventh and eighth terms in (4.19)-(4.21) are estimated as follows:
uparu[Ryru ru ~5s
20, A | Vi (t=s) f3" (s)e ™ ds

S(i:.’“) [ (v (t—s))2 fo (s)e 2% ds + p” (A{a“)z, (4.24)
vruel(LM)iel(Ln).aecl(Ln,), Ay e{UZ VW,

ia? Via " Via
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From (4.19)-(4.23), (4.18), repeated usage of (3.25) and inequality (4.22)
coupled with some algebraic manipulations and simplifications, we have the

following inequality

u=la=1 a#i , uzra=1 i

ﬂzzz e e SR +a:+5i'>}<uir>z

u=la=1 a=r i u=la=1 i

{(m 83 S erer L 3 g VEL
(of

o +d; )2 (7ir+o-ir +§ir) (Ql )2 «
+ rr + 4 rr zz ﬂnrtr)v (Sizr /uirir + /uirir )
Hij Hii i v=1b=1

—2(ci’ir +l)( [y +ol +8 +d] )](V ")

J{izy Z( ) ZZ< 9 zy."2(y,f+a{+5{)}(w,,")2}

u=la=1 a#i ﬂ,, uzra=li ,U,,

+i22{[ (#) + 2448 + 34 — 2(p.’a'+5£)](U.Z)2

=li=la=i ia

r 2 r r 2 m r 2
(’ii;r) +(2+ci;r)ﬂi:r +(Qa ;fa) +4(pia;§a) +‘u_rr

+ (2+ci’i')

et S5 -l o o)
(vv.:)z}

zzzz{ RC R z(p,;u+5;>]<u,;u>z

=li=luzra=1 ia

(o)

ia

148 2
i(plarr) + il + 25 =2(pl +57)

(e +ad)  (pr+or)

* (2+C‘rir) ru 4'(2"'0{&;])/‘4:r + 5 +4 — +
ia ia o
ol 33 (51w + ) =2(el +1)(ef + +d:)}(vi;u I

+

(pir;?u)+ i+ 2y =2(p + 6 )} (W' )2}

ia

R )I( "t s))zf (s)e s

r=li=lu=la=1 ,Ula
wr\2
v s" +B }(vb,’)

Srr
St (52
w(vi) (se+B }(vb:)z (4.25)

D RIIH {;gﬂ;g[si L
3588 S [jl oo s

a

K2
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where ' =g ( n ) , 0; is appropriately defined by (4.22). The differential
operator LV'[31] [32] applied to the Lyapunov functional (4.10) and (4.11), leads
to the following

LV (%) <L (xoo)+3ZZZZ( o (v

Y1) [ (s)e s
r=li=lu=la=1 My

2 (4.26)
M N M Ny Q: B . 2 )
_s;;;;(#,u) e -s)f 1

2 (s)e?%cds.
We note that wa.”’

2%3ds <1. Furthermore, tt follows from (4.26)
(4.25), and some further algebraic manipulations and simplifications that

L (55) < 8.3 af (U5 v () ol (W)

oS (urf v (e o
a#r
M Ny

v W) } (4.27)
S [roz) vz () o)

where, for each r uel(l M), iel(l n ) and ael(l n ), using (4.12)
(4.13) and (4.14), we define the constants d, ¢

az =33 el ““[355” = J

ru

a > l/lla and q)irau

33 (v )

abi ) (SL;IZ* + §>2
v=1b=1

as follows:

) (4.28)
v=1b=1 Hia
for some positive numbers

Cp » for all ruel"(1,M),
aelf(1,n).

iel(l,n) and
2(;/{ +o-{+5{)(1—11{;), foru=r,a=i

e =12(pn +0L)(1-uy), foru=r.axi (4.29)

(p,a +5“)(1—u{;), foru=r

2(0f +7{ +of +6 +df ){ (1-27)+ (1—%@{{)}, foru=r,a=i

v =+t ot o) o oo 13 )| foru=rasi oo
2(9;‘ +pl 450 +d§){cf; (1—‘3i;u)+(1—%€ir:ﬂ' foruzr
and

2(7ir+o-i’+5i')(1—m;“), foru=r,a=i,
2(pg +0;)(1-2), foru=r,a=i, (4.31)
(,oIa +§“)(1—m;“), foru=r

moreover, 3, 0", W,

ru
(pia

are given in (4.12), (4.13), (4.14) and
3 Scientific Research Publishing
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o eeen) B e U

(gir+7/i +o; +0; +df )

2 2 2 2
o +df ¥ +oi +0 o o
( m ) +4( m ) +( rr) +3( rr) i
Hii Hii Hii Hii , foru=r,a=i,
+
e (Qir +yi +oi +0] +dir)
ia 3T 2 2 2 2
Pa ps+d; Pa 04 o
(2+c{i’)( ") +2ui’ir+( - ) +4( - ) +,uirar+3( rr) .
Hia Hia Hia Ha | foru=r.a#i,
(Qa +p0 +0, +d; )
P R e B e P ()
(2+c{i’) e 2u + o +4 - + iy +3—7
Hia ia ia ia for,u=r
(o + 00 +67 +dy)

Under the assumptions on ), L' and 20, it is clear that ¢, and
@, are positive for suitable choices of the constants ¢}’ > 0. Thus this proves the
inequality (4.15). Now, the validity of (4.16) follows from (4.15) and (4.8), that is,

LV (%55) < —cVi (%39),
mln r,us 1<n, as<n, ¢Ia ’Wla 1 nga
where = Er U e A, { } . This completes the proof. We now
maXJsr,usM,Jsisn,,]sagnu {Ci;u + 2}
formally state the stochastic stability theorems for the disease free equilibria.

Theorem 4.1. Given r,uel(1,M), iel(l,n) and ael(l,n,). Let us
assume that the hypotheses of Lemma 4.2 are satisfied. Then the disease free
solutions E[', are asymptotically stable in the large. Moreover, the solutions
E are exponentially mean square stable.

Proof:

From the application of comparison result [31] [32], the proof of stochastic
asymptotic stability follows immediately. Moreover, the disease free equilibrium
state is exponentially mean square stable. We now consider the following
corollary to Theorem 4.1.

Corollary 4.1. Let rel(1,M) and iel(1,n ). Assume that of =y =0,
forall rel (1,M) and iel (1,nr).

1
o) .
' foru=rii=a
1
[0 i v2ui
(pia) + rr+§ r
u:': _ /,lig lLlll 2 lula (432)
= , foru=r,a=i
(ol +0)
i ru 2
(pia ) 3
/’lll +- /'lla
Hia 2
= , foru=r,
(pi +57)
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1 M LTI 1 M N orrv oo r 1 rr
EZu:lZazlfuiau +Ezvzlzb:1ﬁiib (Sii Hii + )+Edii )
— , fora=i,u=r
o +0; +d
1 m 1 M nv rrv r* r 118 1 r
N E,uii +EZV=lzb=1 aib (Sia Hig + Hig )+Edai )
g = - — - - , forazi,u=r (4.33)
Qa +pia +é‘a +da
1 m 1 M ny rv ru* r 1 r
Eluii +Ezvzlzb:1ﬂ;ib (Siiu g +/ui;)+§d:i ;
- , foru=r.
02+ P +0, +d;
and
1
5 .
1 , foru=r,a=i,
_1 M Nt rr
Ezuﬂzaﬂﬂia + L
i 148 2
r l(pia) +7Iu_r_r +'u_rr
Wa =y|2 pr 270 e (4.34)
= , foru=r,a=i,
(pirar + 5;)
r 2
1 (’Dirau) 1 ru
S ToHi TH
2 2 :
= , foru=r
(pil: +5:)

The equilibrium state E;  is stochastically asymptotically stable provided
that 47,207 <1 and U’ <1,forall uel(1,M) and aelf(1,n,).

Proof: Follows immediately from the hypotheses of Lemma 4.2, (letting
o; =y =0), the conclusion of Theorem 4.1 and some algebraic manipulations.

Remark 4.2.

1. The presented results about the two-level large scale delayed SIR disease
dynamic model depend on the underlying system parameters. In particular, the
sufficient conditions are algebraically simple, computationally attractive and
explicit in terms of the rate parameters. As a result of this, several scenarios can
be discussed and exhibit practical course of action to control the disease. For
simplicity, we present an illustration as follows: the conditions of o] =y =0,
Vr,i in Corollary 4.1 signify that the arbitrary site S| isa“sink’ in the context
of compartmental systems [33] [34] for all other sites in the inter and intra-
regional accessible domain. This scenario is displayed in Figure 1. The condi-
tions Ui <1 and 25" <1
the joint average life span of individuals in the intra and inter-regional accessible
domain of site s, . Furthermore, the conditions G}’ <1,Vu e | (LM),ael(Ln,),
and 3 <190 <lvu=r,a=i, and Vuzr,ael(Ln,), signify that the

ia — ia —

exhibit that the average life span is smaller than

magnitude of disease inhibitory processes for example, the magnitude of the
recovery process is greater than the disease transmission process. A future
detailed study of the disease dynamics in the two scale network dynamic
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Figure 1. Shows that residents of site s/ are present only at their home site s/ . Hence
they isolate every site from their inter and intra regional accessible domain C(Sir) . Site
r

S

. is a “sink” in the context of the compartmental system [33] [34]. The arrows

represent a transport network between any two sites and regions. Furthermore, the dotted
lines and arrows indicate connection with other sites and regions.

structure for many real life scenarios using the presented two level large-scale
delay SIR disease dynamic model will appear elsewhere.

2. The stochastic delayed epidemic model (2.1)-(2.3) is a general representa-
tion of infection acquired immunity delay in a two-scale network population
disease dynamics. The stochastic delayed epidemic model with temporary
Immunity period ((2.7)-(2.9), [22]) and the numerical simulation results (Sec-
tion 5, [22]) are special cases of (2.1)-(2.3) when we let the probability density
function of the immunity period, f." (s) = 5(3 -T' ), vr,uel (1, 3),
Vi,ael (1, 3) , where 0 is the Dirac 6-function [19].

5. Conclusions

The presented two-scale network delayed epidemic dynamic model with varying
immunity period characterizes the dynamics of an SIR epidemic in a population
with various scale levels created by the heterogeneities in the population.
Moreover, the disease dynamics is subject to random environmental perturba-
tions at the disease transmission stage of the disease. Furthermore, the SIR
epidemic confers varying time temporary acquired immunity to recovered
individuals immediately after recovery. This work provides a mathematical and
probabilistic algorithmic tool to develop different levels nested type disease
transmission rates, the variability in the transmission process as well as the
distributed time delay in the framework of the network-centric Ito-Doob type
dynamic equations. In addition, the concept of distributed delay caused by the
acquired immunity period in the dynamics of human epidemics is explored for
the first time in the context of complex scale-structured type human meta-
populations.

The model validation results are developed and a positively self invariant set
for the dynamic model is defined. Moreover, the globalization of the positive
solution existence is obtained by applying an energy function method. In

addition, using the Lyapunov functional technique, the detailed stochastic asym-
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ptotic stability results of the disease free equilibria are also exhibited in this
paper. Moreover, the system parameter values dependent threshold values
controlling the stochastic asymptotic stability of the disease free equilibrium are
also defined. Furthermore, a deduction to the stochastic asymptotic stability
results for a simple real life scenario is illustrated. We note, further detail study
of the stochastic SIR human epidemic dynamic model with varying immunity
period for two scale network mobile population exhibiting several real life
human mobility patterns will appear elsewhere.

We note that the disease dynamics is subject to random environmental
perturbations from other related sub-processes such as the mobility, recovery,
birth and death processes. The variability due to the disease transmission
incorporated in the epidemic dynamic model will be extended to the variability
in the mobility, recovery and birth and death processes. A further detailed study
of the oscillation of the epidemic process about the ideal endemic equilibrium of
the dynamic epidemic model will also appear else where. In addition, a detailed
study of the hereditary features of the infectious agent such as the time-lag to
infectiousness of exposed individuals in the population is currently underway

and it will also appear elsewhere.
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