
Georgia Southern University Georgia Southern University 

Georgia Southern Commons Georgia Southern Commons 

Department of Mathematical Sciences Faculty 
Publications Department of Mathematical Sciences 

5-27-2017 

Global Analysis of a Stochastic Two-Scale Network Human Global Analysis of a Stochastic Two-Scale Network Human 

Epidemic Dynamic Model with Varying Immunity Period Epidemic Dynamic Model with Varying Immunity Period 

Divine Wanduku 
Keiser University 

G. S. Ladde 
University of South Florida 

Follow this and additional works at: https://digitalcommons.georgiasouthern.edu/math-sci-facpubs 

 Part of the Education Commons, and the Mathematics Commons 

Recommended Citation Recommended Citation 
Wanduku, Divine, G. S. Ladde. 2017. "Global Analysis of a Stochastic Two-Scale Network Human Epidemic 
Dynamic Model with Varying Immunity Period." Journal of Applied Mathematics and Physics, 5 (5): 
1150-1173. doi: 10.4236/jamp.2017.55101 
https://digitalcommons.georgiasouthern.edu/math-sci-facpubs/697 

This article is brought to you for free and open access by the Department of Mathematical Sciences at Georgia 
Southern Commons. It has been accepted for inclusion in Department of Mathematical Sciences Faculty 
Publications by an authorized administrator of Georgia Southern Commons. For more information, please contact 
digitalcommons@georgiasouthern.edu. 

https://digitalcommons.georgiasouthern.edu/
https://digitalcommons.georgiasouthern.edu/math-sci-facpubs
https://digitalcommons.georgiasouthern.edu/math-sci-facpubs
https://digitalcommons.georgiasouthern.edu/math-sci
https://digitalcommons.georgiasouthern.edu/math-sci-facpubs?utm_source=digitalcommons.georgiasouthern.edu%2Fmath-sci-facpubs%2F697&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/784?utm_source=digitalcommons.georgiasouthern.edu%2Fmath-sci-facpubs%2F697&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/174?utm_source=digitalcommons.georgiasouthern.edu%2Fmath-sci-facpubs%2F697&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.georgiasouthern.edu/math-sci-facpubs/697?utm_source=digitalcommons.georgiasouthern.edu%2Fmath-sci-facpubs%2F697&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digitalcommons@georgiasouthern.edu


Journal of Applied Mathematics and Physics, 2017, 5, 1150-1173 
http://www.scirp.org/journal/jamp 

ISSN Online: 2327-4379 
ISSN Print: 2327-4352 

DOI: 10.4236/jamp.2017.55101  May 27, 2017 

 
 
 

The Global Analysis of a Stochastic Two-Scale 
Network Epidemic Dynamic Model with 
Varying Immunity Period 

Divine Wanduku1*, G. S. Ladde2 

1Department of Mathematical Sciences, Georgia Southern University, Statesboro, USA  
2Department of Mathematics and Statistics, University of South Florida, Tampa, USA  

 
 
 

Abstract 

A stochastic SIR epidemic dynamic model with distributed-time-delay, for a 
two-scale dynamic population is derived. The distributed time delay is the va-
rying naturally acquired immunity period of the removal class of individuals 
who have recovered from the infection, and have acquired natural immunity 
to the disease. We investigate the stochastic asymptotic stability of the disease 
free equilibrium of the epidemic dynamic model, and verify the impact on the 
eradication of the disease. 
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1. Introduction 

The recent advent of high technology in the area of communication, transpor- 
tation and basic services, multilateral interactions have afforded efficient global 
mass flow of human beings, animals, goods, equipments and ideas on the earth’s 
multi-patches surface. As a result of this, the world has become like a neighbor- 
hood. Furthermore, the national and binational problems have become the 
multinational problems. This has generated a sense of cooperation and under- 
standing about the basic needs of human species in the global community. In 
short, the idea of globalization is spreading in almost all aspects of the human 
species on the surface of earth. The world today faces the challenge of increas- 
ingly high rates of globalization of new human infectious diseases and disease 
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strains [1] associated with the high number of inter-patch connections modern 
efficient global human transportation. For instance, the recent 2009 H1N1 flu 
pandemic [2] is closely interrelated with the many inter-patch connections 
facilitated human transportation of the disease. Attempts to study human 
infectious disease dynamics influenced by human mobility process in complex 
human meta-population structures are made [3]-[15]. 

The inclusion of the effects of disease latency or immunity into the epidemic 
dynamic modeling process leads to more realistic epidemic dynamic models. 
Furthermore, epidemic dynamic processes in populations exhibiting varying 
time disease latency or immunity delay periods are represented by differential 
equation models with distributed time delays. Several studies [16] [17] [18] [19] 
[20] incorporating distributed delays describing the effects of disease latency or 
immunity in the dynamics of human infectious diseases have been done. A 
mathematical SIR (susceptible-infective-removal) epidemic dynamic model with 
distributed time delays representing the varying time temporal immunity period 
in the immune population class is studied by Blyuss and Kyrychko [19]. In their 
study, the existence of positive solution is exhibited. Furthermore, the global 
asymptotic stability of the disease free and endemic equilibria are shown by 
using Lyapunov functional technique. Moreover, they presented numerical 
simulation results for a special case SIR epidemic with temporal immunity. The 
temporal immunity was represented in the epidemic dynamic model by letting 
the Dirac delta-function be the integral kernel or the probability density function 
of the distributed time delay. 

Stochastic models also offer a better representation of the reality. Several 
stochastic dynamic models describing single and multi-group disease dynamics 
have been investigated [20]-[29]. In [21], a stochastic multi-group SIRS epide- 
mic dynamic models is derived and studied. The random environmental 
fluctuations manifest as variability in the disease transmission process. In addi- 
tion, the global positive solution existence is exhibited by the Lyapunov energy 
function method and a positively self invariant set is defined. Moreover, the the 
stochastic asymptotic and mean square stability of the disease free equilibrium 
are exhibited by applying Lyapunov second method. In [22], D. Wanduku and 
G.S. Ladde derived and studied a stochastic two-scale network constant tem- 
porary delayed SIR epidemic model. The temporary immunity period accounts 
for the time lag during which newly recovered individuals from the disease with 
conferred infection acquired or natural immunity lose the immunity and regain 
the susceptible state. They utilized the Lyapunov energy function method to 
prove the global positive solution process existence, and defined a positively self 
invariant set. Moreover, the the stochastic asymptotic and mean square stability 
of the disease free equilibrium are exhibited by applying Lyapunov functional 
technique. In [20], a stochastic SIR epidemic dynamic model with distributed 
time delay is studied. Moreover, the stochastic asymptotic stability of the disease 
free equilibrium is also exhibited by applying the Lyapunov functional techni- 
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que. 
In this paper we extend the two-scale network SIR temporary delayed epide- 

mic dynamic model [22] into a two-scale network SIR delayed epidemic dyna- 
mic model with varying natural immunity period. The varying immunity period 
accounts for the varying time lengths of immunity within the immune popula- 
tion class. This means that individuals recovering from the disease acquire 
natural immunity against the disease. Moreover, the immunity period varies for 
individuals in the immune population class. Furthermore, the acquired im- 
munity wanes with time and the temporary immune individuals are reconverted 
to the susceptible state. 

This work is organized as follows. In Section 2, we derive the distributed time 
acquired immunity delay epidemic dynamic model. In Section 3, we present the 
model validation results of the epidemic model. In Section 4, we show the 
stochastic asymptotic stability of the disease free equilibrium.  

2. Derivation of the SIR Distributed Delay  
Stochastic Dynamic Model  

In this section, we derive the varying immunity delay effect in the SIR disease 
dynamics of residents of site r

is  in region rC  of the two-scale population. We 
recall the general large scale two level stochastic SIR constant temporary delayed 
epidemic dynamic model studied is given ([22], (2.7)-(2.9)). We extend the 
constant temporary immunity effect in [22] into the varying time temporary 
immunity effect as follows: we assume that for each ( )1,r I M∈ , and  

( )1, ri I n∈ , infectious ( )ru
iaI  residents of site r

is  in region rC  visiting site 
u
as  in region uC  recover from the disease and acquire natural immunity 

against the disease immediately after recovery. The recovered individuals further 
loose immunity and become susceptible to the disease after a period of time s, 
where the immunity period s is an infinite random variable with values between 
0 and ∞ for the different individuals in the immune population class. Using 
ideas from [19], we derive and incorporate the varying time acquired immunity 
delay effect into the epidemic dynamic model ((2.7)-(2.9), [22]) by introducing 
the term  

( ) ( )
0

d
u
a su ru ru

a ia iaI t s f s e sδρ
∞ −−∫  

where 
u
a se δ−  is the probability that an individual who recovered from disease at 

an earlier time t s−  is still alive at time t. Furthermore, ( )ru
iaf s  is the integral 

kernel [19] representing the probability density of the time s to loose acquired 
immunity by residents of site r

is  in region rC  who were previously infectious 
at their visiting site u

as  in region uC , and who have recovered from disease 
acquiring natural immunity with varying time lengths. Moreover, ( )

0
d 1ru

iaf s s
∞

=∫ , 
and 0ru

iaf ≥ . The two level large scale stochastic SIR delayed epidemic dynamic 
model with varying natural immunity period and which is influenced by the 
human mobility process [30] is as follows:  
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∫ 

 (2.3) 

where all parameters are previously defined. Furthermore, for each ( )1,r I M∈ , 
and ( )1, ri I n∈ , we have the following initial conditions  

( ) ( ) ( )( ) ( ) ( ) ( )( ) [ ]
[ ]( ) ( ) ( ) ( )

( )

1 2 3 0

0

0

, , , , , , ,

, , , 1, 2,3, , 1, , 1, , 1, ,

0, 1, 2,3,

ru ru ru ru ru ru
ia ia ia ia ia ia

ru
iak u r

ru
iak

S t I t R t t t t t t

t k r q I M a I n i I n

t k

ϕ ϕ ϕ

ϕ

ϕ
+

= ∈ −∞

∈ −∞ ∀ = ∀ ∈ ∈ ∈

> ∀ =

  (2.4) 

where [ ]( )0, ,t +−∞   is the space of continuous functions with the supremum 
norm  

( )
0

.t tSup tϕ ϕ−∞≤ ≤∞
=                   (2.5) 

and w is a Wierner process. Furthermore, the random continuous functions 
, 1, 2,3ru

iak kϕ =  are 0 -measurable, or independent of ( )w t  for all 0t t≥ . 
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We express the state of system (2.1)-(2.3) in vector form and use it, subse- 
quently. We denote  

( )
( )
( )
( )
( ) ( )( )

1

1 1

T 3

T 3
0 1 2 ,

T 3
00 10 20 0

T 30 1 2
00 00 00 00
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, , , ,

, , , ,

, , , ,

u

r u
r
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ru ru ru ru
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i i i i nu

n nru ruT ruT ruT
n

n nr r T r T rMT
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x S I R
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=

= =

∑
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= ∈

= ∈
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= ∈

= ∈



















         (2.6) 

where ( ), 1,r u I M∈ , ( )1, ri I n∈ , ( )1,r
i ua I n∈ . We set 

1
M

uun n
=

= ∑ .  
Definition 2.1.  
1. p-norm in 

23n
 : Let 200 3

00
nz ∈  be an arbitrary vector defined in (2.6), 

where ( )T0 0 0
1 2 3, ,ru ru ru ru

ia ia ia iaz z z z=  whenever ( ), 1,r u I M∈ , ( )1, ri I n∈ , 
( )1,r

i ua I n∈ . The p-norm on 
23n

  is defined as follows  
1

3
00 0
00

1 1 1 1 1

ur nnM M ppru
iajp r u i a j

z z
= = = = =

 
=  
 
∑∑∑∑∑                (2.7) 

whenever 1 p≤ < ∞ , and  
00 0
00 1 , ,1 ,1 ,1 3

max ,
r u

ru
iajp r u M i n a n j

z z z
≤ ≤ ≤ ≤ ≤ ≤ ≤ ≤

≡ =              (2.8) 

whenever p = ∞ . Let  
00
00min 1 , ,1 ,1

min .
r u

ru
iar u M i n a n

k k k
≤ ≤ ≤ ≤ ≤ ≤

≡ =               (2.9) 

2. Closed Ball in 
23n
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2*00 3
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n
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n
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In addition, from (2.1)-(2.3), define the vector 
200
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ny ∈  as follows: For 
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and obtain  
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3. Model Validation Results 

In the following we state and prove a positive solution process existence theorem 
for the delayed system (2.1)-(2.3). We utilize the Lyapunov energy function 
method in our earlier study [22] to establish the results of this theorem. We 
observe from (2.1)-(2.3) that (2.3) decouples from the first two equations in the 
system. Therefore, it suffices to prove the existence of positive solution process  
for ( ),ru ru

ia iaS I . We utilize the notations (2.6) and keep in mind that  

( )T
,ru ru ru

ia ia iaX S I= .  

Theorem 3.1. Let ( ), 1,r u I M∈ , ( )1, ri I n∈  and ( )1, ua I n∈ . Given any 
initial conditions (2.4) and (2.5), there exists a unique solution process  

( ) ( ) ( )( )T
, , , ,ru ru ru

ia ia iaX t w S t w I t w=  satisfying (2.1) and (2.2), for all 0t t≥ . More- 
over, the solution process is positive for all 0t t≥  a.s. That is,  

( ) ( ) 0,, 0, 0,ru ru
ia ia t wS t w I t t> > ∀ ≥  a.s. 

Proof: 
It is easy to see that the coefficients of (2.1) and (2.2) satisfy the local Lipschitz 

condition for the given initial data (2.4). Therefore there exist a unique maximal 
local solution ( ),ru

iaX t w  on ( ), et wτ∈ −∞   , where ( )e wτ  is the first hitting 
time or the explosion time [31]. We show subsequently that ( ) ( ), , , 0ru ru

ia iaS t w I t w >  
for all ( ), et wτ∈ −∞    almost surely. We define the following stopping time  

( )( ) [ ] [ ]{ }
( ) ( )

0 0
0 , ,

0

sup , : 0 and 0 ,

min , , for .

ru ru
e ia iat t t t

t t w S I

t t t t

τ τ

τ τ

+

+ +

 = ∈ > >

 = ≥

     (3.1) 

and we show that ( ) ( )et wτ τ+ =  a.s. Suppose on the contrary that  

( ) ( )( ) 0eP t wτ τ+ < > . Let ( ) ( ){ }ew t wτ τ+∈ < , and ( ))0 ,t t tτ+∈  . Define  

( ) ( )
( ) ( ) ( ) ( )

00
00 1 1 1 1

,

ln ln , .

M r un n M n ru
iar i u a

ru ru ru
ia ia ia

V X V X

V X S I t tτ
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+
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= + ∀ ≤

∑ ∑ ∑ ∑
            (3.2) 

We rewrite (3.2) as follows  
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1 1 1
,

qr r nn nM M
rr rr rq
ii ij il

r i j i q r l
V X V X V X V X

= = ≠ ≠ =
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∑∑ ∑ ∑∑       (3.3) 

And (3.3) further implies that  
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where dV  is the Ito-Doob differential operator with respect to the system 
(2.1)-(2.3). We express the terms on the right-hand-side of (3.4) in the following:  

Site Level: From (3.2) the terms on the right-hand-side of (3.4) for the case of 
,u r a i= =   
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ij ij ij ijrr rr
ij ij

n nM M
rr r rru ur rru ur
ij j jia aj jia aj

u a u a

rr
rr r rr r rii
ij j ij j jrr

ij

rrnM
ijrru ur

jia ajrr
u a ij

S
dV X I t s f s e s

S S

I v I t

I
d

I

S
I

I

δσ

ρ δ β

σ ρ δ

β

∞ −

= = = =

= =


= + −



− + − − 




+ − − + +


+

∫

∑∑ ∑∑

∑∑





( ) ( )
( )

( )

( ) ( )

2
2 2

2
1 1

1 1 1 1

1 d
2

d d

u

u u

rrnM ijrru ur
jia aj

rru a
ij

rrn nM M
ijrru ur rru rru ur rru

jia aj jia jia aj jiarr
u a u a ij

S
v I t

I

S
v I w t v I w t

I

= =

= = = =


−



− +

∑∑

∑∑ ∑∑

  (3.6) 

Regional Level: From (3.2) the terms on the right-hand-side of (3.4) for the 
case of , ,u q q r a l= ≠ = ,  

( ) ( ) ( )

( ) ( ) ( )

( )

0

2 2

1 1 1 1

1 1

d d

1 d
2

q
l

u u

u

rr q
srq rq rq rqii l

il il il ilrq rq
iq il

n nM M
rq q qru uq qru uq
il l lia al lia al

u a u a

rr
rq q rq q qii
il l il l lrq

il

rqnM
qru uqil
lia alrq

u a il

S
V X I t s f s e s

S S

I v I t

I
d

I

S
I

I

δγ

ρ δ β

γ ρ δ

β

∞ −

= = = =

= =


= + −



− + − − 




+ − − + +


+ −

∫

∑∑ ∑∑

∑∑





( ) ( )
( )

( )

( ) ( )

2
2 2

2
1 1

1 1 1 1

1 d
2

d

u

u u

rqnM ilqru uq
lia al

rqu a
il

rqn nM M
qru uq qru qru uq qruil
lia al lia lia al liarq

u a u a il

S
v I t

I

S
v I dw t v I w t

I

= =

= = = =






− +

∑∑

∑∑ ∑∑

  (3.7) 

It follows from (3.5)-(3.7), (3.4), and (3.1) that for ( )t tτ+< ,  
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( )( ) ( )( )

( ) ( ) ( )

( ) ( ) ( )

0

0

00 00
00 00 0

0
1 1

2 2

1 1 1 1 1 1

1 1

d

1 d
2

r r
i

u u r

u

rnM t srr rr r r ri
ii ii i i irrt

r i ii

n n nM M M trru ur rru ur r r r r r
iia ai iia ai i i i i it

u a u a r i

rnM
rru ii
iia

u a

V X t V X t

I t s f s e s
S

I v I s d

S

δ γ σ δ

β γ σ δ

β

∞ −

= =

= = = = = =

= =

−


≥ − − + +



− − + − − + + +
 

−

∑∑∫ ∫

∑∑ ∑∑ ∑∑∫

∑∑





( ) ( )
( )

( ) ( )

( )

0

0 0

2
2 2

2
1 1 1 1 1 1

0
1 1 1 1 1 1

1 d d
2

d

u ur

ur r r

rrr n nnM M M tiiur rru ur rru ur rru
ai iia ai iia ai iiarr trru a r i u aii ii

rrrnn n nM M Mt t jrru ur rru rii
iia ai iia ijrr rrt t

r i u a r i j iii ij

S
I v I s v I w s

I I

Sv I w s I
I S

= = = = = =

∞

= = = = = = ≠


− −



+ +

∑∑ ∑∑∑∑∫

∑∑∑∑ ∑∑∑∫ ∫ ∫


( ) ( )

( ) ( ) ( )

( ) ( ) ( )
( )

( )
0

2 2

1 1 1 1

2
2 2

2
1 1 1 1

1 1 1

d

1 d
2

1 d
2

r
j

u u

ur r

r r

sr rr
ij

n nM M
rr r rru ur rru ur
ij j jia aj jia aj

u a u a

rrnn nM Mt ijr rr r r rru ur
j ij j j jia ajt rrr i j i u a

ij

n nM

r i j i u

t s f s e s

I v I s

S
d v I s

I

δ

ρ δ β

ρ δ

−

= = = =

= = ≠ = =

= = ≠ =


−




− + − − 


 
 + − − + + −
 
 

−

∑∑ ∑∑

∑∑∑ ∑∑∫

∑∑∑



( ) ( )

( ) ( ) ( )

0 0

0

1 1 1 1 1

0
1 1 1

1 1 1

d d

d

1
2

u ur r

qr q
l

u

rrn nn nM M Mt t ijrru ur rru rru ur rru
jia aj jia jia aj jiarrt t

a r i j i u a ij

n qnM M t srq rq rq ql
il il il lrqt

r i q r l il

nM
qru uq
lia al

u a u

S
v I w s v I w s

I

I t s f s e s
S

I

δ ρ δ

β

= = = ≠ = =

∞ −

= = ≠ =

= = =

+


+ − − +



− −

∑∑ ∑∑∑∑∑∫ ∫

∑∑∑∑∫ ∫

∑∑



( ) ( ) ( )

( ) ( )
( )

( ) ( )

0

0

2 2

1 1 1 1

2
2 2

2
1 1 1 1 1 1 1

1 1

d

1 d d
2

qu r

qu ur

r

nn nM M M tqru uq q rq q q
lia al l il l lt

a r i q r l

rq nn nnM M M M tilqru uq qru uq qru
lia al lia al liatrqu a r i q r l u a

il

nM M

r i q r l

v I s d

S
v I s v I w s

I

ρ δ
= = = ≠ =

= = = = ≠ = = =

= = ≠ =


+ − − + +
 


− −



+

∑∑ ∑∑∑∑∫

∑∑ ∑∑∑∑∑∑∫

∑∑∑



( )
01 1 1

d
q un rqnM t qru uq qruil

lia al liarqt
u a il

Sv I w s
I= =

∑∑∑∫

 (3.8) 

Taking the limit on (3.8) as ( )t tτ+→ , it follows from (3.2) and (3.1) that the 
left-hand-side ( )( ) ( )( )00 00

00 00 0V X t V X t− ≤ −∞  (since from (3.2) and (3.1),  
( )( )( ) ( )( ) ( )( )ln lnru ru ru

ia ia iaV X t S t I tτ τ τ+ + += + = −∞ ). This contradicts the  
finiteness of the right-hand-side of the inequality (3.8). Hence ( ) ( )et wτ τ+ =  
a.s. We show subsequently that ( )e wτ = ∞ . 

Let 0k >  be a positive integer such that 00
00 1

kϕ ≤ , where the vector of 
initial values ( ) 200 2

00 1 , ,1 ,1r u

ru n
ia r u M i n a n

ϕ ϕ
≤ ≤ ≤ ≤ ≤ ≤

= ∈  is defined in (2.4). Furthermore, 

1.  is the p-sum norm (2.7) for the case of 1p = . We define the stopping time  

[ ) ( ) [ ]{ }
( ) ( )

00
0 00 1

sup , : , 0,

min , .

k e

k k

t t X s k s t

t t

τ τ

τ τ

 = ∈ ≤ ∈


=
         (3.9) 

where from (2.7),  

( ) ( ) ( )( )00
00 1 1 1 1 1

.
ur nnM M

ru ru
ia ia

r u i a
X s S s I s

= = = =

= +∑∑∑∑           (3.10) 

It is easy to see that as k →∞ , kτ  increases. Set ( )limk k tτ τ→∞ ∞= . Then 
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eτ τ∞ ≤  a.s. We show in the following that: (1) eτ τ∞=  a.s. ( ) 0eP τ τ∞⇔ ≠ = , 
(2) τ∞ = ∞  a.s. ( ) 1P τ∞⇔ = ∞ = . 

Suppose on the contrary that ( ) 0eP τ τ∞ < > . Let { }ew τ τ∞∈ <  and t τ∞≤ . 
In the same structure form as (3.2) and (3.4), define  

( ) ( )

( ) ( ) ( )

00
1 00

1 1 1 1

1

,

, .

ur

u
a

nnM M
ru
ia

r i u a

tru ru ru
ia ia ia k

V X V X

V X e S I t tδ τ

= = = =


=


 = + ∀ ≤

∑∑∑∑
             (3.11) 

From (3.11), using the expression (3.4), the Ito-Doob differential 1dV  with 
respect to the system (2.1)-(2.3) is given as follows:  

Site Level: From (3.11), the terms of the right-hand-side of (3.4) for the case 
of ,u r a i= =   

( )

( ) ( ) ( )

( )

1
1

0

1

d

d d

d

qrr
i

r
i

qrr
i

nn M
trr r rr rr rq rq

ii i ik ik ia ia
k i q r l

sr rr rr r r rr
i ii ii i i ii

nn M
t rr rr rq rq r rr r r r rr

ik ik ia ia i ii i i i ii
k i q r l

V X e B S S

I t s f s e s S t

e I I I d I t

δ

δ

δ

ρ ρ

γ σ

ρ ρ γ σ

≠ ≠ =

∞ −

≠ ≠ =


= + +




+ − − + 


 
+ + − − + + 

 

∑ ∑∑

∫

∑ ∑∑





  (3.12) 

Intra-regional Level: From (3.11), the terms of the right-hand-side of (3.4) 
for the case of , ,u r a j j i= = ≠   

( ) ( ) ( )

( )
1 0

d e d d

d

rr ji

r
j

strr rr rr r rr rr rr rr
ij ij ii j ij ij ij ij

t rr rr r rr rr r rr
ij ii j ij ij j ij

V X S I t s f s e s S t

e I I d I t

δδ

δ

σ ρ

σ ρ

∞ − = + − −  

 + + − + 

∫


  (3.13) 

Regional Level: From (3.11), the terms of the right-hand-side of (3.4) for the 
case of , ,u q q r a l= ≠ =   

( ) ( ) ( )

( )
1 0

d d d

d

q q
l l

q
l

t srq rq rr q rq rq rq rq
il il ii l il il il il

t rq rr q rq rq q rq
il ii l il il l il

V X e S I t s f s e s S t

e I I d I t

δ δ

δ

γ ρ

γ ρ

∞ − = + − −  

 + + − + 

∫


 (3.14) 

From (3.12)-(3.14), (3.4), integrating (3.4) over [ ]0 ,t τ  leads to the following  

( )( )
( )( ) ( ) ( )

( )

0

0

00
1 00

00
1 00 0 0

1 1 1

1 1 1

d

d

qr rr r
i i

qr rr
i

nn nM M
s sr rr rr rq rq r rr rr

i ik ik ia ia i ii iit
r i k i q r l

nn nM M
sr r rr rr rr rq rq r rr

i i ii ik ik ia ia i iit
r i k i q r l

V X

V X t e B S S I t s f s e s

S s e I I I

τ δ δ

τ δ

τ

ρ ρ

γ σ ρ ρ

∞ −

= = ≠ ≠ =

= = ≠ ≠ =


= + + + + −




− + + + −


∑∑ ∑ ∑∑∫ ∫

∑∑ ∑ ∑∑∫



 ( )

( ) ( )

( )
0

0

0
1 1

1 1

1 1 1

d

d d

d

r r rr ji

r r r
j

r r

r r r rr
i i i ii

n nM
ss rr rr r rr rr rr rr

ij ii j ij ij ij ijt
r i j i

n nM
s rr rr r rr rr r rr

ij ii j ij ij j ijt
r i j i

n nM

r i q r l

d I s

e S I t s f s e s S s

e I I d I s

τ δδ

τ δ

γ σ

σ ρ

σ ρ

∞ −

= = ≠

= = ≠

= = ≠ =

 
− + + 

  
 + + − −  

 + − − + 

+

∑∑∑∫ ∫

∑∑∑∫

∑∑∑





( ) ( )

( )
0

0

0

1 1 1

d d

d

q q q
l l

qr r q
l

n
s srq rr q rq rq rq rq

il ii l il il il ilt

nn nM
s rq rr q rq rq q rq

il ii l il il l ilt
r i q r l

e S I t s f s e s S s

e I I d I s

τ δ δ

τ δ

γ ρ

γ ρ

∞ −

= = ≠ =

 + − −  

 + − − + 

∑∫ ∫

∑∑∑∑∫





 (3.15) 
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From (3.15), we let ( )k tτ τ= , where ( )k tτ  is defined in (3.9). It is easy to 
see from (3.15), (3.9), (3.10), and (3.11) that  

( )( ) ( )( )( )00 00
00 1 001

= k kk X t V X tτ τ≤          (3.16) 

Taking the limit on (3.16) as k →∞  leads to a contradiction because the 
left-hand-side of the inequality (3.16) is infinite, and the right-hand-side is finite. 
Hence eτ τ∞=  a.s. In the following, we show that eτ τ∞= = ∞  a.s. We let 

{ }ew τ∈ < ∞ . Applying some algebraic manipulations and simplifications to 
(3.15), we have the following  

{ } ( )( )

{ } ( )( ) { } ( )

{ } ( ) ( ) ( )

{ }

0

0

00
1 00

00
1 00 0

1 1

0
1 1 1 1

1 1

1

d d d

e

r r
i

e e

qr q q
l l

e

r r rr ji
e

rnM
i
r

r i i
nnM M t s srq q rq q rq

il l il l ilt t
r i q l

n nM
ssr rr

i ij it
r i j i

I V X

BI V X t I e

I f t I s e s I s e s t

I e e S

τ

δ τ
τ τ

τδ δ
τ τ

τ δδ
τ

τ

δ

σ σ

<∞

<∞ <∞
= =

∞

<∞ − −
= = = =

<∞
= = ≠

= + −

 + −  

 
− − 

 

∑∑

∑∑∑∑∫ ∫ ∫

∑∑ ∑∫

 

( )

{ } ( )

{ } { }

{ }

0

0 0

0

1 1 1 1

1 1 1 1

1 1 1 1

d

d

d d

qr qr
i l

e

r r r rr ji
e e

qr

e

rr rr
i ii

nnM M
ssr rq rr rr

i il ii iit
r i q l

n n nM M
ssr rr r rr

i ii j ijt t
r i r i j i

nnM M
q rq
l ilt

r i q l

I s

I e e S I s

I d I e s I d I e s

I d I e

τ δδ
τ

τ τ δδ
τ τ

τ

τ

γ γ<∞
= = = =

<∞ <∞
= = = = ≠

<∞
= = = =

+

 
− − + 

 

− −

−

∑∑ ∑∑∫

∑∑ ∑∑∑∫ ∫

∑∑∑∑ ∫ d ,
q
l s sδ

 (3.17) 

where AI  is the indicator function of the set A. 
We recall [30], rnr rr

i ijj iσ σ
≠

= ∑  and 1
qM nr rq

i ilq r lγ γ
≠ =

= ∑ ∑ . Hence the fourth and 
fifth terms on the right-hand-side of (3.17) are such that  

0,
rr r ji n ssr rr

i ijj ie eδδσ σ
≠

 − ≥  ∑  ,r r
i j j iδ δ∀ ≥ ≠   

and 

1 1 0,
qr qi lM n ssr rq

i ilq le eδδγ γ
= =

 − ≥  ∑ ∑  ( ), , 1,r q
i l qq r l I nδ δ∀ ≥ ≠ ∈  

We now let ( )k t Tτ τ= ∧  in (3.17), 0T∃ > , where ( )k tτ  is defined in 
(3.9). The expected value of (3.17) is estimated as follows  

{ } ( )( )( )

( )( ) ( )

( ) ( )0

00
1 00

00
1 00 0

1

20
1 1 1 1

d d

e

r r
i k

qr q
l

k

rn
t Ti

r
i i

nnM M t srq q rq
il l ilt

r i q l

E I V X t T

BV X t e

f t s e s t

τ

δ τ

δ

τ

δ

ϕ

<∞

∧

=

∞

−
= = = =

 ∧ 

≤ +

 +   

∑

∑∑∑∑∫ ∫

         (3.18) 

Furthermore, from (3.10), (3.11) and the definition of the indicator function 

AI  it follows that  

( ){ } ( )( ) { } ( )( )( )00 00
00 1 00, 1 ee k k kt TI X t I V X t Tττ τ τ τ<∞<∞ ≤ ≤ ∧      (3.19) 
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It follows from (3.18), (3.19) and (3.9) that  

( ){ }( )
( ){ } ( )( ) { } ( )( )( )

( )( ) ( ) ( )0

00 00
00 00, 1

00
1 00 0 20

1 1 1 1 1

,

d d

ee k

qr r qr
i l

e k

k kt T

nrn nM M t sT rq q rqi
il l ilr t

i r i q li

P t T k

E I X t E I V X t T

BV X t e f t s e s t

ττ τ

δδ

τ τ

τ τ

ϕ
δ

<∞<∞ ≤

∞

−
= = = = =

< ∞ ≤

   = ≤ ∧  

 ≤ + +   ∑ ∑∑∑∑∫ ∫

 (3.20) 

It follows immediately from (3.20) that { }( ), 0eP Tτ τ∞< ∞ ≤ →  as k →∞ . 
Furthermore, since T < ∞  is arbitrary, we conclude that { }( ), 0eP τ τ∞< ∞ < ∞ = . 
Finally, by the total probability principle,  

{ }( ) { }( ) { }( )
{ }( ) { }( )

, ,

, 0.
e e e

e e

P P P

P P

τ τ τ τ τ

τ τ τ τ
∞ ∞

∞ ∞

< ∞ = < ∞ = ∞ + < ∞ < ∞

≤ ≠ + < ∞ < ∞ =
  (3.21) 

Thus from (3.21), eτ τ∞= = ∞  a.s. as was required to show.  
Remark 3.1. For any ( )1,r I M∈  and ( )1, ri I n∈ , Theorem 3.1 signifies 

that the number of residents of site r
is  of all categories present at home site r

is , 
or visiting intra and inter-regional sites r

js  and q
ls  respectively, are nonne- 

gative. This implies that the total number of residents of site r
is  present at 

home site and also visiting sites in regions in their intra and inter-regional 
accessible domains [21], given by the sum ( )0 1 1

uM nrr ru
i iau aN t y

= =
= ∑ ∑ , is nonnega- 

tive. Moreover, the total effective population [21], defined by  
( ) ( )0 1 1

uM nrr ur
i aiu aeff N t y

= =
= ∑ ∑ , at any site r

is  in region rC  is also nonnegative at 
all time 0t t≥ .  

The following result defines an upper bound for the solution process of the 
system (2.1)-(2.3). We utilize Theorem 3.1 to establish this result.  

Theorem 3.2. Suppose the hypotheses of Theorem 3.1 is satisfied. Let 
( )1 ,1min

u

u
u M a n aµ δ≤ ≤ ≤ ≤= . If  

( )0
1 1 1 1 1 1

1 ,
ur rnn nM M M

ru r
ia i

r u i a r i
y t B

µ= = = = = =

≤∑∑∑∑ ∑∑              (3.22) 

then 

( ) 0
1 1 1 1 1 1

1 , for . .
ur rnn nM M M

ru r
ia i

r u i a r i
y t B t t a s

µ= = = = = =

≤ ≥∑∑∑∑ ∑∑         (3.23) 

Proof: See ([22], Lemma 3.2)  
Remark 3.2. From Theorem 3.1 and Theorem 3.2, we conclude that a closed 

ball ( )23
0;

nR
r



B  in 
23nR  under the sum norm 1⋅  centered at the origin  

230 nR∈


, with radius 1 1

1 rM n r
ir ir B

µ = =
= ∑ ∑  is self-invariant with regard to a two-  

scale network dynamics of human epidemic process (2.1)-(2.3) that is under the 
influence of human mobility process [30]. That is,  

( ) ( ) ( ) ( )23

00
00 1 1 1 1 1 1 1

10; , , : 0 and
n

nn nM M Mur r
ru ru ru ru ru r
ia ia ia ia ia i

R r u i a r i
r S I R y t x y t B

µ= = = = = =

  = ≥ = ≤ 
  

∑∑∑∑ ∑∑


B  (3.24) 

is a positive self-invariant set for system (2.1)-(2.3). We shall denote  

1 1

1 rnM
r
i

r i
B B

µ = =

≡ ∑∑                       (3.25) 
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4. Existence and Asymptotic Behavior of Disease  
Free Equilibrium  

In this section, we study the existence and the asymptotic behavior of the disease 
free equilibrium state of the system (2.1)-(2.3). The disease free equilibrium is 
obtained by solving the system of algebraic equations obtained by setting the 
drift and the diffusion parts of the system of stochastic differential equations to 
zero. In addition, we utilize the conditions that 0I R= =  in the event when 
there is no disease in the population. We summarize the results in the following. 
For any ( ), 1,r u I M∈ , ( )1, ri I n∈  and ( )1, ua I n∈ , let  

1 1
0.

ur rr rr rr runn M
r r r r ria ia ia ia
i i i i irr r ru u

a u r aia a ia a

D ρ σ ρ γγ σ δ δ
ρ δ ρ δ= ≠ =

= + + − − ≥ >
+ +∑ ∑∑     (4.1) 

Furthermore, let ( ), ,ru ru ru
ia ia iaS I R∗ ∗ ∗  be the equilibrium state of the delayed 

system (2.1)-(2.3). One can see that the disease free equilibrium state is given by 

( ), 0, 0ru ru
ia iaE S ∗= , where  

, for , ,

, for , ,

, for .

r
i
r
i

rrr
ijru i

ia r rr r
i ij j
r ru
i ia
r ru u
i ia a

B
u r a i

D
B

S u r a i
D
B

u r
D

σ
ρ δ
γ

ρ δ

∗


= =


= = ≠

+

 ≠

+

            (4.2) 

The asymptotic stability property of ru
iaE  will be established by verifying the 

conditions of the stochastic version of the Lyapunov second method given in 
([31], Theorem 2.4), [32], and ([31], Theorem 4.4), [32] respectively. In order to 
study the qualitative properties of (2.1)-(2.3) with respect to the equilibrium 
state ( ), 0, 0ru

iaS ∗ , first, we use the change of variable that shifts the equilibrium 
to the origin. For this purpose, we use the following transformation:  

*ru ru ru
ia ia ia
ru ru

ia ia
ru ru

ia ia

U S S
V I
W R

 = −
 =
 =

                      (4.3) 

By employing this transformation, system (2.1)-(2.3) is transformed into the 
following forms  

( ) ( )

( ) ( )
( ) ( )

1 1 0

*
1 1

*
1 1

0

d

d

, for ,

d =

rq i

u

u

M n srq rq r rr rr
ia ia i ii iiq a

M nr r r rr rru rr rr ur
i i i ii iia ii ii aiu a

M n rru rr rr ur rru
iia ii ii ai iiau a

rr rr r rr
ij ii j ijrq

il

U V t s f s e s

U S U V t

v S U V dw t q r l i

U V t
U

δρ

γ σ δ β

σ

∞ −
= =

= =

= =

∞

 + −
− + + − + 

 − + = = 

+

∑ ∑ ∫
∑ ∑

∑ ∑

∫



 ( ) ( ) ( )
( )
( ) ( )

( ) ( ) ( )

1 1

*
1 1

10

d

d

d , for , , ,

d

r
j

u

u

q
l

srr rr r rr
ij ij j ij

M n rru rr rr ur
jia ij ij aju a

M n rru rr rr ur rru
jia ij ij aj jiau a

Msrq rr q rq rq rq q rq
il ii l il il il l il u a

s f s e s U

S U V t

v S U V w t q r l j j i

U V t s f s e s U

δ

δ

ρ δ

β

γ ρ δ

−

∗
= =

= =

∞ −

=

 − − +
− + 

 − + = = ≠ 

+ − − + −

∑ ∑
∑ ∑

∑∫

( ) ( )
1

*
1 1

d

d , for ,

u

u

n qru rq uq
lia il al

M n qru rq rq uq qru
lia il il al liau a

S I t

v S U V w t q r

β
=

= =














 
  
  − + ≠  

∑
∑ ∑

  (4.4) 
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( )
( )
( ) ( )

( )

1 1

*
1 1

*
1 1

1 1

d

d , for ,

d

q

u

u

u

M n rq rq r r r r r rr
ia ia i i i i i iiq a

M n rru rr rr ur
iia ii ii aiu a

M n rru rr rr ur rru
iia ii ii ai iiau a

M nrq rr rr r rr r r rr
il ij ii j ij j j ij u a

V d W

S U V t

v S U V w t q r l i

V V d V

ρ γ σ δ

β

σ ρ δ

= =

= =

= =

= =

 − + + + +
+ + 

 + + = = 

= − + + + +

∑ ∑

∑ ∑

∑ ∑

∑ ∑



 ( )
( ) ( )

( ) ( )
( )

*

*
1 1

*
1 1

*
1 1

d

d , for , , ,

d

u

u

u

rru rr rr ur
jia ij ij aj

M n rru rr rr ur rru
jia ij ij aj jiau a

M nrq rr q rq q q rq qru rq rq uq
il ii l il l l il lia il il alu a

M n qru rq rq
lia il ilu a

S U V t

v S U V w t q r l j j i

V d V S U V t

v S U

β

γ ρ δ β

= =

= =

= =

 + 
 + + = = ≠ 

 − + + + + 

+ +

∑ ∑

∑ ∑

∑ ∑



( )d , for ,uq qru
al liaV w t q r

















  ≠ 

  (4.5) 

and 

( ) ( ) ( )
( ) ( ) ( )

1 1 0

0

d d , for ,

d d d , for , ,

rq i

r
j

M n srq rq r rr r rr rr r r r rr
il il i ii i ii ii i i i iiq a

srq rr rr r rr r rr rr rr r rr
il ij ii j ij j ij ij ij j ij

rq rr
il ii

W V V t s f s e s W t q r l i

W W V V t s f s e s W t q r l j j i

W

δ

δ

ρ γ σ δ

σ ρ δ

γ

∞ −
= =

∞ −

 + − − − + + = =  
 = + − − − + = = ≠  

+

∑ ∑ ∫

∫

 

 

 ( ) ( ) ( )0
d d , for

q
l sq rq q rq rq rq q rq

l il l il il il l ilV V t s f s e s W t q rδ ρ δ
∞ −






 − − − + ≠   ∫

 (4.6) 

We state and prove the following lemmas that would be useful in the proofs of 
the stability results.  

Lemma 4.1. Let 23
1 : nV + +× →  

 be a function defined by  

( ) ( )
( ) ( ) ( ) ( )

( )

00
1 00 1 1 1 1

2 2 2*
1

T00
00

,

, , and 0.

r uM M n n ru
iar u i a

ru ru ru ru ru ru ru
ia ia ia ia ia ia ia

ru ru ru ru
ia ia ia ia

V x V x

V x S S I c I R

x U V W c

= = = =
 =

 = − + + +

 = ≥

∑ ∑ ∑ ∑ 





         (4.7) 

Then ( )22,1 3
1 ,nV + +∈ ×   , and it satisfies  

( ) ( )( ) ( )00 00 00
00 1 00 00b x V x t a x≤ ≤                  (4.8) 

where  

( ) ( ) ( ) ( )

( ) { } ( ) ( ) ( )

2 2 200
00 1 , ,1 ,1 1 1 1 1

2 2 200
00 1 , ,1 ,1 1 1 1 1

min
2

max 2 .

ur

r u

ur

r u

ru nnM M
ru ru ruia
ia ia iarur u M i n a n r u i aia

nnM M
ru ru ru ru
ia ia ia iar u M i n a n r u i a

cb x U V W
c

a x c U V W

≤ ≤ ≤ ≤ ≤ ≤ = = = =

≤ ≤ ≤ ≤ ≤ ≤ = = = =

   = + +    + 

 = + + +  

∑∑∑∑

∑∑∑∑





 (4.9) 

Proof: See ([22], Lemma 4.1).  
Remark 4.1. Lemma 4.1 shows that the Lyapunov function V defined in (4.7) 

is positive definite, decrescent and radially unbounded (4.8) function [31] [32].  
We now state the following lemma. 
Lemma 4.2. Assume that the hypothesis of Lemma 4.1 is satisfied. Define a 

Lyapunov functional  

1 2 ,V V V= +                        (4.10) 

where 1V  is defined by (4.7), and  
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( )
( ) ( )( )( )

2
22

2 0
1 1 1 1

3 d d ,
ur r

a

unnM M ta srr ru
ia iaru t s

r i u a ia

V f s e V sδ θ θ
µ

∞ −

−
= = = =

 
 =
 
 

∑∑∑∑ ∫ ∫


   (4.11) 

Furthermore, let  

( ) ( )

( )
( )

( )
( )

( )

2 2

1 1 1

2

2

2

, for ,

3
2

, for ,

3
2

, for

u r r

rr ru
ia iaM n n M nru rr

ia iirr rru a a i a r a
ii ii

r r r
i i i

rr
ia rr rr

ii iarrru
iaia

rr r
ia a

ru
ia rr ru

ii iaru
ia

ru u
ia a

u r i a

u r a i

u

σ γ
µ µ

µ µ

γ σ δ

ρ
µ µ

µ

ρ δ

ρ
µ µ

µ

ρ δ

= = ≠ ≠ =

 
 + + +
 
  = =

+ +

 
 + +
 =
  = ≠

+

 
 + +
 
 

+

∑ ∑ ∑ ∑ ∑

U

,r

















 ≠


 (4.12) 

( )

( )

1 1 1 1

1 1

1 1

1 1 1
2 2 2 , for ,

1 1 1
2 2 2 , for ,

1 1
2 2

u v

v

M n M nru rrv rr rr rr rr
ia iib ii ii ii iiu a v b

r r r r r
i i i i i

M nrr rrv rr rr rr rr
ii aib ia ia ia aiv bru

ia r rr r r
a ia a a

M nrr
ii v b

S d
a i u r

d

S d
a i u r

d

µ β µ µ

γ σ δ

µ β µ µ

ρ δ

µ

∗
= = = =

∗
= =

= =

+ + +
= =

+ + + +

+ + +
= ≠ =

+ + +

+

∑ ∑ ∑ ∑

∑ ∑

∑

V





( ) 1
2 , for .

v urv ru ru ru ur
aib ii ia ia ai

u ru u u
a ia a a

S d
u r

d

β µ µ

ρ δ

∗











+ +
 ≠

+ + +


∑


 (4.13) 

and 

( ) ( )

( )
( )

( )
( )

2 2

1 1 1

2

2

1 1 1
2 2 2

, for , ,

1 1
2 2

, for , ,

1 1
2 2

u r r

ru rr
ia iaM n M n nru rr

ia iirr rru a u r a a i
ii ii

r r r
i i i

rr
ia rr rr

ii iarrru
iaia

rr r
ia a

ru
ia rr ru

ii iaru
ia

ia

u r a i

u r a i

γ σ
µ µ

µ µ

γ σ δ

ρ
µ µ

µ

ρ δ

ρ
µ µ

µ

ρ

= = ≠ = ≠

 
 + + +
 
  = =

+ +

 
 + +
 =
  = ≠

+

 
 + +
 
 

∑ ∑ ∑ ∑ ∑

W

( )
, for

ru u
a

u r
δ

















 ≠ +

 (4.14) 

for some suitably defined positive numbers ru
iaµ  and ur

aid , where ru
iaµ  depends 

on u
aδ , for all ( ), 1,rr u I M∈ , ( )1,i I n∈  and ( )1,r

i ra I n∈ . Assume that 
1ru

ia ≤U , 1ru
ia <V  and 1ru

ia ≤W . There exist positive numbers ru
iaφ , ru

iaψ  and 
ru
iaϕ  such that the differential operator LV associated with Ito-Doob type 

stochastic system (2.1)-(2.3) satisfies the following inequality  
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( ) ( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )

2 2 200
00

1 1

2 2 2

2 2 2

1
.

r

r

u

nM
rr rr rr rr rr rr
ii ii ii ii ii ii

r i

n
rr rr rr rr rr rr
ia ia ia ia ia ia

a i

nM
ru rr ru ru ru ru
ia ia ia ia ia ia

u r a

LV x U V W

U V W

U V W

φ ψ ϕ

φ ψ ϕ

φ ψ ϕ

= =

≠

≠ =

  ≤ − + +   

 − + +  

 − + +   

∑∑

∑

∑∑



    (4.15) 

Moreover,  

( ) ( )00 00
00 1 00LV x cV x≤ −                      (4.16) 

where a positive constant c is defined by  

{ }
{ }

1 , ,1 ,1

1 , ,1 ,1

min , ,

max 2
r u

r u

ru ru ru
r u M i n a n ia ia ia

ru
r u M i n a n ia

c
C

φ ψ ϕ≤ ≤ ≤ ≤ ≤ ≤

≤ ≤ ≤ ≤ ≤ ≤

=
+

               (4.17) 

Proof: 
The computation of differential operator [31] [32] applied to the Lyapunov 

function 1V  in (4.7) with respect to the large-scale system of Ito-Doob type 
stochastic differential Equations (2.1)-(2.3) is as follows:  

( ) ( ) ( ) ( )00
1 00 1 1 1

1 1 1
,

ur r nn nM M
rr rr ru
ii ij ia

r i j i u r a
LV x LV x LV x LV x

= = ≠ ≠ =

 
= + + 

 
∑∑ ∑ ∑∑         (4.18) 

where, 

( ) ( )

( ) ( ) ( ) ( )

1
1 1

0 0

0

2 1

2 d 2 d

2

u

r r
i i

nM
rr rr ru ru rr ru ru rr ru ru rr ru ru rr ru ru rr
ii ii ia ia ii ia ia ii ia ia ii ia ia ii ia ia ii

u a

s sr rr rr rr r rr rr rr
i ii ii ii i ii ii ii

r rr rr
i ii ii

LV x C V V U U V U U V W W

U V t s f s e s V V t s f s e s

W V

δ δ

ρ ρ ρ ρ ρ
= =

∞ ∞− −

∞

 = + + + + + 

+ − + −

−

∑∑

∫ ∫

∫



 

 ( ) ( )

( ) ( ) ( ) ( )
( ) ( ) ( ) ( )

( ) ( ) ( )

2

2

2 *

1 1

d 2

2 2 2

2 1 2 1

2 2

r
i

u

srr r rr rr
ii i ii ii

r r r r r rr rr r r r rr
i i i i i ii ii i i i ii

rr r rr r r r r rr
ii i ii i i i i ii

nM
r r r r rr rr rru rr rr ur
i i i i ii ii iia ii ii ai i

u a

t s f s e s V W

d V U U

c c d V

W c S U V V

δ

γ σ δ γ σ δ

γ σ δ

γ σ α δ β

−

= =

− −

 − + + + + − + + 

 − + + + + + + 

− + + + + +∑∑







( ) ( ) ( )2 2 2*

1 1
, for ,

u

rr
i

nM
rr rru rr rr ur
ii iia ii ii ai

u a
c v S U V u r a i

= =

+ + = =∑∑

 (4.19) 

( ) ( ){
( ) ( ) ( ) ( )

1

0 0

0

2 1 2 2 2 2

2 d 2 d

2

r r

r r
a a

n n
rr rr rr rr rr rr rr rr rr rr rr rr rr rr rr rr rr
ia ia ia ia ii ia ia ii ia ia ii ia ia ii ia ia ii

a i a r

s sr rr rr rr r rr rr rr
a ia ia ia a ia ia ia

r rr r
a ia ia

LV x c V V U U V U U V W W

U V t s f s e s V V t s f s e s

W V

δ δ

σ σ σ σ σ

ρ

≠ ≠

∞ ∞− −

∞

= + + + + +

+ − + −

−

∑ ∑

∫ ∫

∫





 ( ) ( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( )

( ) ( ) } ( )

2

2 2

*

1 1

d 2 1 2 1

2 2 2

2 2 2

r
a

vr

r

sr rr rr r rr rr r rr
ia ia a ia ia a ia

rr r rr rr r rr r rr rr
ia a ia ia a ia a ia ia

nn M
r r rr r rr rr rr rrv rr rr vr rr
a a ia a ia ia ia aib ia ia ba ia

a i v b
n

a i

t s f s e s c c V

U W V W

d V U c S U V V

δ ρ δ

ρ δ ρ δ

ρ δ β

−

≠ = =

≠

 − − + + + + 

− + − + +

 − + + + + + 

+

∑ ∑∑







( ) ( ) ( )2 2 2

1 1
, for ,

vnM
rr rrv rr rr vr
ia aib ia ia ba

v b
c v S U V u r a i∗

= =

+ = ≠∑ ∑∑

 (4.20) 
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( ) ( ){
( ) ( )

( ) ( )

1
1 1

0

0

2 1 2 2 2

2 2 d

2 d 2

ur

u
a

u
a

nnM M
ru ru ru ru rr ru ru rr ru ru rr ru ru rr
ia ia ia ia ii ia ia ii ia ia ii ia ia ii

u r a u r a

sru ru rr u ru ru ru
ia ia ii a ia ia ia

su ru ru ru u
a ia ia ia a i

LV x c V V U U V U U V

W W U V t s f s e s

V V t s f s e s W

δ

δ

γ γ γ γ

γ
≠ = ≠ =

∞ −

∞ −

= + + + +

+ + −

+ − −

∑∑ ∑∑

∫
∫





  ( ) ( )

( ) ( )( ) ( ) ( )( )
( )( ) ( ) ( ) }

0
2 2

2

1 1 1

d

2 1 2 1 2

2 2 2 2

2

u
a

u v

sru ru ru
a ia ia

ru u ru ru u u ru ru u ru
ia a ia ia a a ia ia a ia

ru u u rr u ru ru u u ru u ru ru
ia a a ia a ia ia a a ia a ia ia

n nM M
ru urv ru
ia aib ia

u r a v b

V t s f s e s

c c d V U

W V W d V U

c S

δ

ρ δ ρ δ

ρ α δ ρ δ

β

∞ −

≠ = = =

−

 − + + + + + − + 
 − + + + − + + + 

+

∫

∑∑ ∑∑



 

( )

( ) ( ) ( )

*

2 2 2*

1 1 1
, for

vr

ru vu ru
ia ba ia

nnM M
ru urv ru ru vu
ia aib ia ia ba

u r a v b

U V V

c v S U V u r
≠ = = =

+

+ + ≠∑∑ ∑∑

 (4.21) 

By using (3.25) and the algebraic inequality  

( ) ( )
2

22 aab b g c
g c

≤ +                    (4.22) 

where , ,a b c∈ , and the function g is such that ( ) 0g c > . The fourteenth 
term in (4.19)-(4.21) is estimated as follows:  

( )

( ) ( )( )( )

( ) ( ) ( )

*

1 1

2*

1 1

* 2 2

1 1

2
v

v

v

nM
rr rrv rr rr vr rr
ii iib ii ii bi ii

v b
nM

rr rrv rr r r r r rr
ii iib ii i i i i ii

v b

rrnM
rr rrv vrii
ii iib bir r r r

v b i i i i

c S U V V

c S g g V

S Bc V
g g

β

β δ δ

β
δ δ

= =

= =

= =

+

≤ +

 
 + +
 
 

∑∑

∑∑

∑∑
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( ) ( ) ( )

*

1 1
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2
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rr rrv rr rr vr rr
ia aib ia ia ba ia

a r v b
nn M

rr rrv rr r r r r rr
ia aib ia i a i a ia

a r v b

rrnn M
rr rrv vria
ia aib bir r r r

a r v b i a i a

c S U V V

c S g g V

S Bc V
g g

β

β δ δ

β
δ δ

≠ = =

≠ = =

≠ = =

+

≤ +

 
 + +
 
 

∑∑∑

∑∑∑

∑∑∑

 

and 

( )

( ) ( )( )( )

( ) ( ) ( )

*

1 1 1
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1 1 1

* 2 2

1 1 1

2
u v

u v

u v

n nM M
ru urv ru ru vu ru
ia aib ia ia ba ia

u r a v b
n nM M

ru urv ru r u r u ru
ia aib ia i a i a ia

u r a v b

run nM M
ru urv vuia
ia aib bar u r u

u r a v b i a i a

c S U V V

c S g g V

S Bc V
g g

β

β δ δ

β
δ δ

≠ = = =

≠ = = =

≠ = = =

+

≤ +

 
 + +
 
 

∑∑∑∑

∑∑∑∑

∑∑∑∑

        (4.23) 

Furthermore, by using Cauchy-Swartz and Hölder inequalities and (4.22), the 
sixth, seventh and eighth terms in (4.19)-(4.21) are estimated as follows:  

( ) ( )

( )
( )( ) ( ) ( )

( ) ( ) ( ) { }

0
2

2 22
0

2 d

e ,

, 1, , 1, , 1, , , , .

u
a

u
a

su ru ru ru
a ia ia ia

u
a sru ru ru ru

ia ia ia iaru
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ru ru ru ru
r u ia ia ia ia

A V t s f s e s

V t s f s ds A

r u I M i I n a I n A U V W

δ

δ µ
µ

∞ −

∞ −

−

≤ − +

∀ ∈ ∈ ∈ ∈

∫

∫




  (4.24) 
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From (4.19)-(4.23), (4.18), repeated usage of (3.25) and inequality (4.22) 
coupled with some algebraic manipulations and simplifications, we have the 
following inequality  

( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

2 2
200

1 00
1 1 1 1 1

2 2

1 1 1 1

2 2 2 4 2

2 2 2

ur r r
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rr runn n nM M Mia iaru rr r r r rr
ia ii i i i iirr rr
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σ γ
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µ µ
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µ

µ µ

= = = = ≠ ≠ =

= = ≠ = =

 
 ≤ + + + − + +   

+ + + + + +

∑∑ ∑∑ ∑ ∑∑

∑∑ ∑ ∑∑
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µ
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where ( )ru r u
ia i agµ δ= , r

ig  is appropriately defined by (4.22). The differential 
operator LV [31] [32] applied to the Lyapunov functional (4.10) and (4.11), leads 
to the following  
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 (4.26) 

We note that ( ) 2
0

d 1
u
a sru

iaf s e sδ∞ − ≤∫ . Furthermore, tt follows from (4.26), 

(4.25), and some further algebraic manipulations and simplifications that  
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    (4.27) 

where, for each ( ), 1,r u I M∈ , ( )1, ri I n∈  and ( )1, ua I n∈ , using (4.12), 
(4.13) and (4.14), we define the constants ur

aid , ru
iaφ , ru

iaψ  and ru
iaϕ  as follows:  
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for some positive numbers ru
iac , for all ( ), 1,rr u I M∈ , ( )1,i I n∈  and 

( )1,r
i ra I n∈ .  
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and 
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moreover, , ,ru ru ru
ia ia iaU V W  are given in (4.12), (4.13), (4.14) and  
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Under the assumptions on ru
iaU , ru

iaV  and ru
iaW , it is clear that ,ru ru

ia iaφ ψ  and 
ru
iaϕ  are positive for suitable choices of the constants 0ru

iac > . Thus this proves the 
inequality (4.15). Now, the validity of (4.16) follows from (4.15) and (4.8), that is,  
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. This completes the proof. We now 

formally state the stochastic stability theorems for the disease free equilibria.  
Theorem 4.1. Given ( ), 1,r u I M∈ , ( )1, ri I n∈  and ( )1, ua I n∈ . Let us 

assume that the hypotheses of Lemma 4.2 are satisfied. Then the disease free 
solutions ru

iaE , are asymptotically stable in the large. Moreover, the solutions 
ru
iaE  are exponentially mean square stable.  
Proof: 
From the application of comparison result [31] [32], the proof of stochastic 

asymptotic stability follows immediately. Moreover, the disease free equilibrium 
state is exponentially mean square stable. We now consider the following 
corollary to Theorem 4.1.  

Corollary 4.1. Let ( )1,r I M∈  and ( )1, ri I n∈ . Assume that 0r r
i iσ γ= = , 

for all ( )1,r I M∈  and ( )1, ri I n∈ .  

( )

( )
( )

( )

1 1
2

2

1

for ,
1

2

3
2

, for ,

3
2

, for ,

u

r
i

M n ru rr
ia iiu a

rr
ia rr rr

ii iarrru
iaia

rr r
ia a

ru
ia rr ru

ii iaru
ia

ru u
ia a

u r i a

u r a i

u r

δ

µ µ

ρ
µ µ

µ

ρ δ

ρ
µ µ

µ

ρ δ

= =



 = =

  +  
 
 + + =   = ≠
 +

 
  + +
 
  ≠

 +

∑ ∑

U            (4.32) 



D. Wanduku, G. S. Ladde 
 

1169 

( )

( )

*
1 1 1 1

*
1 1

1 1

1 1 1
2 2 2 , for ,

1 1 1
2 2 2 , for ,

1 1
2 2

u v

v

v

M n M nru rrv rr rr rr rr
ia iib ii ii ii iiu a v b

r r r
i i i

M nrr rrv rr rr rr rr
ii aib ia ia ia aiv bru

ia r rr r r
a ia a a

M nrr ur
ii aibv b

S d
a i u r

d

S d
a i u r

d

µ β µ µ

δ

µ β µ µ

ρ δ

µ β

= = = =

= =

= =

+ + +
= =

+ +

+ + +
= ≠ =

+ + +

+

∑ ∑ ∑ ∑

∑ ∑

∑ ∑

V





( )* 1
2 , for .

v ru ru ru ur
ii ia ia ai

u ru u u
a ia a a

S d
u r

d

µ µ

ρ δ











+ +
 ≠

+ + +




 (4.33) 

and  
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The equilibrium state rr
iiE  is stochastically asymptotically stable provided 

that , 1ru ru
ia ia ≤U W  and 1ru

ia <V , for all ( )1,ru I M∈  and ( )1,r
i ua I n∈ .  

Proof: Follows immediately from the hypotheses of Lemma 4.2, (letting 
0r r

i iσ γ= = ), the conclusion of Theorem 4.1 and some algebraic manipulations.  
Remark 4.2.  
1. The presented results about the two-level large scale delayed SIR disease 

dynamic model depend on the underlying system parameters. In particular, the 
sufficient conditions are algebraically simple, computationally attractive and 
explicit in terms of the rate parameters. As a result of this, several scenarios can 
be discussed and exhibit practical course of action to control the disease. For 
simplicity, we present an illustration as follows: the conditions of 0,r r

i iσ γ= =  
,r i∀  in Corollary 4.1 signify that the arbitrary site r

is  is a “sink” in the context 
of compartmental systems [33] [34] for all other sites in the inter and intra- 
regional accessible domain. This scenario is displayed in Figure 1. The condi- 
tions 1rr

ii ≤U  and 1rr
ii ≤W  exhibit that the average life span is smaller than 

the joint average life span of individuals in the intra and inter-regional accessible 
domain of site r

is . Furthermore, the conditions ( ) ( )1, 1, , 1,ru
ia ru I M a I n< ∀ ∈ ∈V , 

and 1, 1, ,ru ru
ia ia u r a i≤ ≤ ∀ = ≠U W , and ( ), 1, ru r a I n∀ ≠ ∈ , signify that the 

magnitude of disease inhibitory processes for example, the magnitude of the 
recovery process is greater than the disease transmission process. A future 
detailed study of the disease dynamics in the two scale network dynamic  
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Figure 1. Shows that residents of site r

is  are present only at their home site r
is . Hence 

they isolate every site from their inter and intra regional accessible domain ( )r
iC s . Site 

r
is  is a “sink” in the context of the compartmental system [33] [34]. The arrows 

represent a transport network between any two sites and regions. Furthermore, the dotted 
lines and arrows indicate connection with other sites and regions. 
 
structure for many real life scenarios using the presented two level large-scale 
delay SIR disease dynamic model will appear elsewhere.  

2. The stochastic delayed epidemic model (2.1)-(2.3) is a general representa- 
tion of infection acquired immunity delay in a two-scale network population 
disease dynamics. The stochastic delayed epidemic model with temporary 
immunity period ((2.7)-(2.9), [22]) and the numerical simulation results (Sec- 
tion 5, [22]) are special cases of (2.1)-(2.3) when we let the probability density 
function of the immunity period, ( ) ( ) ,ru r

ia if s s Tδ= −  ( ), 1,3 ,r u I∀ ∈  
( ), 1,3i a I∀ ∈ , where δ is the Dirac δ-function [19]. 

5. Conclusions 

The presented two-scale network delayed epidemic dynamic model with varying 
immunity period characterizes the dynamics of an SIR epidemic in a population 
with various scale levels created by the heterogeneities in the population. 
Moreover, the disease dynamics is subject to random environmental perturba- 
tions at the disease transmission stage of the disease. Furthermore, the SIR 
epidemic confers varying time temporary acquired immunity to recovered 
individuals immediately after recovery. This work provides a mathematical and 
probabilistic algorithmic tool to develop different levels nested type disease 
transmission rates, the variability in the transmission process as well as the 
distributed time delay in the framework of the network-centric Ito-Doob type 
dynamic equations. In addition, the concept of distributed delay caused by the 
acquired immunity period in the dynamics of human epidemics is explored for 
the first time in the context of complex scale-structured type human meta- 
populations. 

The model validation results are developed and a positively self invariant set 
for the dynamic model is defined. Moreover, the globalization of the positive 
solution existence is obtained by applying an energy function method. In 
addition, using the Lyapunov functional technique, the detailed stochastic asym- 
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ptotic stability results of the disease free equilibria are also exhibited in this 
paper. Moreover, the system parameter values dependent threshold values 
controlling the stochastic asymptotic stability of the disease free equilibrium are 
also defined. Furthermore, a deduction to the stochastic asymptotic stability 
results for a simple real life scenario is illustrated. We note, further detail study 
of the stochastic SIR human epidemic dynamic model with varying immunity 
period for two scale network mobile population exhibiting several real life 
human mobility patterns will appear elsewhere. 

We note that the disease dynamics is subject to random environmental 
perturbations from other related sub-processes such as the mobility, recovery, 
birth and death processes. The variability due to the disease transmission 
incorporated in the epidemic dynamic model will be extended to the variability 
in the mobility, recovery and birth and death processes. A further detailed study 
of the oscillation of the epidemic process about the ideal endemic equilibrium of 
the dynamic epidemic model will also appear else where. In addition, a detailed 
study of the hereditary features of the infectious agent such as the time-lag to 
infectiousness of exposed individuals in the population is currently underway 
and it will also appear elsewhere.  
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