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ABSTRACT 

In the operation of a Scramjet engine, which operates at hypersonic velocities, one of the 

most important factors is mixing the fuel and air before the high velocity air stream through the 

engine blows the mixture out of the engine before it could burn.  Because of the importance of 

rapidly mixing fuel and air within a Scramjet engine, there are multiple design elements used to 

increase mixing.  One of which is called a flame holder cavity, which is usually located behind fuel 

injectors, and designed with an open (length to depth ratio is less than 10) geometry to promote 

recirculation of the fuel and air.  Additional factors which may affect the mixing within the engine 

are the spacing between fuel injectors, the angle of the fuel injectors, and the blowing ratio of the 

fuel injectors which is the ratio of fluid entering through the fuel injectors to fluid entering the 

engines main inlet.  These three factors based around the fuel injectors are studied utilizing multiple 

models of as base scramjet, with modified fuel injectors to test each of these variables.  Utilizing 

the scramjet models prepared in Solidworks, Ansys CFX could then be used to test how the 

modifications preformed.  These tests allow the optimal combination of fuel injector spacing, angle, 

and blowing ratio to be found. 
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Introduction 

A scramjet is a variant of the jet engine that has no moving parts, and operates at 

supersonic, and hypersonic velocities.  In a scramjet engine the fuel must be injected in a 

manner that causes it to mix rapidly with the supersonic airstream, or risk blowing unburnt 

fuel out of the engine.  This need for rapid mixing of fuel and air within the engine is 

important because the dwell time of air within the engine’s combustion chamber is short, 

usually only measurable in milliseconds or smaller units. One design that can help increase 

the speed of mixing of fuel and air is by using multiple parallel fuel injectors.  An additional 

design element that can improve the mixing performance of a scramjet is by adding a flame 

holder cavity.  A flame holder can be classified as open or closed, with an open flame 

holder having a length to death ratio of seven to ten, while a closed flame holder has a 

length to death ratio of ten to thirteen.  An open flame holder cavity combined with flush 

mounted fuel injectors can improve the mixing performance of a scramjet, which will 

increase the overall performance of the jet engine.  In scramjets where multiple fuel 

injectors were utilized the spacing of the fuel injectors can impact the mixing performance, 

in a test between injectors spaced 18mm center to center and 54mm center to center, 

resulted in finding that the further spaced jets lead to better mixing characteristics for the 

fuel and air mixture. [1]     

An additional part of the design of a scramjet that can be varied to increase the 

amount of mixing between the mainstream through the center of the jet, and the fuel being 

injected is by varying the blowing ratio.  The blowing ratio is the ratio between the velocity 

of the mainstream to the velocity of the stream from the fuel injectors. A study of the effects 

of changing the blowing ratio of a scramjet by changing fuel pressure found that as the 
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pressure increased, the mixing increased, but the mixture had a lower dwell time within the 

engine, indicating that there is a blowing ratio that strikes a balance between mixing of the 

fuel and air, and the dwell time of the mixture. [2]   

An additional modification that can be made to a scramjet engine is a ramp at the 

rear of the flame holder.  The addition of a ramp at the rear of a flame holder cavity can 

affect how the fluid recirculates within the cavity.  Additionally, a flame holder cavity can 

experience velocity fluctuations near the bottom of the cavity, and vertical fluctuations near 

the rear of the cavity, both of which can be reduced via the addition of a ramp at the rear 

of the cavity.  This reduction in velocity fluctuations means that a ramp at the rear of a 

scramjet flame holder creates a smoother flow within the cavity when compared to a cavity 

without a ramp.  A ramp at the rear of the flame holder cavity can also increase the 

efficiency of a scramjet engine by reducing pressure drag that a flame holder can induce. 

[3] 

An additional modification that can be made to a scramjet flame holder cavity is its 

dimensions, making it either opened or closed.  The classification of a flame holder cavity 

is based on the ratio of its length to its depth.  An open flame holder is defined by having 

a length over depth ratio less than 10, while a closed flame holder has a length to depth 

ratio greater than 14.  A flame holder cavity length to depth ratio of 7 can be considered to 

be a transitional flame holder.  In an experiment comparing open, closed, and transitional 

flame holder cavities found that a transitional flame holder cavity with a length to depth 

ratio of 7 to be the most effective at reducing shockwaves within the cavity. [4]   

An additional variable that can affect the efficacy of a scramjet engine is the angle 

of attack, which is the angle between the jet engine and the flow of air.  The angle of attack 
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can change how a flame holder cavity behaves, changing it from behaving like an open 

flame holder to behaving like a closed flame holder.  The difference in flame holder 

behavior is that the fluid recirculates in an open flame holder, while in a closed flame 

holder, the fluid will enter and exit without recirculation.   In a study that tested a flame 

holder cavity that would be classified as open at zero angle of attack, operating with a 

hypersonic flow, found that at -10° of angle of attack the flame holder still behaved as an 

open flame holder, but when the angle of attack was changed to -15°the flow behavior 

within the flame holder changed top that of a closed flame holder. [5] 

A scramjet engine can also be influenced by the implementation of a shock 

generator.  A shock generator is a geometric feature within the engine that is designed to 

create a shockwave then the engine is operating.   The location of the shock generator, and 

the resulting shock wave can influence the flow within the scramjet engine.  In a study that 

focused on shock waves from shock generators, it was found that if the shockwave was 

close to the fuel injector jet, then the strength of the flame holder vortex would be reduced.  

While the shock does reduce the strength of the flame holder vortex, it also increases 

turbulent mixing within the engine by causing more area of the flame holder to have 

turbulent flow within it.  [6] 

Another concern in the operation of a Scramjet engine is how to ignite the fuel air 

mixture.  In an experiment that tested a dual flame holder scramjet, with one flame holder 

behind the other, and fuel injectors above and below the front of each flame holder found 

that the front flame holder could be partially covered to provide more suitable conditions 

for ignition.  The issue that comes from this configuration if the partially covered flame 

holder could affect combustion once the engine has been ignited.  The effect on combustion 
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could be mitigated by making the baffle of a material with a low melting point that will 

melt away leaving o normal flame holder once ignition has occurred to stabilize 

combustion. [7] 

Compared to gaseous fuels such as hydrogen, liquid fuels such as kerosene are 

desirable for usage in scramjets, but poses many challenges that are unique to liquid fuel.  

One of the main challenges in the usage of liquid fuel is the ignition of the engine.  In order 

to ignite a liquid fueled scramjet, the igniter must be placed where the fuel will be, so the 

fuel distribution of a scramjet with a flow through it at Mach 5.5 was used to test this.   The 

experimental scramjet was constructed with 4 fuel injectors placed in front of a pair of in 

line flame holders.  The experiment found that the front of the flame holders was fuel lean, 

and the rear was fuel rich making the midpoint an ideal area for an igniter, the kerosene 

fuel enters the cavity through a sheer layer at a predictable angle, and that as fuel injector 

pressure increases it penetrates higher into the airstream through the engine but less fuel 

enters the flame holder. [8]  

In the operation of a scramjet engine with a flame holder cavity combustion 

oscillation may occur.   In a study of these oscillations there were multiple causes found.  

The first cause of combustion oscillations was found to be an unsteady spread of the flame 

from the flame holder cavity to the main stream through the engine, which produced low 

frequency oscillations.  The second cause of the oscillations is auto ignition of packets of 

jet fuel that form, and are accompanied by hairpin vortices, which produces high frequency 

oscillations. [9] 

In addition to a traditional flame holder, a scramjet can be designed with a rear wall 

expansion chamber, which typically includes a ramp at the rear of the flame holder, and 
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then a slight angle of the outlet starting from the flame holder going backwards, leading to 

a larger engine outlet. An engine with this modification was studied to see how well the 

flame would stabilize with thew addition of the rear wall expansion cavity.  The study 

found that the most intense heat release from the combustion was close to the flame holder 

cavity rear wall, and that if the equivalence ratio of the fuel or the rear wall height was 

lowered, then the most concentrated area of heat release would move further from the rear 

wall of the engine, towards the exhaust. Additionally, it was found that the addition of a 

rear wall expansion cavity would prevent thermal choking in the combustor. [10] 

The distance between the fuel injectors and the front of a flame holder cavity can 

have a large impact on the performance of a scramjet engine.  An experiment was 

conducted involving the fuel injector placement from the flame holder, with a freestream 

velocity of Mach 1.9, and fuel injectors placed .1L, .5L, and 1L, with L being the length of 

the flame holder.  The experiment found that the injector being placed at .1L lead to 

enhanced mixing within the flame holder.  [11] 

 

Experimental Setup 

This experiment was performed using computer simulations, utilizing Solidworks 

and Ansys.  Solidworks was used to model 12 variants of a scramjet.  All the models had 

an inlet and outlet that was 100x100mm, and each jet was 1.25mm long.  Additionally, 

each model had a pair of fuel injectors with a diameter of 13.2mm, and a rectangular open 

flame holder with a height of 20mm, and length of 100mm.  Each fuel injector was spaced 

10mm form the flame holder to the center of the fuel injector.  There were only two 

variables that were changed in the models.  The first variable that was changed was the 
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distance between the fuel injectors, which was 18mm, 54mm, or 82mm.  The second 

variable that was changed was the angle of the fuel injector, which was 90°, 60°, 45°, and 

30°.  These variants allowed the effects of nozzle spacing and nozzle angle on the mixing 

of fuel and air within the engine.  

After each variant of the scramjet was modeled, it was saved and imported into an 

Ansys CFX simulation.  In the setup of the CFX simulation a speed of 10m/s as the inlet 

was set, with no flow restriction at the outlet, and smooth walls.  The flow entering the fuel 

injectors is the third variable which was changed.  The velocity of the flow into the injectors 

was set to four different values for each variant of the scramjet.  The four velocities of the 

flow through the fuel injectors were set at 10m/s, 20m/s, 30m/s, and 40m/s. The various 

velocities of the fuel injection allowed for the study of the blowing ratio on the mixing of 

fuel and air within the engine.   The blowing ratio is the ratio of fuel injected to the air 

entering through the engine inlet.   

After each successful run of the simulation data was collected by placing a YZ 

plane centered on a fuel injector in the scramjet engine.  This plane could be used to study 

the flow from the inlet of the engine to the fuel injector, through the flame holder, and out 

the outlet.  Additionally, three XY planes were placed in the flame holder cavity to 

visualize the flow across the entire width of the cavity, at the front middle and back.  The 

positions of the XY planes were at the center of the flame holder, .04mm towards the rear 

of the flame holder, and .04mm towards the front of the flame holder.  The planes were 

created to provide the locations for contour vector plots that would show the flow within 

the engine.  For each plane, three contour plots, and one vector plot were created to 

visualize the flow.  The first contour plot created for each plane was a pressure contour, 
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with a scale of 0-75 [Pa].  The second contour plot that was created for each plane was 

turbulence kinetic energy, with a scale of 0-1 𝑚2𝑠2.  The third contour plot that was created 

shows the velocity with a scale of 0-40 m/s.  Each contour plot was created with 30 

contours.  The vector plots for each plane showed the velocity, using the equally spaced 

sampling method, with 5000 points, and used tangential projection.   

 

 

Results 

Figures 1, 2, 3, and 4 show the side view of the velocity vector plot of the scramjet with 

injectors spaced at 18mm, and the angle of the injectors is 090 .  The pictures can be used 

to compare the results of changing the blowing ratio on the turbulent mixing occurring in 

the engine.  Figure 1 has a fuel injector inlet velocity of 10 m/s, in figure 2 it is 20m/s, in 

figure 3 it is 30m/s, and in figure 4 it is 40 m/s.  In these figures, there is a small area of 

recirculation above the flame holder, that raises higher above the flame holder as the 

blowing ratio increases.  In all scenarios where an engine with a fuel injector spacing of 

18mm was tested the area of recirculation never touches the bottom of the flame holder, or 

even occurs within the flame holder, which is where recirculation is desired.  In the engine 

with fuel injectors spaced at 18mm the highest mixing performance was seen at the lowest 

blowing ratio, with a fuel injector velocity of 10m/s, and the lowest mixing performance at 

the highest blowing ratio, with a fuel injector velocity of 40m/s.   
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Figure 1.  Side view of vectors, 18 mm injector spacing, 90° injector angle, and 10 m/s 

injector inlet velocity.   
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Figure 2.  Side view of vectors, 18 mm injector spacing, 90° injector angle, and 20 m/s 

injector inlet velocity.   

 

 

 

Figure 3.  Side view of vectors, 18 mm injector spacing, 90° injector angle, and 30 m/s 

injector inlet velocity.   
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Figure 4.  Side view of vectors, 18 mm injector spacing, 90° injector angle, and 40 m/s 

injector inlet velocity. 

 

 Figures 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, and 16 are the side view of vector plots 

like the previous figures, and have the same 18mm injector spacing, and same velocities at 

the fuel injectors, but the fuel injectors are now at the angles of 60°, 45°, and 30 °.  This 

will allow the effect of the angle of the fuel injector to be studied compared to the 90° 

angled injectors from figures 1-4, and how changing the blowing ratio affects angled fuel 

injectors.  The injectors in figures 5-8 are angled at 60°, in figures 8-12 the angle is 45° 

and in figures 13-16 the angle is 30°.  The velocity through the fuel injectors in figures 5, 

9, and 13 is 10 m/s; 20 m/s in figures 6, 10, and 14; 30 m/s in figures 7, 11, and 15; and 40 

m/s in figures 8, 12, and 16.   These figures are similar to figures 1-4, all showing an area 

of recirculation above the flame holder, that raises higher above the flame holder as 

blowing ratio increases.  Additionally, the angle does not seem to impact the recirculation. 
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Figure 5.  Side view of vectors, 18 mm injector spacing, 60° injector angle, and 10 m/s 

injector inlet velocity. 

 

 
Figure 6.  Side view of vectors, 18 mm injector spacing, 60° injector angle, and 20 m/s 

injector inlet velocity. 
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Figure 7.  Side view of vectors, 18 mm injector spacing, 60° injector angle, and 30 m/s 

injector inlet velocity. 

   

 
Figure 8.  Side view of vectors, 18 mm injector spacing, 60° injector angle, and 40 m/s 

injector inlet velocity. 
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Figure 9.  Side view of vectors, 18 mm injector spacing, 45° injector angle, and 10 m/s 

injector inlet velocity. 

 

 
Figure 10.  Side view of vectors, 18 mm injector spacing, 45° injector angle, and 20 m/s 

injector inlet velocity. 
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Figure 11.  Side view of vectors, 18 mm injector spacing, 45° injector angle, and 30 m/s 

injector inlet velocity. 

 

 
Figure 12.  Side view of vectors, 18 mm injector spacing, 45° injector angle, and 40 m/s 

injector inlet velocity. 
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Figure 13.  Side view of vectors, 18 mm injector spacing, 30° injector angle, and 10 m/s 

injector inlet velocity. 

 

 
Figure 14.  Side view of vectors, 18 mm injector spacing, 30° injector angle, and 20 m/s 

injector inlet velocity. 
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Figure 15.  Side view of vectors, 18 mm injector spacing, 30° injector angle, and 30 m/s 

injector inlet velocity. 

 

 
Figure 16.  Side view of vectors, 18 mm injector spacing, 30° injector angle, and 40 m/s 

injector inlet velocity. 

 

 

Figures 17-20 show the side vector plots of the Scramjet engine with fuel injectors 

spaced at 54mm, and with a fuel injector angle of 90°.  The velocity through the fuel 
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injector in figure 17 was 10 m/s, in figure 18 it is 20 m/s, in figure 19 it is 30 m/s, and in 

figure 20 it is 40 m/s.  These figures show a large area of recirculation within the flame 

holder, that increases in size as the blowing ratio increases.  This is the opposite effect from 

what increasing the blowing ratio of the engine with 18mm injector spacing experienced.  

Rather than lifting far above the flame holder, the area of recirculation reached the bottom 

of the flame holder in all cases, and increasing the blowing ratio, even to the maximum 

ratio with a fuel injector inlet velocity of 40m/s, only expanded the area of recirculation. 

This means that the engine with 54mm injector spacing experiences an increase in mixing 

performance with a higher blowing ratio, with a fuel injector velocity of 40m/s, compared 

to the lowest blowing ratio with a fuel injector velocity of 10m/s. 

 
Figure 17.  Side view of vectors, 54 mm injector spacing, 90° injector angle, and 10 m/s 

injector inlet velocity. 
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Figure 18.  Side view of vectors, 54 mm injector spacing, 90° injector angle, and 20 m/s 

injector inlet velocity. 

 

 
Figure 19.  Side view of vectors, 54 mm injector spacing, 90° injector angle, and 30 m/s 

injector inlet velocity. 
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Figure 20.  Side view of vectors, 54 mm injector spacing, 90° injector angle, and 40 m/s 

injector inlet velocity. 

 

  

Figures 21-32 show the side vector plot of the scramjet with 54 mm spacing 

between the fuel injectors.  Figures 21-24 show the fuel injectors at a 60° angle, figures 

25-28 show the fuel injectors at a 45° angle, and figures 29-32 show the fuel injectors at a 

30° angle.  Figures 21, 25, and 29 have a velocity of 10 m/s through the fuel injectors; the 

velocity through the fuel injectors is 20 m/s in figures 22, 26, and 30; the velocity through 

the fuel injectors is 30 m/s in figures 23, 27, and 31; and the velocity through the fuel 

injectors is 40 m/s in figures 24, 28, and 32.  These figures are similar to figures 17-20, 

with a large area of recirculation within the flame holder cavity, that increases in size with 

increases in blowing ratio.  The angles did not seem to affect the size of the recirculation 

area. 
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Figure 21.  Side view of vectors, 54 mm injector spacing, 60° injector angle, and 10 m/s 

injector inlet velocity. 

 

 
Figure 22.  Side view of vectors, 54 mm injector spacing, 60° injector angle, and 20 m/s 

injector inlet velocity. 
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Figure 23.  Side view of vectors, 54 mm injector spacing, 60° injector angle, and 30 m/s 

injector inlet velocity. 

 

 
Figure 24.  Side view of vectors, 54 mm injector spacing, 60° injector angle, and 40 m/s 

injector inlet velocity. 
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Figure 25.  Side view of vectors, 54 mm injector spacing, 45° injector angle, and 10 m/s 

injector inlet velocity. 

 

 
Figure 26.  Side view of vectors, 54 mm injector spacing, 45° injector angle, and 20 m/s 

injector inlet velocity. 

 



24 
 

 
Figure 27.  Side view of vectors, 54 mm injector spacing, 45° injector angle, and 30 m/s 

injector inlet velocity. 

 

 
Figure 28.  Side view of vectors, 54 mm injector spacing, 45° injector angle, and 40 m/s 

injector inlet velocity. 
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Figure 29.  Side view of vectors, 54 mm injector spacing, 30° injector angle, and 10 m/s 

injector inlet velocity. 

 

 
Figure 30.  Side view of vectors, 54 mm injector spacing, 30° injector angle, and 20 m/s 

injector inlet velocity. 
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Figure 31.  Side view of vectors, 54 mm injector spacing, 30° injector angle, and 30 m/s 

injector inlet velocity. 
 

 
Figure 32.  Side view of vectors, 54 mm injector spacing, 30° injector angle, and 40 m/s 

injector inlet velocity. 

 

  

Figures 33-36 show the side vector plot of the scramjet with the injectors at an angle 

of 90°, and with a fuel injector spacing of 82mm.  The velocity of the flow through the fuel 
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injector is 10 m/s in figure 33, it is 20 m/s in figure 34, is 30m/s in figure 35, and 40 m/s 

in figure 36.  In these figures a small area of recirculation is present above the flame holder, 

that shrinks and rises as blowing ratio is increased.  At the maximum blowing ratio tested, 

which was with a fuel injector velocity of 40m/s, the recirculation shrinks to an extremely 

small area, and raises very high into the engine above the flame holder, causing a decrease 

in mixing performance compared to the lowest blowing ratio with a fuel injector velocity 

of 10m/s.  This can be observed in all cases with injectors spaced at 82mm, regardless of 

the injector angle, and is similar to the engine with a fuel injector spacing of 18mm, but to 

a more extreme degree.    

 

 
Figure 33.  Side view of vectors, 82 mm injector spacing, 90° injector angle, and 10 m/s 

injector inlet velocity. 
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Figure 34.  Side view of vectors, 82 mm injector spacing, 90° injector angle, and 20 m/s 

injector inlet velocity. 

 

 
Figure 35.  Side view of vectors, 82 mm injector spacing, 90° injector angle, and 30 m/s 

injector inlet velocity. 
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Figure 36.  Side view of vectors, 82 mm injector spacing, 90° injector angle, and 40 m/s 

injector inlet velocity. 

 

  

Figures 37- 48 have the same fuel injector spacing as figures 33-36, 82mm, and 

show the side view of the vector plot, but they are at different fuel injector angles.  Figures 

37-40 are at a 60°, figures 41-44 are at a 45°, and figures 45-48 are at a 30°.   The velocity 

of the flow through the fuel injectors is 10 m/s in figures 37, 41, and 45; is 20 m/s in figures 

38, 42, and 45; is 30 m/s in figures 39, 43, and 48; and is 40 m/s in figures 40, 44, and 48.  

These figures are similar to figures 33-36, with are small area of recirculation above the 

flame holder that shrinks and raises further above the flame holder as the blowing ratio 

increases.  The area of recirculation in these figures appears to be unaffected by changing 

the angle of the injectors.  
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Figure 37.  Side view of vectors, 82 mm injector spacing, 60° injector angle, and 10 m/s 

injector inlet velocity. 

 

 
Figure 38.  Side view of vectors, 82 mm injector spacing, 60° injector angle, and 20 m/s 

injector inlet velocity. 
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Figure 39.  Side view of vectors, 82 mm injector spacing, 60° injector angle, and 30 m/s 

injector inlet velocity. 

 

 
Figure 40.  Side view of vectors, 82 mm injector spacing, 60° injector angle, and 40 m/s 

injector inlet velocity. 
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Figure 41.  Side view of vectors, 82 mm injector spacing, 45° injector angle, and 10 m/s 

injector inlet velocity. 

 

 
Figure 42.  Side view of vectors, 82 mm injector spacing, 45° injector angle, and 20 m/s 

injector inlet velocity. 

 

 



33 
 

 
Figure 43.  Side view of vectors, 82 mm injector spacing, 45° injector angle, and 30 m/s 

injector inlet velocity. 

 

 
Figure 44.  Side view of vectors, 82 mm injector spacing, 45° injector angle, and 40 m/s 

injector inlet velocity. 
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Figure 45.  Side view of vectors, 82 mm injector spacing, 30° injector angle, and 10 m/s 

injector inlet velocity. 

 

 
Figure 46.  Side view of vectors, 82 mm injector spacing, 30° injector angle, and 20 m/s 

injector inlet velocity. 
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Figure 47.  Side view of vectors, 82 mm injector spacing, 30° injector angle, and 30 m/s 

injector inlet velocity. 

 

 
Figure 48.  Side view of vectors, 82 mm injector spacing, 30° injector angle, and 40 m/s 

injector inlet velocity. 
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Conclusion 

  Experimental simulations were performed on a model scramjet engine to 

understand the effects of changing the spacing, angle, and blowing ratio of the fuel injectors 

on the fuel air mixing characteristics within the engine.  In all variants that were tested 

there was some flow recirculation behind the fuel injectors.  These areas of recirculation 

are a desirable flow feature, because recirculation promotes, and increases the fuel air 

mixing within the engine.  In the comparison between the fuel injector spacing of 18mm, 

54mm, and 82mm spacing, the engines with fuel injectors spaced at 54mm had large areas 

of flow recirculation within the flame holder cavity.  The engines with the fuel injectors 

spaced at 18mm and 82mm showed much smaller areas of recirculation, but the areas of 

recirculation were not within the flame holder cavity.    Blowing ratios were compared by 

changing the fuel injector inlet velocity, while keeping the main inlet velocity at 10m/s, 

and the tested fuel injector inlet velocities were 10m/s, 20m/s, 30m/s, and 40m/s.  An 

increased blowing ratio can have either positive effect or a detrimental effect depending on 

the location of the recirculation region.  In the cases where the fuel injector spacing was 

54mm, which had the recirculation region within the flamer holder cavity, increasing the 

blowing ratio led to the upper region of recirculation reaching above the top of the flame 

holder cavity while not raising the lower portion if the recirculation region, increasing the 

area of recirculation.  In the cases with fuel injector spacing of 18mm and 82mm increasing 

the blowing ratio led to the area of recirculation shrinking, and lifting higher above the 

flame holder cavity.   This shows that when the blowing ratio is increased, it will improve 

mixing if the recirculation area is within the flame holder, but will decrease mixing if the 

area of recirculation is outside of the flame holder.  In the tests of fuel injectors at 60°, 45°, 
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and 30° showed no noticeable impact on the flow or recirculation area when compared to 

fuel injectors at a 90° angle. 

 

 

 

 

 

 

References 

[1] Ukai, Takahiro and Hossein Zare-Behtash and Kin Hing Lo and Konstantinos Kontis and Shigeru 

Obayashi. 2014. “Effects of dual jets distance on mixing characteristics and flow path within a 

cavity in supersonic crossflow.” International Journal of Heat and Fluid Flow no. 50, 254-262, 

accessed April 19, 2020, www.elsevier.com/locate/ijhff 

[2] Wang, Hongbo and Zhenguo Wang and Mingbo Sun and Ning Qin. 2014. “Large eddy 

simulation based studies of jet–cavity interactions in a supersonic flow.”  Acta Astronautica 

no. 93 182-192 accessed April 19, 2020,  www.elsevier.com/locate/actaastro 

[3] Pey, Yin Pay and Leok Poh Chua and Wei Long Siauw. 2014 “Effect of trailing edge ramp on 

cavity flow structures and pressure drag.” International Journal of Heat and Fluid Flow no. 45, 

53-71, accessed April 20, 2020,  www.elsevier.com/locate/ijhff 

[4] Huang, Wei and Zhen-guo Wang and Li Yan and Wei-dong Liu. 2012. “Numerical validation 

and parametric investigation on the cold flow field of a typical cavity-based scramjet 

http://www.elsevier.com/locate/ijhff
http://www.elsevier.com/locate/ijhff


38 
 

combustor.” Acta Astronautica no. 80, 132-140, accessed April 20, 2020,  

www.elsevier.com/locate/actaastro 

[5] Xaio, Lianghua and Zhixiang Xiao and  Zhiwei Duan  and Song Fu.  2015‘’ Improved-Delayed-

Detached-Eddy Simulation of cavity-induced transition in hypersonic boundary layer.” 

International Journal of Heat and Fluid Flow no. 51, 138-150, accessed April 20, 2020, 

www.elsevier.com/locate/ijhff 

[6] Zare-Behtash, H. and  K.H. Lo and K. Kontis  and T. Ukai and S. Obayashi. 2015. “Transverse 

jet-cavity interactions with the influence of an impinging shock.” International Journal of Heat 

and Fluid Flow no. 53 146-155 accessed April 19, 2020, www.elsevier.com/locate/ijhff 

[7] Cai, Zun and Mingbo Sun and Hongbo Wang and Zhenguo Wang. 2016. “Experimental 

investigation on ignition schemes of partially covered cavities in a supersonic flow.” Acta 

Astronautica no. 121, 88-94, accessed April 19, 2020,: www.elsevier.com/locate/actaastro 

[8] Li, Xipeng and Weidong Liua and Yu Pana and Leichao Yanga and Bin An and Jiajian Zhua. 2017. 

” Characterization of kerosene distribution around the ignition cavity in a scramjet 

combustor.” Acta Astronautica no. 134, 11-16, accessed April 22, 2020, 

www.elsevier.com/locate/actaastro 

[9] Wang, Hongbo and Zhenguo Wang and Mingbo Sun and Ning Qin. 2013. “Large-

Eddy/Reynolds-averaged Navier Stokes simulation of combustion oscillations in a cavity-

based supersonic combustor.” International Journal of Hydrogen Energy no. 38, accessed April 

22, 2020, www.elsevier.com/locate/he 

[10] Wang, Zhenguo and Zun Cai and Mingbo Sun and Hongbo Wang and Yanxiang Zhang. 2016. 

“Large Eddy Simulation of the flame stabilization process in a scramjet combustor with 

rearwall-expansion cavity.” International Journal of Hydrogen Energy no.41, 19278-19288, 

accessed April 19, 2020, www.elsevier.com/locate/he 

http://www.elsevier.com/locate/ijhff
http://www.elsevier.com/locate/actaastro
http://www.elsevier.com/locate/he


39 
 

[11] Ukai, Takahiro and Hossein Zare-Behtash and Erinc Erdem and Kin Hing Lo and Konstantinos 

Kontis and Shigeru Obayashi. 2014. “Effectiveness of jet location on mixing characteristics 

inside a cavity in supersonic flow. “Experimental Thermal and Fluid Science no. 52, 59-67, 

accessed April 19, 2020, www.elsevier.com/locate/etfs 

 


	The Effect of Fuel Injector Spacing, Angle, and Blowing Ratio on the Fuel Air Mixing Performance of a Scramjet Engine
	Recommended Citation

	tmp.1619799936.pdf.LDW6D

