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PHYLOGENETIC RELATIONSHIPS WITHIN COLEEAE (BIGNONIACEAE JUSS.) 
 

by 
 

ANDREINA FUENTES CARVAJAL 
 

(Under the Direction of Michelle Zjhra) 
 
 
 
 

ABSTRACT 
 
 
 

On Madagascar, Bignoniaceae is represented by tribes Coleeae (4 genera/58 species) and 

Tecomeae (4 genera/15 species). Species of Coleeae occur in assemblages of sympatric, 

locally endemic species. The purpose of this study was to explore the phylogenetic 

relationships within Coleeae. In order to do so, techniques such as PCR by using 

universal primers for waxy nuclear gene, agarose electrophoresis, cloning and sequencing 

were performed. A total of 26 taxa were successfully amplified. Sequences were analyzed 

using three different phylogenetic programs (Maximum parsimony, maximum likelihood 

and Bayesian analysis) resulting in various phylogenetic trees. Main conclusions drawn 

from this work are: 1. waxy is a good molecular marker to resolve relationships within 

Coleeae; 2. ITS and waxy resolved main clades similarly showing monophyly of Colea 

and Rhodocolea. Since conservation requires reliable information on species identity, a 

good phylogenetic assessment is of great importance in determining taxonomic status of 

organisms.  
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CHAPTER 1 

 INTRODUCTION 

Taxonomy of Coleeae. 

Bignoniaceae (the Trumpet Creeper family) is predominately a tropical family of 

trees and lianas. The family is characterized by opposite, compound leaves; flowers that 

are five-merous, fused, and zygomorphic with four stamens; fruit that are usually 

elongate, septicidal to loculicidal capsules (De Jussie, 1789). Phylogenetic studies of the 

family have placed Bignoniaceae in order Lamiales, within Euasterids I of the core 

Eudicots (Olmstead et al., 1993, APG II, 2003). 

 The island of Madagascar is home to the world’s second greatest center of 

diversity for Bignoniaceae, exceeded only by the much larger neotropical region (Gentry, 

1988). The Malagasy diversity of Bignoniaceae is represented by near endemic tribe 

Coleeae (4 genenra/58 species) and pantropical Tecomeae (4 genera/15 species) (Zjhra, 

2006). 

The first classification to consider Madagascar species was that of Bojer (1837) 

who divided the family into three tribes: Bignonieae, Crescentieae and Coleeae. Further 

classifications considered Coleeae as part of Crescentieae (De Candolle, 1838; 1845; 

Seeman 1860; Baillon 1887, 1888; Perrier De la Bathie, 1938) due predominately to the 

shared but unusual characteristics of indehiscent, fleshy, animal-dispersed fruit. Gentry 

(1976, 1980) circumscribed Bignoniaceae into 7 tribes: Coleeae, Bignonieae, 

Crescentieae, Tecomeae, Eccremocarpeae, Tourrettiae, and Oroxyleae. Furthermore, 

Gentry (1980) suggested that similarities between Coleeae and Crescentieae were due to 

derived position of Bignoniaceae among the angiosperms means that Bignoniaceae 
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arrived on Madagascar via long-distance dispersal. The late arrival of Coleeae, compared 

to earlier Angiosperm groups, suggest that species of Coleeae radiated rapidly and 

recently on Madagascar (Gentry, 1980).  Coleeae, therefore, make an ideal group for 

studies of diversification.  

  Species of Coleeae occur in sympatric assemblages and are often local endemics 

(Zjhra, 1998, Good et al., 2006, Zjhra, in review). Zjhra (2003) investigated the radiation 

and diversification of traits using a nrDNA (ITS) derived phylogeny and found that 

traditional generic delimitations were not monophyletic. Yet cpDNA (ndhF, trnT-L, trnL-

F spacer data) derived relationships suggested monophyletic generic clades (Zjhra et al., 

2004). The latter could be possible due to the slower rates of evolution of chloroplast 

genome in comparisons to nuclear DNA, which have make them useful in resolving 

higher taxonomic levels than species (Sang, 2002).  

Molecular markers used to resolve phylogenies 

Plant molecular systematists predominately have relied upon chloroplast DNA 

(cpDNA) and nuclear highly repetitive rDNA arrays, using conserved genes to study 

ancient divergence events and spacer regions for lower taxonomic level (Mason-Gamer et 

al. 1998). However, cpDNA is generally inherited as a single unit and lacks 

recombination, thus phylogenies based on cpDNA effectively represent a single gene tree 

(Doyle, 1992) that traces the genealogy of one parent (Sang, 2002).   

 The internal transcribed spacer (ITS) is the most frequently sequenced nuclear 

region due to its comparatively easy amplification, compared to other nDNA markers, 

and sufficient variability to resolve phylogenetic relationship in different plants groups at 

the generic level or lower (Mort & Crawford, 2004). However, poor resolution at lower 
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taxonomic levels (Baldwin et al., 1995) is likely due to lack of sufficient informative 

characters in the short length of the spacer (Sang, 2002) in some groups.  

The need for additional molecular markers for reconstructing speciation events is 

fundamentally a need for constructing organismal phylogenies rather than single gene 

trees (Cronn et al., 2003, Doyle, 1992). Low-copy genes, such as GBSSI, have attracted 

the attention of systematists since they offer several advantages such as limited concerted 

evolution (Álvarez & Wendel, 2003). Problems, however, about the use of low-copy loci 

include marker selection, primer design, duplications, and deletions, which can 

potentially lead to the reconstruction of gene duplication events, rather than speciation 

events (Sang, 2002).  

The granule-bound starch synthase (GBSSI) gene, also known as waxy (Echt & 

Schwartz, 1981), encodes an enzyme involved in starch synthesis. This starch synthesis 

enzyme adds glucose residue from ADP glucose to the non-reducing end of a growing 

glucan chain and is the only one within the starch synthases that is required for amylose 

synthesis, although there is some evidence of glucose incorporation into amylopectin in 

starch granules (Denyer et al., 2001). The waxy gene cloned in potato (van der Leij et al. 

1991) comprised 4663 bp; the translated portion encompassed 2961, had 13 translated 

exons, and 13 introns, without the one in the leader. It encoded a 58.2 kilodalton mature 

protein with 540 amino acids. Waxy is a low-copy nuclear gene, existing as a single copy 

in nearly all plants examined (Mason & Gamer et al., 1998).  The exceptions to date, 

however, are duplications in Rosaceae and Rhamnaceae (Evans et al.; 2000), as well as 

Viburnum (Adoxaceae) (Winkworth & Donoghue, 2004). The phylogenetic utility of the 

nuclear gene waxy have been demonstrated across a wide range of taxonomic levels in 
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different groups of plants, such as Poaceae (Yang et al., 2007; Ingram and Doyle, 2003, 

Mason-Gamer et al. 1998), Malvaceae (Small, 2004), Solanaceae (Levin et al., 2005; 

Peralta & Spooner, 2001; van der Leij et al., 1991), and Convolvulaceae (Miller et al., 

1999).  Waxy exhibited sufficient variability to resolve relationships including between 

distantly related species (e.g., wide hybridization between distantly related species within 

subfamily Maloideae; Evans & Campbell, 2002) and among species that gave rise to the 

allopolyploid Geinae (Colurieae: Rosaceae) (Smedmark et al, 2003; Smedmark et al; 

2005). 

Importance of a good phylogenetic framework 

  Madagascar is one of the eight “hottest” biodiversity hotspots based on richness 

and endemism of plants, and on habitat loss (estimated at >90 per cent) (Ganzhorn et al., 

2001). The plant diversity on Madagascar is seriously threatened: 54% of the species of 

Coleeae are threatened with extinction (Good et al., 2006)). Since conservation requires 

reliable information on species identity, a good phylogenetic assessment is of great 

importance in determining taxonomic status of organisms. 

 Additionally, a robust phylogenetic framework is useful in assessing the evolution 

of traits important to diversification (Donogue, 1989). Coleeae provide a rich variety of 

traits including floral, fruit, and leaf characters that provide clues to the astounding recent 

diversification of this group.  

The purpose of this study is to determine the relationships within Coleeae using 

waxy, comparing and contrasting waxy with the existing ITS phylogeny, and evaluating 

the combined data phylogeny.   
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CHAPTER 2 

MATERIALS AND METHODS 

Study organisms, sampling and outgroup choice. 

Materials were available for approximately 65 taxa. Two outgroup taxa were 

choosen: Kigelia africana, an Africa genus placed by Gentry (1976) in Coleeae, and 

Tabebuia, a member of Central American tribe Crescentiae that originally included 

Coleeae (Gentry, 1980). Outgroup taxa were chosen due to their close relationship with 

Coleeae (Spangler & Olmstead, 1999). Both taxa were used to root the tree in all the 

analyses. 

DNA extraction 

Total DNA was extracted from ~0.1 g of herbarium or silica gel preserved leaves. 

The silica gel material was collected in Madagascar between 1994 and 1998. DNA was 

extracted using either a modified CTAB (cetyltrimethylammoniun bromide) procedure 

(Weigel & Glazebroo, 2002) or CTAB DNA mini-prep with 6% CTAB (Murray & 

Thompson, 1980; Saghai-Maroof et al., 1986). In both methods, DNA was resuspended 

in 50 µl of distilled-deionized water.   

Amplification of nDNA gene region 

To amplify GBSSI, 2µl of total DNA was used in a total volume of 50µl reaction. 

Optimal concentrations for PCR were determined (Table 1). The first pair of primers 

employed were waxy13R 5’GGAGTGGCRACGTTTTCCTT3’, waxy10F 

5’ACTGCTGGNGCTGATTTTATG3’, and 7F 

5’GYYTTSTGCATCCACAACATTGC3’ (Olmstead, pers. comm.). With 10F and 13R a 

650-750 bp length was expected while for 7F and 13R was of 1500 bp. The annealing 
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temperature was optimized for the combination of primers 10F & 13R, resulting in 

Rhodocolea amplifying at 61°C, and Phyllarthron and Colea at 60°. A hot start and 

touchdown procedure was employed frequently as follows: 94ºC for 50 sec, 59˚C for 1 

min, 72ºC for 1:30 min (ten cycles), 94˚C for 50 sec, 56˚C for 1:00 min, 72˚C for 1:30 

(ten cycles), 94˚C for 50 sec, 54˚C for 1:30 min, 72˚C for 1:30 (20 cycles), and a final 

extension step at 72˚C for 7 min. PCR products were checked on 1.2% agarose gels 

stained with 5µl of 1:10 ethidium bromide and viewed with ultraviolet light. 

Concentrations were estimated by visual comparison with bands containing known 

amounts of DNA.  

Various Taq polymerases were used for most routine procedures.  For cloning, 

however, ExTaq buffer (TaKaRa) and 0.25 µl ExTaq (Takara) were used to assure the 5’ 

and 3’ terminal deoxyadenina overhang. PCR were performed in an Eppendorf Thermal 

Cycler. When more than one product was obtained, stringency was applied by increasing 

the annealing temperature to yield a simple PCR product. PCR products were purified 

using QIAquik PCR purification kit (Qiagen). Final elution was done with buffer EB 

provided with the kit. Amplification products were checked on 1.2% agarose gels stained 

with 5µl of 1:10 ethidium bromide and viewed with ultraviolet light for presence of 

inserts. Concentrations were estimated by visual comparison with bands containing 

known amounts of DNA.  

Some samples were directly sent to the department of Biochemistry and 

Molecular Biology at Oklahoma State University for sequencing along with downstream 

and upstream primers in concentrations of 10picomoles/µl. Other samples were used in 

cloning. Oklahoma State University used the Applied Biosystems Big Dye Terminator 
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1.1 cycle sequencing kit. Reactions were purified using Edge Biosystems Dye Terminator 

Removal System. Purified reactions were analyzed on an Applied Biosystems 3730 DNA 

analyzer.  

Cloning 

 After PCR product was purified, the samples were cloned with the TOPO TA 

cloning kit for sequencing (Invitrogen, Carlsbad, California, USA). Ligation, 

transformation, and plating were carried out following the manufacturer’s instructions, 

except that ligation and transformation volumes were halved. Ligation incubated for 30 

minutes on a thermocycler at 22°C. The nutritive media for plating and growing the 

bacteria was Luria Bertani agar and Luria Bertani broth (Fisher, Fair Lawn, New Jersey) 

with 100 µg/ml of kanamycin to grew colonies with the inserted plasmid. Incubation was 

done in 1ml per colony and left for approximately 48 hours with vertical shaking. The 

DNA plasmid was purified using QiaPrep Spin Miniprep kit (Qiagen). Plasmids with 

inserts were screened by PCR using the M13 reverse and forward primers that come with 

the cloning kit. 

Alignment 

Sequence chromatograms were checked and edited manually in Genes Code 

Corporation’s Sequencher, version 4.1.2 for Machintosh (Ann Arbor Michigan, USA).  

With cloned sequences, the vector was trimmed by imputing the flanked regions around 

the insert. Sometimes manual trimming was necessary. Once edited, a consensus 

sequence was obtained by assembling the upstream and downstream DNA sequences for 

each taxon. Consensus sequences were exported as text to McClade, 4.03 and further 
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manually adjusted. Consensus sequences were subjected to a BLAST search (Altschul et 

al., 1997) in GenBank to test for GBSSI identity. 

Primer design 

From the few initial sequences obtained with the two universal pairs of primers, 

new primers were designed (Table 2). Once aligned, conserved regions at the beginning 

and end of the sequences were selected and primers were ordered from Invitrogen. 

Primers were designed with a similar melting point, as recommended (Strand et al., 

1997). Initially, four primers were designed without considering exon or intron position 

in order to amplify as large a portion of the gene as possible (Mort & Crawford, 2004).  

Primers “waxy8downs,” “waxy12ups” were designed to align with exon positions 8 and 

12 of Potato waxy gene (Figure 1) (GenBank x58453) (van der Leij et al., 1991).  

Phylogenetic analyses  

 Phylogenetic trees were inferred using maximum parsimony (MP), and maximum 

likelihood (ML) optimality criterion in PAUP*4.0b10 (Swofford, 2002). In addition, data 

was analyzed using a Bayesian analysis approach with Mr. Bayes (v3.0; Huelsenbeck & 

Ronquist, 2001).   

MP was set for heuristic search with “tree-bisection-reconnection” (TBR) branch 

swapping, collapsed branches if maximum length was zero, and all characters equally 

weighted and unordered. Gaps were treated as missing data. Multistate taxa were 

interpreted as uncertainty. A strict consensus tree was obtained. Relative measures of 

support for clades were estimated using Bootstrap analysis (Felsenstein, 1985), and are 

represented by numbers over the branches. MaxTrees was set to 2000 replicates with full 

heuristic search.  
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For both ML and Bayesian analyses, Modeltest version 3.7 (Posada & Crandall, 

1999) was used in combination with PAUP* to select for the best evolutionary model for 

each data based on the Akaike information criterion (AIC; Akaike, 1974). ML analyses 

were set to a maximum of 2000 trees. TBR branch-swapping and the MulTrees options 

were in effect. Starting trees were obtained from the MP analysis.  

Bayesian analyses were conducted with Mr. Bayes version 3.1.2. Each analysis 

was initiated from a random starting tree and the program was set to run four Markov 

chain Monte Carlo iterations (three heated and one cold) simultaneously for 50,000 

generations and a tree was saved every 100 generations. The posterior probabilities for 

clades were estimated and are represented by numbers above the branches. 

ITS and waxy were analyzed separately to construct phylogenetic trees: ITS alone 

with a total length of 720 bp (using data from Zjhra, 1998); waxy with a total length of 

1198 bp and a subset of waxy that minimized missing data with 439 bp. Two combined 

dataset with ITS and waxy were analyzed: waxy with 1198 bp; waxy with 439 bp. 

Analyses were conducted with and without P. cauliflorum since it was variously placed 

in the Colea clade in the waxy data set. Kigelia and Tabebuia were used in all cases as 

outgroups. The different genera are indicated by different colors on the phylogenetic 

trees.  
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Table 1. PCR’s general conditions. 

Reagent Start 

concentration 

End concentration VolumeµL/50µL 

Buffer 10X 1X 5 

MgCl 25mM 2.5 mM 5 

dNTP 10µM 0.4µM 2 

Upstream Primer  20µM 0.8µM 1 

Downstream Primer  20µM 0.8µM 1 

BSA 100%  1 

Water   to volume 

 

 

Table 2. Primers used in PCR amplification and sequencing of waxy. 

Pair of primers  Primer sequence (with forward 
and reverse ) 

Sequence 
length 
product 
expected 
(bp.) 

WaxyFColeeae 
WaxyRColeeae 

5’gccatcgccaccaggttcacc 3’ 
5’tggtctcatccaattgcatgccatgcg 3’ 
 

650 

Coleeaeupstream1 
Coleeaedownstream1 

5’catcgccaccaggttcacc 3’ 
5’ccaattgcatgccatgcgatac 3’ 
 

No 
product 

Coleeaeupstream2 
Coleeaedownstream2 

5’ ctgcttgaatcaggtacctatctg 3’ 
5’gttctcaatgactaccttccaagagagatc3’ 
 

520 

GBSS1coleeaeandredown 
GBSS1coleeaeandreups 

5’ gtgagatatgccatgagttgaag 3’ 
5’ gatacggaacagtaagagccctag 3” 
 
 

800 

Waxy8downs 
waxy12ups  
 

5’ctggatgmaggctggaattrtaga atc 3’ 
5’gttgaagcacagataggtacc 3’ 
 

780 
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ATG

= intron in the leader = unstralated 
= translated exon 

Exon 8 

5’ 3’

Figure 2. Diagram of granule-bound synthase gene from Solanum tuberosum. Arrows indicate locations and directions

of waxy8ups and waxy12downs. (Diagram adapted from van der Leij et al., 1991) 
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CHAPTER 3 

RESULTS 

Amplification and alignment: 

A total of 24 ingroup taxa were successfully amplified (Fig. 2) which represent 

approximately 36% of the total species described, and encompasses three of the four 

genera. Despite intensive efforts, Ophiocolea failed to amplify. The alignment of the 

sequences of Colea, Rhodocolea, and Phyllarthron were straightforward. Outgroup 

alignment of Tabebuia and Kigelia was straight forward up to exon 12, after which 

variability made the alignment ambiguous. This last ambiguous portion was eliminated 

from the analysis; this variability was potentially a result of low sequence signal.  

Phylogenetic analysis. 

Maximum Parsimony, Maximum Likelihood, and Bayesian analyses were 

performed on 3’ portion of waxy obtained in this study.  The maximum bp length 

encompassed 1198 bp (“waxy” data set) from exon 8. Missing data resulted from using 

different combinations of primers for successful amplification.  To explore the impact of 

missing data, a data subset that minimized missing data was also analyzed. This data set 

was 439 bp long (“subset of waxy”). Previous analysis with waxy under MP showed P. 

cauliflorum as a member of Colea clade. To test the impact of P. cauliflorum on the 

analysis, analyses were conducted with and without it. Trees obtained with P. cauliflorum 

are not show since placement of the taxa was uncertain.  

MP vs. ML vs. bayesian analysis. 

ITS: this data set included 21 ingroup taxa and 2 outgroup. The ITS sequences 

were 720 bp in length that included ITS 1, 5.8 s and ITS 2 from nuclear ribosomal DNA 
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and included 106 (11.08%) parsimony-informative character-sites. The score of the best 

tree found was L= 286 and 23 trees were retained from which a strict consensus tree was 

obtained (Fig. 3A). In this tree, two subclades of  Phyllarthron showed up: Phyllarthron I 

is sister to Phyllarthron II and sister to the rest. Taxa that belong to different populations 

but the same species came out as more closely related except for P. madagascariense and 

R. nobilis. Support was over 70% for most of the branches, except Colea and some 

branches in Phyllarthron I. The ML tree (Fig 3B) is more resolved than MP, showing C. 

cava as sister of the rest of Colea, a monophyletic Rhodocolea, and two clades of 

Phyllarthron. The best tree score was -ln L 2606.09118. Topology of the Bayesian 

analyses tree (Fig.3C) is similar to the one obtained by Maximum likelihood analysis, 

with a minor difference in the placement of the two accessions of Rhodocolea nobilis. 

Subset of waxy: No missing data was present except for Kigelia and Tabebuia. 

Sixty-one characters (13.8 %) were parsimony-informative. The best tree score was= 219. 

Two trees were retained and a strict consensus obtained (Fig. 4A). As in ITS, Colea and 

Rhodocolea were monophyletic under ML and Bayesian analyses (Fig. 4B, C).  However, 

waxy results in monophyletic Colea and Rhodocolea under MP (Fig. 4A) whereas ITS 

does not. The best tree score was -ln L 1759.15410. Bayesian tree (Fig. 4C) has the same 

topology as the ML tree.  

3’ waxy: A total of 23 ingroup taxa were analyzed for waxy with 1198 characters, 

from which 196 were parsimony-informative. Score of best tree was 391 and number of 

trees retained was equal to 45. The topology of the MP tree is similar to the one obtained 

from the subset data analysis (Fig. 5A), differing only in slight variations in the 

relationships within Phyllarthron II. Branch support is higher for 3’ waxy, in general, 
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than for subset waxy. Topology is consistent among the three analyses of the 3’ waxy 

(Fig. 5A, B, C). The best tree score found was -ln L 3807.66189 for ML.  

Combined data 1: This data set included 20 taxa with both ITS and waxy 

sequences, using 3’ waxy (1198 bp).  A total of 18 ingroup taxa were included. Out of 

1907 characters, there were 161 parsimony-informative characters. The best tree found 

was= 636 and number of trees retained was= 10. The combined data analyses trees (Fig. 

6A, B, C) are similar to separate analyses, but with the two Phyllarthron clades adjacent 

and Rhodocolea within Colea. ML tree score for best tree found was -ln L 6173.42045.  

Combined data set 2: This dataset included the subset of waxy plus ITS for the 

18 included ingroup taxa. There were 125 informative characters. This data set included 

441 bp length from waxy and 720 of ITS data.  The best parsimony tree was=475. The 

number of trees retained was=31. Results are similar to the combined data set 1, but with 

more resolution within clades and monophyly of Colea in the Bayesian tree (Fig. 7A, B, 

C). The best tree score found for ML analysis was -ln L 4219.36415.  

Congruence between individual gene trees vs. combined data: Tendencies are 

mostly the same when data is combined in comparison with individual data (Fig. 8). 

However, in the combined data, Colea is paraphyletic.  
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A) Colea 

C. cava C. gentry 
C. muricata

C. ramiflora C. systmae 
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B) Phyllarthron 
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Figure 2. Map of distribution of Coleeae’s species. Shaded areas: 2000 forest cover; dark green=rain forest, yellow= spiny 
desert. Pale green= mangrove forest, blue= cloud cover. Blue dots= species localities for A) Colea, B) Phyllarthron, and 
C) Rhodocolea. (Maps by Dr. Good) 

C) Rhodocolea



 27

 

Figure 3. Phylogenetic trees from analyses of ITS. A) Strict consensus tree  of 23 trees (L=286) from MP analyses. Bootstrap 
values are numbers above the branches. B) ML tree (-ln L 2606.09118). C) Bayesian tree showing posterior clade 
probabilities. 
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Figure 4. Phylogenetic trees from analysis of a subset of waxy. A) Strict consensus tree of 2 trees (L=219) from MP
analysis. Bootstrap values are numbers above the branches. B) ML tree (-ln L1759.15410). C) Bayesian tree showing
posterior clade probabilities. 

A 

B 

C 
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Figure 5. Phylogenetic trees from analysis of waxy (1198 bp). A) Strict consensus tree of 45 trees (L=391) from MP
analyses. Bootstrap values are numbers above the branches B) ML tree (-ln L 3807.66189). C) Bayesian tree showing
posterior clade probabilities. 

A 

B 

C 
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Figure 6. Phylogenetic trees from analysis of combined data 1 (ITS+waxy). A) Strict consensus tree of 10 trees (L= 636)
from MP analyses. Bootstrap values are numbers above the branches. B) ML tree (-ln L 6173.42045). C) Bayesian tree
showing posterior clade probabilities. 

A 

B 

C 
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 Figure 7. Phylogenetic trees from analysis of combined data 2 (ITS+subset waxy). A) Strict consensus tree of 31 trees (L=
475) from MP analyses of the combined data 2. Bootstrap values are numbers above the branches. B) ML tree (-ln L
4219.3615). C) Bayesian tree showing posterior clades probabilities. 

A 

B 

C 
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Figure 8. Bayesian phylogenetic trees of A) ITS, B) waxy, C) combined data, and D) phylogenetic representation of Gentry’s 
(1980) taxonomic relationships within Coleeae.  

A B 

C D 
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Table 3. Summarized results of modeltest: 

Data set Model 
selected 

Substitution model Bases 
frequencies 

Proportion 
of 

invariable 
sites 

Gamma 
distribution 

shape 

ITS GTR+I+G R (a) [A-C] = 1.1082 
R (b) [A-G] = 1.6632 
R(c) [A-T] = 0.9372 
R (d) [C-G] = 0.5916 
R (e) [C-T] = 4.2120 
R (f) [G-T] = 1.0000 

A= 0.2369; 
C= 0.3059; 
T= 0.1791 
G= 0.2782. 

0.3700 0.7983. 

Subset 
de waxy 

TVM+G R(a) [A-C] =  1.2551, 
R(b) [A-G] =  3.1914, 
R(c) [A-T] = 0.8781, 
R(d) [C-G] = 2.1382, 
R(e) [C-T] = 3.1914, 

R(f) [G-T] =    1.0000. 

A= 0.3031 
C= 0.1325 
T= 0.3615 
G= 0.2030 

0 0.9577 

Waxy TrN+G :R(a) [A-C] = 1.0000, 
R(b) [A-G] = 2.6295, 
R(c) [A-T] = 1.0000, 
R(d) [C-G] = 1.0000, 
R(e) [C-T] = 3.8432, 

R(f) [G-T] =    1.0000. 

A= 0.2953, 
C= 0.1600, 
T= 0.3282 
G= 0.2165 

0 0.4761 

Combin
ed data 

1 

TrN+G R(a) [A-C] = 1.0000, 
R(b) [A-G] = 2.4952, 

R(c) [A-T] =    1.0000, 
R(d) [C-G] = 1.0000, 
R(e) [C-T] = 4.0940, 
R(f) [G-T] = 1.0000. 

A= 0.2691, 
C= 0.2183, 
T= 0.2733, 
G= 0.2392 

0.3774 0.8258 

Combin
ed data 

2 

TrNeF+I+
G 

R(a) [A-C]=    1.0000, 
R(b) [A-G] = 2.4787, 
R(c) [A-T] = 1.0000, 
R(d) [C-G] = 1.0000, 
R(e) [C-T] =  3.5945, 
R(f) [G-T] = 1.0000. 

Equal 
frequencies 

0.3338 0.7905.� 
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 CHAPTER 4  

DISCUSSION 

Effect of sampling: differences in resolution among the main clades as well as 

within clades probably derived from the differences in both the number and species 

sampled in ITS and waxy data sets. Complete absence of members of genus Ophiocolea 

may also account for the relationships observed.  In Zjhra’s (2003) analysis of ITS with 

65 taxa, Colea was sister to Ophiocolea. In the larger dataset of ITS, Phyllarthron is also 

paraphyletic. This can be due to the paucity of sampling within Phyllarthron itself, since 

phylogenies constructed with chloroplast DNA including broad representation of 

Phyllarthron taxa showed Phyllarthron as monophyletic (Zjhra, 2004). 

Effect of missing data: When analyzing waxy data with a subset or the total 

length of the data set, better resolution for most of the branches came out with the total 

length of the sequences than for a subset, but phylogenetic relationships stayed the same 

for most of the branches. Cracratf and Helm-Bychowski (1991) analyzed primate 

relationships using mitochondrial DNA and found that different subsets of the data 

resolved consistently with few exceptions, and although the tendency is to improve the 

resolution with the addition of data, this is not always true. This was true for the Coleeae 

waxy data, where the analyses of a subset showed better resolution for Colea, whereas 

within Phyllarthron the resolution improved with adding more data. This can be due to 

few phylogenetically informative characters in the original short Colea sequences.  

Missing data can be an obstacle when reconstructing phylogenetic relationships 

(Donogue et al., 1989), leading to multiple shortest trees and poorly resolved consensus 

trees (Gauthier, 1986). Although missing data can result in inaccurate phylogenies, the 
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mechanisms still remain unclear.  Huelsenbeck (1991), for instance, proposed that this is 

due to the percentage of equivocally resolved ancestral characters. By computer 

simulations, Wiens (2003) found support for the hypothesis that the lack of resolution 

when using incomplete taxa is primarily one of including too few characters rather than 

including too many missing data cells.  

Utility of waxy vs. ITS. The internal transcriber spacer of the nuclear rDNA has 

been used to study relationships among closely related species, but frequently is not 

variable enough to distinguish species in some groups (Mason-Gamer et al, 1998).  In 

Hibiscus Sect. Muenchhusia (Small, 2004) ITS data contained 17 nucleotide substitutions 

out of a total of 683 bp aligned nucleotides, with only 2 potentially phylogenetically 

informative characters. GBSSI, on the other hand, consisted of a total of 1972 bp with 28  

phylogenetically informative.  However, in other cases, ITS have shown more resolving 

power than waxy: in Ipomoea (Miller et al. 1999) a total length of 573 nucleotides had 

163 phylogenetically informative sites, contrasting with waxy which showed just 86 

potentially informative sites in a final alignment of 651 bp length. In Coleeae, ITS shows 

enough variability to resolve relationships among species, even with fewer taxa. Waxy 

was also useful in resolving phylogenetic relationships within species, even with a very 

short subset of data. The informativeness of ITS (14.68%) and waxy (13.89%) was 

equivalent. However, GBSSI is a longer region and therefore potentially provides a 

greater number of phylogenetically informative sites.  

Common terminal branch relationships among ITS data and waxy include P. 

vokoanina 709 and P. madagascariense CapEst (P. madagascariense 967 in waxy), 

which is also supported by previous analyses of ITS (Zjhra, 2003). Finally, monophyly of 
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Colea and Rhodocolea are supported by both ITS and waxy as well as the presence of two 

subclades of Phylarthron. 

Combined data: In general, there was less resolution in the combined data sets 

compared to the individual data sets. This can be due to differences in sampling between 

the waxy and ITS data sets. Only in taxa better represented, such as Phyllarthron, the 

resolution is consistent between the combined and separate data analyses. The combined 

data sets showed Colea as paraphyletic and Rhodocolea unresolved. Also, in both 

combined data sets, Colea and Rhodocolea came out as a single clade. This finding 

conflict with results derived from three cpDNA data sets where Rhodocolea is sister to 

the rest of the tribe (Zjhra et al. 2004). When taxa don’t have strong support, they can 

appear anywhere in the tree; Colea lacked strong support in both of the individual data 

analyses. 

Phylogeny methods: Bayesian analysis generally resulted in better resolution 

than ML and MP. Posterior probabilities tend to be higher in all the cases than bootstrap 

values. However, Bayesian posterior probabilities determine the strength of the data in 

supporting particular nodes, whereas bootstrap values indicate areas where additional 

data is needed to resolve relationships (Miller et al. 2004).  

Phylogenetic relationships: The main phylogenetic relationships observed are 

monophyly of Colea and Rhodocolea, and two subclades of Phyllarthron. These 

relationships are also supported in the broader phylogenetic analysis of ITS (Zjhra, 2003) 

with 61 ingroup taxa. When comparing phylogenetic analyses of ITS data with waxy 

data, the major differences are that Rhodocolea is sister to Phyllarthron 1 which is sister 

of Colea and Phyllarthron 2 (ITS data), whereas Phyllarthron 2 is sister to a 
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monophyletic Colea and Rhodocolea (waxy).  In the 61 taxa ITS phylogeny (Zjhra, 

2003), Rhodocolea was sister of the rest of the tribe. The results from waxy place 

Rhodocolea in a derived position, whereas Gentry (1988) placed Rhodocolea in a 

prmitive position within the tribe (Figure 8).   

Finally, phylogenetic relationship were surprisingly robust to the effects of 

missing data, with branch support the major difference between analyses of the entire vs. 

subset of waxy.  ITS shows enough variability to resolve relationships among species, 

even with fewer taxa. Waxy was also useful in resolving phylogenetic relationships 

within species, even with a very short subset of data. Monophyly of Colea and 

Rhodocolea are supported by both ITS and waxy as well as the presence of two subclades 

of Phyllarthron. Less resolution in most of the branches can be observed in combined 

data sets when compare with individuals data. 
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