
Georgia Southern University

Georgia Southern Commons

Legacy ETDs

Spring 1999

Developing Database Applications by Using Software
Components
Nusret Conk

Follow this and additional works at: https://digitalcommons.georgiasouthern.edu/etd_legacy

 Part of the Computer Engineering Commons, and the Computer Sciences Commons

Recommended Citation
Conk, Nusret, "Developing Database Applications by Using Software Components" (1999).
Legacy ETDs. 1125.
https://digitalcommons.georgiasouthern.edu/etd_legacy/1125

This thesis (open access) is brought to you for free and open access by Georgia Southern Commons.
It has been accepted for inclusion in Legacy ETDs by an authorized administrator of Georgia
Southern Commons. For more information, please contact digitalcommons@georgiasouthern.edu.

https://digitalcommons.georgiasouthern.edu/
https://digitalcommons.georgiasouthern.edu/etd_legacy
https://digitalcommons.georgiasouthern.edu/etd_legacy?utm_source=digitalcommons.georgiasouthern.edu%2Fetd_legacy%2F1125&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/258?utm_source=digitalcommons.georgiasouthern.edu%2Fetd_legacy%2F1125&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/142?utm_source=digitalcommons.georgiasouthern.edu%2Fetd_legacy%2F1125&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.georgiasouthern.edu/etd_legacy/1125?utm_source=digitalcommons.georgiasouthern.edu%2Fetd_legacy%2F1125&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digitalcommons@georgiasouthern.edu

Nusrst ..Conk

J- %
0 %

Q Ceorf!.! S^^thfrn ®

rs Zftch S. Hende?BC.\ library .<5
^ ' J? 5^ /T'.
^.. .^' /T-r

'Oc.y-, ^

Developing Database Applications

By Using Software Components

by

Nusret Conk

A Thesis Submitted to the Faculty

of the College of Graduate Studies

at Georgia Southern University

in Partial Fulfillment of the Requirements for a Degree of

Master of Science

in the Department of

Mathematics and Computer Science

Statesboro, Georgia

June, 1999

Developing Database Applications by Using Software Components

by

Nusret Conk

/K<
Chong-Wei Xu, Chairperson

ft ■
Ahmed Barbour

Associate Vice President for Academic Affairs
and Dean of Graduate Studies

CONTENTS

CHAPTER 1: INTRODUCTION

1.1 Thesis Objective 3

1.2 Thesis Outline 4

1.3 Databases 4

1.3.1 Relational Databases 5

1.3.2 Access Methods 6

1.3.2.1 Single-Tier Access 6

1.3.2.2 Two-Tier Access 7

1.3.2.3 Three-Tier Access 9

1.4 Web Database Applications 10

1.4.1 First Tier - Web Browsers 12

1.4.2 Second Tier - Web Servers and Middleware Programs 15

1.4.3 rhird Tier - Backend Databases 20

CHAPTER 2: DATABASE CONNECTIVITY COMPONENTS

2.1 Microsoft's ODBC Component 24

2.1.1 Background 24

2.1.2 ODBC Description 25

2.2 Sun's JDBC Component 26

2.2.1 Background 26

iii

iv

2.2.2 JDBC Overview 28

2.2.2.1 JDBC Drivers 32

2.2.2.2 ODBC-JDBC Bridge 33

2.2.3 JDBC Interfaces 34

CHAPTER 3: JAVA IN DATABASE APPLICATION DEVELOPMENT

3.1 Applets 39

3.2 Servlets 41

3.2.1 Java Servlet API 43

3.3 RMI/CORBA 46

3.4 Security Issues 48

CHAPTER 4: AN EXAMPLE APPLICATION

4.1 Application Objectives 52

4.2 Application Description 52

4.3 Application Components 53

4.3.1 HTML Pages: Main Page and Search Page 55

4.3.2 Servlets: RegisterServlet, UpdateServlet, and SearchServlet 57

4.3.2.1 RegisterServlet 57

4.3.2.2 UpdateServlet 63

4.3.2.3 SearchServlet 70

4.4 Design and Implementation Details 75

4.4.1 JDBC Implementation 77

CHAPTER 5: CONCLUSION 86

V

APPENDIX A: The data dictionary for members database 89

APPENDIX B: Application interface screens 90

APPENDIX C: Application source code 96

BIBLIOGRAPHY 144

LIST OF FIGURES

1.1 Single-tier access method 7

1.2 Two-tier access with multiple clients 8

1.3 Three-tier access method 10

1.4 Web database application components 11

1.5 HTML form with visual components 14

1.6 HTTP requests from client to the middle tier 16

1.7 SQL requests from middle tier to the third tier 17

1.8 Middle tier architecture 17

1.9 Multiple clients requesting the same CGI program 18

1.10 Multiple clients requesting the same servlet program 19

2.1 ODBC system architecture 25

2.2 JDBC applications are platform independent 28

2.3 JDBC system architecture 30

2.4 JDBC-ODBC bridge driver 34

3.1 Three-tiered RMI 47

3.2 The path between a Java program and the operating system 50

4.1 Middle tier components 54

4.2 Alumni registration application components 54

4.3 Alumni registration application main page 55

vi

4.4 The search form

4.5 Members database update process

4.6 Members database search process

4.7 Representation of class relation with Booch notation

4.8 Steps of working with databases

B. 1 Blank membership registration form

B.2 Confirmation message after successful registration

B.3 Update form with member information

B.4 Confirmation message after a successful update

B.5 Update function returns refusal for database access

B.6 Search results in a HTML table

CHAPTER 1

INTRODUCTION

The experts often claim that software development lags hardware development.

Although it is debatable which area influences the other for innovations, an obvious fact

stands true that there is a growing demand for more software in the market. Naturally,

while people expect more sophistication and reliability from software, they demand less

cost of ownership. The software engineering answers with a component-based design

approach to create cheaper but better applications. By using pre-existing software

components, developers speed up the application development cycle while incorporating

rich features of the components into their application.

The idea of creating applications with software components drives itself from the

Object Oriented design concepts. Historically, programmers have dealt with design

complexities with identifying repetitious tasks and coding their logic in procedures and

modules. The Object Oriented design brought the "object" concept to define entities that

pose certain characteristics and behavior. These objects provide an interface to

communicate with other objects to extend their functionality. In other words, objects

work together to produce meaningful results. A collection of objects make up a software

component which can be an application all by itself or it can be one of the many

components that make up an application. For example, a web browser uses a window

object which uses a menu object and the menu object uses button objects. This web

1

2

browser is a stand-alone application, and also, it can be a component in a larger

application, such as a web database application. Application design with pre-existing

components obviously speeds up the process. There are other benefits for using

components in design and development. Each component is considered highly

specialized that it behaves as intended by its designers. Its overall functionality is what

concerns the people who use it as part of their application. Components hide their inner

workings so only their creators can alter them; therefore, well designed and tested

components exhibit consistent behavior and reliability. This certainly translates to

developing better applications.

Developing robust applications and deploying them rapidly gained particular

importance with the widespread acceptance of the Internet/intranet networks. The Internet

with its over three-hundred billion dollar economy is the major player in directing

software development market. Especially, in the areas of commerce, companies and

consumers demand reliable applications to do business on the Internet. On the other hand,

there is a growing need for information exchange between organizations and individuals.

Today, people on the Internet use tools, such as Yahoo or Excite to search for data all the

time. Almost all these commercial or non-commercial activities on the Internet involve

accessing remote databases. Customers can be thousands of miles away from the computer

where the company maintains its inventory database, or a person in one part of the world

could be accessing a library of information in another part in the world.

Users interact with those databases with an interface from their computers or

terminals. Being able to interact with a database brings up an issue of accessing that

database. In a most basic system, user interaction takes place on a computer where the

3

actual database is stored. However, as the distance between the user computer (or the

client system) and the database server system increases, complexities associated with

remote accessing become apparent. Although accessing databases remotely is not a new

topic, accessing over the Internet/Intranet environments is fairly new, and it is in the

process of evolving with rapid advancements in the hardware and software technologies.

It is almost daily that new tools become available to make databases accessible over the

Internet environment.

The Sun Microsystem's Java language is a new addition and very popular in

developing world wide web, or WWW, applications. The developers of Java designed it

with the Internet in mind, and its suitability and features made Java a popular language.

Java is an Object Oriented language and supports component-based design ideas in

application development. For example, the Java platform provides the Java DataBase

Connectivity, or JDBC, component to facilitate database access from Java Programs. The

JDBC makes a database application development easier as it reduces the complexities of

accessing and interacting databases to issuing method calls in its interface. By using such

components, the application designers concentrate on the desired capabilities of the

applications rather than spending time on implementation details of individual

components of the application.

1.1 Thesis Objective

Today, the software application development process is more assembly work than

a "build from scratch" approach. By placing pre-existing software components together,

it is possible to create a complete application. Such components provide interfaces so that

4

programs use them for their intended purposes. The objective of this thesis is to illustrate

how software components work together to make a complete application. To illustrate the

ideas and the components, this project presents a three-tiered web database application.

This application, as a w hole, is made up of the client side web browser, a database and

the actual application programs which are Java servlets. The emphasis is placed on these

servlets and how they use the Java Database Connectivity, or JDBC, to interface with the

databases.

1.2 Thesis Outline

The first chapter provides highlighted information about web database

applications and their components. Chapter two focuses on connectivity tools including

Open Database Connectivity, or ODBC, and JDBC. Networking issues as well as popular

methods for developing application interfaces are included as well. The third chapter

concentrates on JAVA as it pertains to database application development and the

alternative tools that it provides. Chapter three concludes by addressing security issues.

The fourth chapter provides a detailed accounting of a working model incorporating

design issues and implementation details. In conclusion, chapter five summarizes the

concepts and ideas that are presented in previous chapters.

1.3 Databases

Almost all companies and organizations use some form of database for their

specific needs. In fact, information gathering, maintaining and processing extends to all

living beings as part of their need to survive. Although, while it may be a natural act for

5

them, organizations put forth a serious effort to create and to utilize databases for their

success and survival. It is that effort that sets one company from the other to pursue their

organizational goals in this ever-challenging environment.

1.3.1 Relational Databases

The usefulness of any collected data directly relates to its storage medium and

organization, as well as the available access methods. Data files arranged in tables with

columns and rows based on predetermined rules have been the traditional approach. This

way operations to search, update, or rearrange the data become more manageable. A

database is a collection of these tables. In most cases, a single table can incorporate all

data. As the size of this table grows due to redundancies, it can potentially outgrow

storage space, become bulky while reducing performance of timely operations, and grow

increasingly less fault tolerant. Therefore, it becomes necessary to maintain the database

on several tables that are related by a common key. These systems of tables are called

relational databases.

As the number of the tables in a database increases, normalization is necessary to

minimize the data redundancies.

Employee database

Employee Table

EmpNo EmpName EmpDept

147 John 3

188 David 5

234 Mary 2

78 Alex 5

6

Department Table

DeptNo DeptName

2 Sales

3 Accounting

5 Management

In order to produce meaningful results from these two tables, the employee

department field (EmpDept) in the employee table and the department number (DeptNo)

field in the department table need a link. Then, it becomes possible to know exactly

where an employee works.

1.3.2 Access Methods

There are different approaches to accessing databases. Storage platforms,

available management software, user needs and data security are some of the issues

which play important roles in determining the most feasible method for design and

implementation of a database system. A single user on a single computer with a small

database is a basic system, and it may allow direct access. However, there are more

involved systems where a database is spanned over a network of computers with many

users who access it simultaneously. Based on the requirements, designers must choose a

system to insure accessibility, security and the integrity of a database.

1.3.2.1 Single-Tier Access

This is the most basic system of access. In this type of configuration, as

mentioned earlier, the database resides on a single computer and a single user accesses it.

In other words, all the data and the software to manage that data are tightly coupled in

one computer system with a single point of access. Figure 1.1 illustrates the single tier

architecture in which a client accesses the database through the DBMS interface.

7

Database server system

DBMS

► Interface
4—► Database

Fig. 1.1 Single-tier access method.

The user has direct access to the data in single-tier approach and can perform all

the data creation, maintenance and retrieval functions through the interface of the DBMS.

There are obvious disadvantages to single-tier systems: no multi-user access, less secure,

and less fault tolerant. The cost of implementing and maintaining a single-tier system can

be very low compared to multiple tier approaches, if it satisfies end user requirements.

1.3.2.2 Two-Tier Access

Often databases grow in size with increasing demand to store information

electronically. Although single-tier systems can satisfy some needs they fall short of

meeting the accessibility requirements of modem day businesses and organizations.

There must be a way to allow multiple points of access without compromising security

and data access speed. The two-tier approach provides methods to achieve such an

architecture so that multiple users can access the same database. As one tier of the

application is the server side that stores and manages data, while that other tier on the

client machine provides the interface for input, output, and other functions for the

enduser.

Fig. 1.2 Two-tier access with multiple clients.

The server side of the application works directly with the client side of the

application as indicated in figure 1.2. There is no direct access to the database unless it

through the interface on the client system. The two-tier database management

applications consist of client and server units. By doing so, the server side application

offers more power and robustness for data management since the burden of the bulky

user interface part of the application is handled by the client systems. In addition to

9

improvements in speed, database access security gains an additional checkpoint in two-

tier architectures.

Most Internet applications—email, telnet, ftp, gopher, and even the web—are

simple two-tier applications. Without providing many data interpretation or processing,

these applications provide a simple interface to access information across the internetfl].

While two-tier design is superior to single-tier design, it is not always the ultimate

choice of design. Since the database resides on a single server, its potential growth must

be taken into consideration to prevent performance pitfalls in the future. The host server

will handle a limited amount of data processing with a limited number of clients. Any

needed changes to the either side of the application can be costly, since both the client

and the server are tightly coupled and therefore, such changes may require maintenance

on both sides. The middle tier provides necessary flexibility to allow future data and

client base expansion.

1.3.2.3 Three-Tier Access

The next approach is a three-tier system where an additional tier between the

server side and the client side is added. As the complexity grows with the addition of a

middle tier, the flexibility and the capability grows as well. The server side of the

application now loses its heavy dependency on the client side application design, and

interacts only with the middle tier. Therefore, the database engine solely deals with data

handling and networking issues. The client side of the application also benefits with this

approach in that it is not concerned with the specifics of that particular engine, and it is

specialized in executing the user interface.

10

In the three-tiered system, there is a middle tier application between the client

system and the backend database. Clients of such systems can access the database only

through the middle tier. In other words, client side applications do not directly deal with

the DBMS. The middle-tier application, also referred to as middleware application,

facilitates connections and the database management activities that clients request. As

figure 1.3 indicates, clients connect to the database via the application in the middle tier.

Fig. 1.3 Three tier access with multiple clients.

1.4 Web database applications

The term "web database application" refers to applications through which a client

accesses some database via the Internet or Internet network. The span of the Internet is

11

across the world; therefore, the physical distance between the client computer and the

database can be thousands of miles. In a similar way, today's large organizations and

businesses maintain their own private networks (intranets) which serve their members or

employees in many offices, some of which may be widely separated. A web database

application makes it possible to utilize distant databases as if they are local to a client on

the Internet/Intranet.

There are three components that make up a web database application. The web

browser on the client side, the actual application (the middleware) on the web server, and

the database on some server. Although not limited to this particular configuration, a web

database application program exists in the middle tier. Such systems are referred to as

thrcc-tiered systems of which the web browser is the first tier, the application programs

are the second tier, and the database management system (DBMS) is the third tier. Figure

1.4 illustrates the three components of a web database application.

First Tier Second Tier Third Tier

Fig. 1.4 Web database application components

12

The first tier application, such as Netscape or Internet Explorer, is on almost

every personal computer today. Examples of third tier applications are MS Access.

DB/2, Oracle, and MS SQL. These are very widely used DBMSs. The second tier

applications make up a bridge between the first tier and the third tier.

1.4.1 First Tier - Web Browsers

Unlike typical client/server applications, the client side of a web database

application is considered a "thin client." A web browser on the client computer provides

the needed environment to interface with the server side application. Today, most client

computer systems provide a web browser as part of their operating systems. Particularly,

Microsoft's windows operating systems incorporate web browsing functionality into

system tools and applications. There are other web browsers, such as Netscape, that are

free or very reasonably priced. Since the client side system already provides the interface

environment, the server side application needs to send the actual application interface to

the client's browser. The application interface is an HTML file that the client's browser

interprets and displays.

The middleware programs use HyperText Markup Language, or HTML, to

construct the application interface that a client interacts with from his or her web

browser. HTML is not a programming language but it defines how that interface is

structured and displayed as a web page within the the browser environment. There are

available set of HTML instructions, or tags, to construct web documents with sections,

titles, paragraphs, lists, and tables. These instructions format the lines of text of a section

13

to give it a certain desired appearance. Browsers display those HTML documents after

interpreting the embedded tags and the returned data from the web server.

A basic HTML document is static in nature; once it is interpreted and displayed

by the browser, it maintains its appearance until some type of user interaction takes place

to go to another page. For example, the following HTML file displays a single line of text

"Welcome to our page."

<HTML>
<HEAD>
<TITLE> A static HTML example </TITLE>
</HEAD>
<BODY>

Welcome to our page
</BODY>
</HTML>

The tags <BODY> and </BODY> enclose the actual text that browser displays after

formatting according to various formatting statements. The web server must send a new

complete page if any information on this page needs to be changed or if any part of the

page needs updating. There are, however, other tools or improved HTML versions such

as DHTML that facilitate dynamic information display but browsers must support such

extended features for them to work properly.

Data collection or manipulation requires user interaction. As mentioned earlier,

11TML documents normally do not allow clients to interact with the page. It is, however,

possible to create interactive HTML documents with visual components such as text

boxes, check boxes, or drop down menus for data collection on the client side. Figure 1.5

indicates an HTML page which collects information to use in searching some database.

14

3 Search database Micioioft Internet Exploier l.laM
£<# fio Fjyvwlw Help

. -3 U $ U Sec: Stop Refresh Home Search a § jj Favaies Hisbyy Channels Fijkcreen

lir^t !•]Bett •
«) A HdJ Fonts

o

Print
Addess |^1 £ ^jdkl 2beid4\demo\|fc\ne5v>search hirj d

Search database
J

Search for: |

as *•" User name ^ Passuocd Email

Search j Ewt|

£) ""1 f i 1 : Local intranel zone

Start [^jExpfcting - Reg | |y Microsoft Word [Q9 Miscelancous Rbt.. || g^Seaich databat :c3 &19PM

Fig. 1.5 HTML form with visual components.

This page, unlike a static HTML page, requires user interaction. The user enters a

text to seek in the database and chooses a field to narrow the search operation. The

search is initiated by clicking on the search button. By placing functional components on

an HTML page, information gathering takes place within a browser. The following code

represents the search form above.

<html>
<head>
<title>Search database</title>
</head>
<body bgcolor="#FFFFFF">
<p align-'left">Search database</p>

<form action="http://serverl:8080/servlet/search" method-'POST"
name="Search">

15

<input type="text" size="20" name="searchText">

<input type="radio" checked name="Field" value="userId">User Name
<input type="radio" name="Field" value="password">Password
<input type="radio" name="Field" value="email">Email

<input type="submit" name="Action" value="Search">

<input type-"submit" name-'Action" value="Exit"></pre>
</form>
</body>
</html>

A collection of such input fields in an HTML page makes up a form. Typically, a

form contains various input fields as well as a "submit" button to send the entered

information to the server side application. Further discussion on designing HTML pages

is beyond the scope of this paper.

Web browsers make up the first tier, or the client side, of a web application.

Basically, they provide an environment for the client interface through which data is

gathered or presented. In a three-tiered application, the information collected from the

client via HTML forms is channeled through the middle tier prior to being directed to the

third tier where the database resides.

1.4.2 Second Tier - Web Servers and Middleware Programs

Web servers such as the Java Web Server, or JWS, and the actual application

programs make up the middle tier. The first tier is connected to the middle tier via the

HyperText Transfer Protocol (HTTP). It is the web server that hosts the HTML pages

and the middle tier programs (middleware) to provide services to the client.

16

Any interaction with the web server starts with a client's request for an HTML

page or a particular server side application program. For example, the following URL

requests the "search" page from the web server "server 1" with port address 8080.

Http://serverl :8080/search.html

In order for the server to locate the search form, search.html, it searches a designated

directory for the HTML documents. During the web server installation, this directory is

created and, by default, it is named as public_html. If the server locates the document, it

sends it back to the client's browser via the IITTP protocol.

A client can request a server-side program execution by providing the program

name with a URL or clicking on a designated area on a web page. For example, in the

search page, fig 1.5, the submit button activates the search servlet. The browser sends the

URL, http://serverl :8080/servlet/search?searchText=John&Field=userId, to the server

after the user enters "John" in the text field, clicks on the last name radio button and

clicks on the search button. Figure 1.6 illustrates this process. At this point, the server

calls the search servlet and passes the parameter search key and the search field. The

middleware program, the search servlet, performs its task of connecting to the database

Client

http://serverl :8080/servlet/search?searchText=John&Field=userld JWS and
Application
Servlets
(Middleware)

w

First Tier Second Tier

Fig. 1.6 HTTP Requests from client to the middle-tier.

and requesting results from it with SQL statements. The DBMS receives the SQL

statement as shown in the figure 1.7.

17

JWS and
Application
Servlets
(Middleware)

Select * from members where Field = 'John'
Members
database

Second Tier Third Tier

Fig. 1.7 SQL requests from middle-tier to third-tier.

In this example, the middleware is a Java servlet program. Java servlets are

server-side programs that are written in the Java language. Typically, those middleware

programs are referred to as "gateway" programs, and the developers of gateway programs

can use any language such as C, C++, or VisualBasic as long as the host computer

supports them. The web server, or HTTP server, communicates with these gateway

programs with a mechanism called Common Gateway Interface, or CGI. Middleware

programs other than Java servlets use this interface to pass information back and forth to

the HTTP server. Figure 1.8 shows the internal structure of the middle tier. The gateway

programs that use the CGI are also called CGI programs.

HTTP
Web

Server CGI

Gateway
Program

HTTP

Middle Tier

Fig. 1.8 Middle tier architecture.

18

The CGI programs are "stand alone" programs, unlike Java Servlet programs.

Any Java-enabled web server invokes servlet programs as method calls. A single

instantiation of a servlet can serve multiple clients whereas a new copy of CGI program

must be loaded with each request from clients. Java servlets are much more efficient than

CGI programs in this respect. For example, in figure 1.9, client 1 and client 2 request the

same CGI program A and the web server loads a new copy for each client. The CGI

programs execute independent of the web server. Therefore, the web server does not have

any control over what a CGI program can do to the system. An ill-behaved CGI program

can cause system crashes since a CGI program execution is not limited to designated

areas in the system memory.

Fig. 1.9 Multiple clients requesting the same CGI program

Java middleware programs need a Java enabled web server or Java's own web

server called Java Web Server, or JWS, for execution. In terms of software components,

the JWS and a servlet are two separate components but they work together as one unit

after the JWS loads that servlet as its extension. A serviet is component that performs a

specific task within an application. However, its execution takes place within the JWS

environment. Java servlets, although offer rich features for middleware application

development, are limited to how they can access system resources as well as what they

can do at the operating system level executions. The Java enabled server loads a single

copy of a servlet in a safe area in the memory and that copy of that servlet serves all

clients that call that servlet. Figure 1.10 illustrates the scenario with servlets.

Database

Fig. 1.10 Multiple clients requesting the same servlet program.

There is further discussion about servlets in chapter 3 and advantages of servlets

over CGI programs. Further details on gateway programs and CGI arc beyond the scope

of this paper.

In summary, the middle tier of a three-tiered web database application includes a

web server, or HTTP server, and a set of executable programs called middleware

20

applications. Developers use mostly C, Java, C++, VisualBasic, or PERL to write the

applications to serve the client requests to interface with the database in the third tier.

The example in this project is a three-tier system. The client side application is

merely a web browser which provides the environment to display the application

interface. The middleware application is set of Java servlets and HTML pages. The last

and the third tier in this system is the MS Access that that acts as the backend DBMS for

the database. The middleware application interacts with the MS Access database through

the JDBC interface and the JDBC-ODBC driver. The next chapter explains the JDBC

interface in detail.

1.4.3 Third Tier - Backend Databases

A web database application facilitates user interaction with a remote database on some

database server computer. The term "backend database" refers to these databases. As

previously discussed, a client on the Internet or an Intranet network uses his/her browser

to connect to the middle tier, which accesses the database in the third tier. A DBMS at

the third tier responds to the various requests from the middle tier applications. Clients

utilize these middleware programs to interact with this backend database.

Most DBMSs respond to Sequential Query Language, or SQL, commands via

some interface. The middleware applications use these SQL commands to interact with

databases. In a web database application, user interface is an HTML form with text fields

and selection boxes. It is the middleware program that extracts the information from that

form and sends it to the DBMS after embedding the information in some SQL statement.

21

For example, the search servlet, after extracting the data from the URL

http://serverl.8080/servlet/searcliServlet7SearchKey = John&SearchField = LastName

it generates the SQL command,

select * from members where LastName = John

to send to the MS Access database.

There are components that facilitate connections to databases from the

middleware application programs in the middle-tier. The interfaces of these components

provide conventional methods for the middleware programs to talk to databases by

translating the SQL requests into database specific codes. The next chapter explains the

components Open Database Connectivity, or ODBC, and Java Database Connectivity, or

JDBC, in further detail.

In summary, the job of developing a large application can be simplified by putting

software components together rather than creating it from scratch. A good example to

illustrate this process is a web database application. A web database application provides

clients means to access remote databases over the Internet or intranet networks. These

databases are relational databases and there are three ways clients can access them. When

a client accesses a database directly, this type of access method is a single tier database

access system. When a user connects to this database from a computer on the network

via a client side application interface, then this type of architecture becomes a two-tier

access system. Lastly, if a client, or user, connects to the database via a middle tier, then

this system is said to be a three-tiered access system. Web database applications are

typically three tiered systems that there is a middle tier between the client side and the

remote database. The client side, as the first tier, is a web browser that connects to the

web server in the middle-tier. The web server calls middleware programs, such as Java

servlets or CGI programs that serve client requests by establishing connections to

backend databases in the third tier. The components, web browser, web server,

middleware programs, connectivity components, and backend database work together to

make up a web database application.

CHAPTER 2

DATABASE CONNECTIVITY COMPONENTS

This chapter discusses how middle tier programs connects and interacts with a

backend database via database connectivity components. By using these components,

developers can avoid including database-specific details in their program design.

Applications make connections to databases or perform read/write operations on

databases through these interfaces by issuing method calls. The connectivity components

translate these calls for a particular database by using the appropriate driver for that

database.

Such components give database applications compatibility for wide range of

database systems. In other words, the same application, for example, can be used with

both the MS SQL DBMS and the Oracle DBMS without making any changes to the

middle tier program. There are currently two components that are in the market for

middleware programs to access backend databases. These are Microsoft's Open Dabatase

Connectivity, or ODBC, and Sun Microsystem's Java Database Connectivity, or JDBC.

The Java applications must use the JDBC and those applications that support C language

libraries must use the ODBC for connecting to databases. However, the backend database

systems must comform to the ODBC standards for those applications written in C, C++,

23

24

or Visual Basic to use the ODBC component for connectivity. On the other hand, Java

programs can use the JDBC to connect with JDBC compliant database systems.

There is also a JDBC-ODBC bridge that facilitates Java applications connecting

to ODBC compliant databases if there is no pure JDBC driver available for that database.

2.1 Microsoft's ODBC Component

2.1.1 Background

Microsoft's Open Database Connectivity (ODBC) is an alternative to SunSoft's

JDBC. These database interfaces are Call Level Interfaces (CLI), which provide access

mechanisms for SQL databases by using a set of function calls. Without these CLIs,

applications must directly talk to the database engines by calling special functions that

are unique to that database engine. This approach to database application development

has been common, but these applications support only a single DBMS. For example, an

application that is designed for Microsoft's Access DBMS works only with MS Access

database. This application must be modified in order for it work with Borland's InterBase

database engine. As long as there is certainty that neither the database engine nor the

database specifics are subject to change someday, an application can be developed

specifically for a particular DBMS. However, it makes more sense to develop

applications which are independent of any particular database platform.

The ODBC specifications define function calls that are accepted by the industry

as standard. By using these functions, a database application can perform tasks on a given

ODBC compliant database. Since this application does not incorporate any of the

specifics of that DBMS, it can be used for any DDMSs as long as they are ODBC

compliant.

25

2.1.2 ODBC Description

ODBC defines a common interface for function calls between the user application

and the driver manager.

Fig. 2.1 ODBC system architecture.

The ODBC Application Programming Interface consists of a driver manager and

one or more ODBC drivers. These drivers provide a mechanism to translate instructions

passed from the application through the driver manager to database specific instructions.

As shown in Figure 2.1, the ODBC works between the application and the database as an

26

interface for the database. The application makes calls to the ODBC instead of making

direct calls to the database. The process starts with an ODBC compliant application

making calls to the driver manager with some data source access request. The driver

manager first locates the appropriate ODBC driver and channels the request to that driver.

The driver receives the request and converts it to a SQL statement. The DBMS specific

details come into the picture here in that the driver knows exactly how to pass the SQL

statement to this DBMS. The driver sends the request and receives a response from the

DBMS. The response is either a set of rows of data or an error exception. The driver at

this point translates the returned results and passes them back to the driver manager,

which in turn forwards it to the application.

ODBC drivers are classified as one of the following two types [2],

• Single-tier drivers translate SQL statements into low-level instructions that operate

directly on files. Single-tier drivers are required for relational DBMSs that don't

process SQL statements directly. The widely used PC RDBMSs fall into this

category, such as dBase IV or FoxBase.

• Multiple-tier drivers process ODBC instructions but pass SQL statements directly to

the data source using SQL syntax that is acceptable to the back-end RDBMS. All

popular client/server RDBMSs that can run on PCs and most mini and mainframe

RDBMSs process SQL statements directly, such as MS SQL Server or Oracle.

2.2 Sun's JDBC Component

2.2.1 Background

Java's simplicity, robustness, security features and platform independent nature

continue to attract developers to use it to develop database applications. SunSoft

introduced Java Database Connectivity Application Programming Interface, or JDBC

27

API, for easy database access as the Java language made its way into database

application development. The JDBC API was released in June 1996 the first time as

version 1.0, and currently JDBC API version 2.0 is available from SunSoft.

The JDBC API defines a common low-level API which supports basic SQL

functionality. As mentioned earlier, the JDBC is a Call Level Interface and it is based on

the X/Open SQL CLI specifications. In its development, SunSoft used Microsoft's ODBC

as a model for the JDBC, and therefore the JDBC offers the same functionality as the

ODBC interface. In order to gain developer support and acceptance, SunSoft adopted the

ODBC design principles for its JDBC interface.

There are currently ODBC drivers for almost all database management systems.

Those vendors who developed ODBC drivers for their database engines started

developing JDBC drivers as well. Although not as popular, JDBC as a database

connectivity component is becoming a major player in the field. Java's wide acceptance

in web database application development is especially encouraging vendors to write Java-

compatible drivers in order to be on the leading edge in the market. Java applications

cannot use the ODBC directly since it is a C language interface. To remedy this situation,

there are JDBC-ODBC bridge drivers available. This way, a Java application can connect

to an ODBC compliant database even if an appropriate JDBC driver is not available for

that database. The JDBC and the ODBC interfaces are not interchangeable; one cannot be

used in place of the other. JDBC is exclusively for Java programs, and ODBC is for the

programs that incorporate C language libraries, such as Visual Basic or C++.

28

SunSoft provides JDBC as part of its Java Development Kit (JDK) free of charge.

The JDK version 1.2 is available on SunSoft's web site to download, or it can be

purchased on a CD with a nominal charge. This kit includes Java core classes, libraries, a

Java interpreter, drivers and several development tools. The JDK includes all the

necessary tools to develop Java database applications. SunSoft hopes to see Java and

JDBC as industry leaders in database application development arena, especially in the

Internet and Intranet environments.

2.2.2 JDBC Overview

The JDBC component, basically, facilitates Java applications in connecting to a

DBMS to perform various SQL commands. Java database applications interface with

various databases through the JDBC component and its database drivers. Microsoft's

ODBC and SunSoft's JDBC offer the same functionality with their methods and

interfaces. A Java application needs a Java compliant object oriented database interface

and that is exactly what JDBC is.

Fig. 2.2 JDBC applications are platform independent.

29

A connection to a specific database requires a specific JDBC driver for that

database. However, unlike platform dependent ODBC applications, JDBC applications

are compiled once to be used on different platforms such as PC. Mac, or Unix as the

figure 2.2 depicts.

JDBC characteristics can be outlined as follows [3],

• A SQL level API - JDBC is a call level SQL interface for Java. Although, it is a low

level interface, it is usable by programmers. Higher-level APIs can be built on top of

this base level.

• SQL Conformance - JDBC allows any query string to be passed through to an

underlying DBMS driver. JDBC drivers must support ANSI SQL 92 to be called

"JDBC compliant".

• JDBC must be implementable on top of common database interfaces - ODBC is,

especially, supported for this reason.

• Consistency with the rest of the Java system - JDBC interface is built on and

reinforces the style and virtues of the existing core Java classes.

• Simple - JDBC provides a single mechanism to perform a particular task. The API

may be extended if needed.

• Strong static typing - JDBC API is strongly typed for more error checking at

compile time.

• Common cases simple - SQL statements such as SELECT, INSERT, UPDATE, or

DELETE are the most common cases and they are simple.

• Uses multiple methods to express multiple functionality - This approach from core

Java classes is extended to JDBC design. Using multiple methods, over multi-purpose

methods with many flag arguments, simplifies JDBC.

30

The JDBC architecture resembles ODBC architecture in that it resides between a

database application and a database. Figure 2.3 shows the JDBC architecture as well as

how JDBC can utilize ODBC drivers.

Fig. 2.3 JDBC system architecture.

In a typical JDBC application, the process starts with loading the JDBC driver. By

calling the method Class.for Name, the driver manager searches a list of drivers until it

locates the right driver. Once the driver is loaded, the process continues by placing a

connection request with JDBC's DriverManager.getConnection method. During a

connection to the database, the JDBC driver channels the SQL statements from the

application and the results from the database. For each datasource, a separate connection

statement is needed. The following code establishes a connection to a database called

"members" with a user name "admin" and "pass" as the password.

31

Class.forNameC'sun.jdbc.odbc.JdbcOdbcDriver");

Connection con = DriverManager.getConnection(

"jdbciodbcimembers^^'admin'Tpass");

Once connections are established, the Statement class objects provide a means to

carry SQL statements such as SELECT, INSERT, UPDATE and DELETE to the

database as the user requests .

Statement stmt = con.createStatement();

ResultSet rs = stmt.executeQueryO'SELECT * FROM members");

The ResultSet object "rs" is where the database returns its response to the SQL

statement "SELECT * FROM members" in the form of rows and columns. The

executeQueryO method call to the "stmt" object sends the query request and prepares the

result set object for the returned results. It is possible to get a different data type as a

result than initially defined types by the application. Hence, in processing the returned

results, the application must also handle possible returned error exceptions.

The final step is to close the statement object and the connection.

close. stmtO;

close. con();

In summary, the JDBC application basically establishes the connection to the

database or the datasource. Once the connection is established, SQL statements allow

various operations on the database. The JDBC driver manager plays a major role in

establishing connections to the databases. The connection statement provides driver

32

identification and the driver manager locates the right driver based on that information.

Once located, the driver makes the actual connection to the data source.

2.2.2.1 JDBC Drivers

The core idea behind using the JDBC interface is that the application stays

independent of the specifics of the DBMS. The drivers perform the job of translating

standard SQL statements into DBMS specific requests. Without these drivers,

applications must include code to make the actual connections and other types of

operations for each particular DBMS. For example, the code to make a connection to an

MS SQL database server is useless if DBMS is changed to Oracle or any other DBMS.

This means that reprogramming is necessary to make that application work for DBMSs

other than MS SQL. The JDBC drivers establish connections, send application requests to

the DBMS after necessary translations, and return results and errors back to the

applications, again, after translations.

There are four types of JDBC drivers [4].

1. The JDBC-ODBC bridge provides JDBC access via most ODBC drivers. Note that

some ODBC binary code and, in many cases, database client code must be loaded on

each client machine that uses this driver, so this kind of driver is most appropriate on

a corporate network, or for application server code written in Java in a 3-tier

architecture.

2. A native-API partly-Java driver converts JDBC calls into calls on the client API for

Oracle, Sybase, Informix, DB2, or other DBMS. Note that, like the other bridge

33

driver, this style of driver requires that some binary code be loaded on each client

machine.

3. A net-protocol all-Java driver translates JDBC calls into a DBMS-independent net

protocol which is then translated to a DBMS protocol by a server. This net server

middleware is able to connect its all-Java clients to many different databases. The

specific protocol used depends on the vendor. In general, this is the most flexible

JDBC alternative. It is likely that all vendors of this solution will provide products

suitable for Intranet use. In order for these products to support Internet access they

must handle the additional requirements for security, access through firewalls, etc.,

that the Web imposes. Several vendors are adding JDBC drivers to their existing

database middleware products.

4. A native-protocol all-Java driver converts JDBC calls into the network protocol used

by DBMSs directly. This allows a direct call from the client machine to the DBMS

server and is a practical solution for Intranet access. Since many of these protocols

are proprietary, the database vendors themselves will be the primary source for this

style of driver. Several database vendors have these in progress.

2.2.2.2 JDBC-ODBC Bridge

The JDBC-ODBC bridge provides ways for Java applications to connect to

ODBC-compliant databases. The bridge driver translates JDBC method calls into ODBC

function calls. It allows JDBC to leverage the database connectivity provided by the

existing array of ODBC drivers. JDBC is designed to be efficiently implementable on

ODBC, so the JDBC-ODBC bridge is the best way to use ODBC from Java. It is a joint

development of JavaSoft and Intersolv[5]. Figure 2.4 illustrates that the JDBC-ODBC

bridge driver works with the existing ODBC driver rather than interfacing directly with

34

the backend database. The other types of JDBC drivers, types 2, 3, and 4, work directly

with the database and don't need any intervention from the ODBC drivers.

Fig. 2.4 JDBC-ODBC bridge driver.

If the backend database is ODBC compliant, a Java database application can still

work with the JDBC-ODBC bridge driver as an adapter in the middle. However, this

bridge driver can be considered a temporary solution to connecting Java applications until

pure Java JDBC drivers become available for those ODBC compliant databases. It also

serves as a cost-effective alternative to other types of JDBC drivers.

The example application in this project utilizes a JDBC-ODBC bridge driver to

connect to the MS Access database. There are pure Java MS Access drivers in the

market, but this bridge driver performs well for small applications.

35

2.2.2.3 JDBC Interfaces

JDBC provides a set of classes and methods for application development and for

JDBC driver development. The JDBC API is a series of Java interfaces for application

programmers to open connections to databases, execute SQL statements and process the

results [2],

JDBC drivers implement the following interfaces for database application

development [6],

• Java.sql.DriverManager: This class maintains a list of JDBC drivers that it loads

during its initialization. There are methods to register drivers and to establish

connections during execution. The "getConnection"' method is particularly an

important one in that it establishes the connection to a datasource. As its first

parameter, a URL specifies the needed driver identification. Once the driver manager

locates the driver, the getConnection method calls the "connect" method of

Java.sql. Driver to make the actual connection If the specified driver is not found in

the list of drivers, it throws a SQL exception.

• Java.sql.Connection: This class actually represents a connection session to the

desired datasource. Within the context of a Connection, SQL statements are executed

and results are returned. There are methods in its body to conduct operations on the

connected database such as "commit", "rollback", and "close." A Connection's

database is able to provide information describing its tables, its supported SQL

grammar, its stored procedures, the capabilities of this connection, etc. This

information is obtained with the getMetaData method.

Java.sql.Statement: A Statement object is used for executing a static SQL statement

and obtaining the results produced by it. Only one ResultSet per Statement can be

open at any point in time. Therefore, if the reading of one ResultSet is interleaved

with the reading of another, each must have been generated by different Statements.

All Statement execute methods implicitly close a statement's current ResultSet if an

open one exists. Some of the most frequently used methods are "close" to

immediately release a Statements's database and JDBC resources; "execute",

"executeQuery". and "executeUpdate" to execute a SQ1 statements; "getResultSet" to

receive a result set from the data source.

Java.sql.ResultSet: A ResultSet provides access to a table of data generated by

executing a Statement. The table rows are retrieved in sequence. Within a row. the

column values can be accessed in any order. A ResultSet maintains a cursor pointing

to its current row of data. Initially the cursor is positioned before the first row. The

'next' method moves the cursor to the next row. A ResultSet is automatically closed

by the Statement that generated it when that Statement is closed, re-executed, or is

used to retrieve the next result from a sequence of multiple results. There are many

"get" methods to capture any information from the returned results. The "next"

method positions the pointer to the next row to travers the results.

Java.sqI.ResuItSetMetaData: A ResultSetMetaData object can be used to find out

about the types and properties of the columns in a ResultSet.

Java.sql.CallableStatement: CallableStatement is used to execute SQL stored

procedures. JDBC provides a stored procedure SQL escape that allows stored

procedures to be called in a standard way for all RDBMS's. A Callable statement

may return a ResultSet or multiple ResultSets. Multiple ResultSets are handled using

operations inherited from Statement.

Java.sqI.PreparedStatement: This is smilar to CallableStatement but it is for

executing prepared or precompiled SQL statements. A SQL statement is pre¬

compiled and stored in a PreparedStatement object. This object can then be used to

37

etficiently execute this statement multiple times. The setXXX methods for setting IN

parameter values must specify types that are compatible with the defined SQL type of

the input parameter. For instance, if the IN parameter has SQL type Integer then

setlnt should be used. Since PreparedStatement extends the "Statement" interface, it

has "execute", "executeQuery", and "executeUpdate" methods to perform SQL

statements.

• Java.sql.Driver: This class represents a specific JDBC implementation. When a

Driver is loaded, it should create an instance of itself and register that instance with

the DriverManager class. This allows applications to create instances of it using the

Class.forName() call to load a driver. The Driver object then provides the ability for

an application to connect to one or more databases. When a request for a specific

database comes throug, the DriverManager will pass the data source request to each

Driver registred as a URL. The first Driver to connect to the data source using that

URL will be usedfl], The most important method "connect" tries to make the actual

connection with the given URL. If Url is not correct, it returns null and if for some

reason connection doesn't happen "connect" method returns an SQLException.

CHAPTER 3

JAVA in DATABASE APPLICATION DEVELOPMENT

Java, as a general-purpose application development language, provides excellent

features for database application development. Particularly for applications that are

Internet/Intranet accessible, the Java language gives total independence to both client and

server platforms. Its object-oriented nature makes Java a great alternative to other object-

oriented languages, such as C, C++, or Visual Basic, which rely heavily on proprietary

interfaces.

Java's JDBC interface provides easy mechanisms for connecting to databases.

Using the methods that the JDBC interface provides, developers design object-oriented

application programs that work directly with relational databases.

Database applications that are developed with Java can run on any platform and

connect to almost any database management system in the market today. Furthermore,

there are ways to incorporate general-purpose template objects in application design to

free the application from the actual data objects.

An Internet/Intranet Java database application can be in the form of "applets" or

"servlets." A Java applet executes on the web browser on the client machine. A servlet,

on the other hand, executes on the web server and it returns an HTML page to the client's

browser. Although they both achieve the same results, careful considerations are

necessary to choose between applets or servlets for application development.

38

39

3.1 Applets

An applet is a relatively small program that executes on the client computer after

it is downloaded from the web server. The Java language made its way into the

Internet/Intranet application programming language as an applet design language. The

first applets appeared initially as small animating objects that were embedded in HTML

pages. The browsers allowed these applets to execute and to animate an object or to

respond to a user request. For example, a simple mortgage calculator, a spinning

company logo, or some kind of game are common applets on the Internet today. The host

browser, however, must be "Java enabled" in order to execute applets. With Netscape and

Internet Explorer, enabling or disabling Java execution come as an option in their setup.

Java applets also frequently serve as client interfaces for client/server database

applications. In two-tiered database applications, the client side application provides a

user interface as well as most of the business logic of the application. The database

connectivity issues, security issues, and the application functionality issues must be

addressed by the application. Java applets work well when designing two-tiered

applications.

There are a number of complex Graphical User Interface, or GUI, components

available with applets that are not available with HTML input tags. Heavy usage of

graphical interface tools increases the applet size, which, in turn, increases download

time for the web page. Since applets execute on the local machine, the computationally

40

intensive designs can be burden on system resources. Therefore, using applets make more

sense if their advantages over servlets or HTML documents are much greater.

The following summarizes some of the advantages of applets[7],

• Applets allow local validation of data entered by user. Local validation of data is

possible using HTML combined with JavaScript but variances in JavaScript

implementations make JavaScript difficult to use.

• An applet can use the database to perform list of values, lookups and data validation.

HTML (even if combined with JavaScript) cannot do that without invoking a CGI or

a servlet program and drawing a new HTML page.

• Once an applet is downloaded, the amount of data transferred between the web

browser and the server is reduced. HTML requires that the server transfer the

presentation of the data (the HTML tags) along with the data itself. The HTML tags

can easily be 1/4 to 1/2 of the data transferred from the server to the client.

• Applets allow the designer to use complex GUI widgets such as grids, spin controls,

and scrollbars. These widgets are not available to HTML.

Since applets are actual executable programs, they pose a major security risk to

the hosting client system. Therefore, applets loaded over the network are subject to

various security restrictions. Although this can seem bothersome at times, it is necessary

for network security. One of the major advantages of using the Java programming

language is its strong security features.

The following restrictions exists for applets[8].

• Applets cannot load libraries or define native methods: Applets can use only their

own Java code and the Java API the applet viewer provides. At a minimum, each

applet viewer must provide access to the API defined in the java.* packages.

41

• An applet cannot ordinarily read or write files on the host that is executing it: The

JDK Applet Viewer actually permits some user-specified exceptions to this rule, but

Netscape Navigator 2.0, for example, does not. Applets in any applet viewer can read

files specified with full URLs, instead of by a filename. A workaround for not being

able to write files is to have the applet forward data to an application on the host the

applet came from. This application can write the data files on its own host.

• An applet cannot make network connections except to the host that it came from: The

workaround for this restriction is to have the applet work with an application on the

host it came from. The application can make its own connections anywhere on the

network.

• An applet cannot start any program on the host that is executing it: Again, an applet

can work with a server-side application instead.

• An applet cannot read certain system properties.

• Windows that an applet brings up look different from windows that an application

brings up: Applet windows have some warning text and either a colored bar or an

image. This helps the user distinguish applet windows from those of trusted

applications.

3.2 Servlets

JavaSoft released "Java Servlets" to develop middleware programs, also referred

to as server side applications, much like CGIs. As explained in the previous section, Java

applets are client side programs, which execute within a web browser environment. Java

servlets, on the other hand, are Java programs which execute at the middle tier with a web

server which supports servlets. Before SunSoft's introduction of servlets, programmers

often used C, C++, or PERL to develop server-side CGI applications. Now, Java servlets

42

are available to do what those languages can do to construct HTML pages with added

advantages and features. Java's platform independence, advanced security, persistence,

and easy database access features extend to servlets to make them superior to those other

CGI development languages.

As mentioned earlier, a Java servlet is like a CGI program that executes at the server.

In response to some user request on the client system, a web or HTTP server executes the

servlet to perform the intended actions and returns the results back to the client in form of

an HTML file. This is much like how a CGI program works. However, Java servlets are

much more powerful than CGI programs for the following reasons[7].

• Servlets execute as a tread within the web server. Threaded execution avoids the

overhead of creating separate processes for each CGI call.

• Servlets may retain data between executions. For example, a servlet could retain a

network connection or an access counter between executions. However, cookies or

similar solutions are still needed to retain data about an individual browser that

accesses the servlet.

• A servlet may connect to any computer on the network or write files on the server.

While CGI programs may also do these things, Java servlets allow a platform

independent implementation.

• A servlet can use business objects that are part of a larger distributed system. This is

difficult to impossible to accomplish with CGI.

A Java Virtual Machine, or JVM, on the server side facilitates execution of a

servlet. For applet execution, the JVM must exist on the client machine. Of course, most

web browsers provide a JVM in their package. Sun Microsystems's "Java Web Server",

43

or JWS, is a servlet enabled server. Popular servers such as Netscape, Microsoft ISS, or

Apache can support servlets with additional drivers, which SunSoft provides.

3.2.1 Java Servlet API

The Java Servlet API provides the classes and methods by which servlets

interface with the web servers. Servlets execute as server extensions in that they become

part of the web server execution process on the same host. The server, upon servlet

invocation, loads the servlet and initializes it. The same server can extend its

functionality with thousands of servlets if necessary. However, the servlets must be

destroyed if they are not in use. The responsibility of destroying them also resides with

the server. However, capability to destroy servlets is restricted exclusively to the server

administrator. Servlets cannot destroy themselves or other servlets.

The javax.servlet.Servlet interface in the javax.servlet package of the Servlet API

provides three major methods for servlet development:

• init() method - The initQ method, as its name suggests, initializes the servlet. During

the initialization, the server instantiates the servlet object. Implementing any time

consuming tasks, such as establishing database connections or file accessing, inside

the initQ method increases servlet's efficiency during execution. The init() method

executes once and it is not called again by the server. Its execution followed by the

serviceQ method.

44

• serviceQ method - The serviceQ method is basically the servlet's engine that does

all the work to service the client. There are two parameter objects that this method

uses to communicate with the HTTP client.

• ServletRequest object - This represents the input from the client request. The

incoming data is in the form of name/value pairs. The name identifies a particular

HTTP input field and the value is the value in that field.

• ServletResponse object - This parameter is the response object back to the client.

The PrintWriter object returns the response data to the client through the

ServletResponse parameter.

• destroy() method - A call to this method from the server releases any resources prior

to unloading the servlet. Care must be taken in unloading a servlet in case the service

method is still running. When the server administrator unloads a servlet, the server

calls this method in that servlet.

A typical servlet application follows these steps [9].

1. The user enters information into an HTML form. The form data is passed to the Java

servlet running on the web server.

2. The Java servlet parses the form data and constructs an SQL statement. The SQL

statement is passed to the database server issuing the JDBC.

3. The database server executes the SQL statement and returns a result set to the Java

servlet.

4. The Java servlet processes the result set and constructs an HTML page with the data.

The HTML page is then returned to the user's Web browser.

45

The code below shows an example of a servlet structure.

import java.io.*;
import javax.servlet.*;
public MyServlet implements Servlet
(
*

private ServletConfig config;

public void init(ServletConfig config) throws ServlctException

[
super.init(config);

i

public void service(ServletRequest req. ServletRresponse res) throws

ServlctException, lOException

{
res.setContentType("text/html");
Print Writer out = rcs.getWriter();
out.println("<html>"+

"<head>+

''</html>);
out.close();

}

public void destroy() {}

} //end servlet

There are no specific details in the serviceQ method in this example code. However,

the service() method parses the InputStream to extract the name/value pairs that are

coming from the HTTP client. It performs desired tasks with the received information

and send a response back to the client in the form of HTML text within OutputStream.

A typical CGI program writes to a standard output to create an HTML page. With

servlet programs, the ServletOutputStream provides the channel to send the output back

46

to the web browser. The following ServletOutputStream methods are commonly used for

this purpose [10],

• ServletOutputStream.println(String) - Sends a character string to the browser, with a

terminating CRLF.

• ServletOutputStream.print(String) - Sends a character string to the browser, with no

terminating CRLF.

• ServletOutputStream.closeQ - Shuts down the stream.

Once a servlet is compiled with the Java compiler, javac, it is placed in a servlets

directory under the JWS' default directory. After registering the servlet with the JWS, the

servlet becomes available for use.

Java applets can be burdensome for the client due to their size and demands on

local system sources. This is especially true for small and simple applications that

normally can be implemented efficiently in other ways. Java servlets, on the other hand,

provide an excellent way to produce web database applications that are more powerful

and yet simpler and faster. Therefore, servlets are a far better alternative to applets for

developing most common web applications particularly, three-tiered datbase applications.

3.3 RMI/CORBA

Java applets and servlets provide practical and simple ways to develop two-tier or

three-tier database applications. However, they fall short of providing methods for more

robust three-tier design approaches. For powerful and critical applications, Java's Remote

47

Method Invocation, or RMI, and Common Object Request Broker Architecture, or

CORBA, are excellent three-tier design tools.

In a typical two-tier design, the JDBC interface, and all the application logic

remain on the client side. The server, the database engine, responde to client requests.

There is really no middle tier between the parts of the application. As business rules

change, however, both the client and the server side may require changes in this

approach.

The middle tier provides a solution to this problem by housing the business logic

in its design. The middle tier applications are referred to as middleware applications.

Both RMI and CORBA applications serve in the middle tier between the client interface

and the database server to conduct tasks such as data integrity checks, data recovery, and

remote object executions as illustrated in Figure 3.1.

First Tier Second Tier Third Tier

Figure 3.1 Three-Tiered RMI architecture

48

Instead of using sockets and streams for networking in three-tier designs, RMI

provides method calls. This gives RMI a major role in three-tiered client/server

applications development. RMI also supports Java objects communicating via their

methods, regardless of where the objects are located.

RMI applications are usually big and involve more steps to implement them.

These steps are highlighted as follows[l 1],

• Develop remote object code.

• Develop the server code.

• Develop the client code.

• Compile the code.

• Run the RMI compiler.

• Place .class files in directories.

• Start the registry'.

• Start the server.

• Start the client.

Three-tier RMI application design and implementation is a vast topic all by itself.

This section provides only a brief description, since the details are beyond the scope of

this paper.

3.4 Security Issues

Java attracted the attention of developers because of its platform independence, its

simplicity compared to other object-oriented languages, its robustness and its security.

When the Internet started providing host computer access to millions of people across the

globe, security become an extremely important issue. Java designers, with that in mind,

49

built in security control mechanisms that made Java the language an excellent choice for

developing very secure network applications.

The following items summarize some of Java's existing security features as well

as the items to be implemented in the future[12].

• Safe from malevolent programs: Programs should not be allowed to harm a user's

computing environment.

• Non-intrusive: Programs should be prevented from accessing private information on

the host or the network.

• Authenticated: The identity of parties involved in the program should be verified.

• Encrypted: Data that the program sends and receives should be encrypted.

• Audited: Potentially sensitive operations should always be logged.

• Verified: Rules of operation should be set and verified.

• Well-behaved: Programs should be prevented from consuming too many system

resources.

• C2 or B1 certified: Programs should have certification from the U.S. government that

certain security procedures are included.

Java programs execute in predefined secured areas. The concept of a "Sandbox"

as a designated playground gave Java designers the idea to limit the execution space in

the computer's memory. This way, other areas in the memory, the file system, the web

server, and the network are protected from direct access. A program must meet security

clearance measures set by the execution environment before it accesses these areas. For

example, Web browsers such Netscape or MS Internet Explorer allow users to define

security policies for downloaded applets. If an applet does not have the proper security

clearance, it can not execute in that browser. To safeguard this feature, applets, as a rule.

50

cannot alter those security policies. Java, on the other hand, uses secured sandboxes that

system administrators define.

The Java runtime environment provides several security control mechanisms in its

architecture. The bytecode verifier makes sure that the program's bytecodes comply with

Java language rules. The class loader loads program classes in a designated area defined

by the CLASSPATH statement in the system environment setup. The security manager

and the accesscontroller make decisions regarding access rights to the system resources.

Figure 3.2 shows the security layer architecture for a Java program execution.

Fig 3.2 The path between a Java program and the operating system.

51

There is also a very complex authenticator, the security package, that deals with

keys and certificates, digital signatures, and encryption. The security package works

within the core Java API.

CHAPTER 4

AN EXAMPLE APPLICATION

4.1 Application Objectives

This chapter explains the example application which features the concepts and the

software components that are explained in the previous chapters. The Alumni

Registration Application, or ARA, will illustrate how a three-tiered web database

application can be created and deployed by bringing several components together.

4.2 Application Description

The Mathematics and Computer Science department wishes for visiting alumni to

be able to access the department's already existing alumni database via the department's

web page. This access gives the visiting alumni registration, update and search

operations on the alumni database. In order to maintain the correct information in the

database, a registered person should be able to update his or her record. As a service to

anyone who would like to search the database, a limited search functionality must be

present as well.

Functionality of the application:

1. Membership Registration - All the information about the alumnus is collected with

this function. The visitor provides name, degree, major, year of graduation, home and

work addresses, and a message for the department. For future update of this

52

53

information, in order to use the update function, the visitor defines a user id and a

password, as well.

2. Updating Registry - Once a membership is established with registration, updates on

the membership record are performed with this function. The visitor must provide the

user id and the password in order to have access to his or her record. Authenticating

the user at this point gives protection to member records so that a member can modify

or delete only his or her record.

3. Searching Registry - Any visitor of the Alumni page should be able to search the

membership database using last name, major, graduation year, and city as search

criteria.

A client, or visitor, utilizes a web browser, such as Netscape or Internet Explorer, to

visit the web site of the department. A visiting alumnus or person reaches the main page

of the application from a link on one of the pages on the department's web site.

4.3 Application Components

A three-tiered web application is made up of three main components: The first

component is the client's browser, the second component is the middle-tier with the JWS

and the application programs (middleware application), and the last component is the

backend database.

The first tier component, the client browser, and the third tier component, the

Microsoft Access database, are already existing components. As Figure 4.1 illustrates, the

middle tier consists of two parts: the Java Web Server and the middleware application.

54

With the help of the middleware, all the components work together as one complete web

database application.

Fig. 4.1 Middle tier components.

The middleware application is also made up of several components. Depending

on the detail and size of the application, there can be many servlets, HTML pages or CGI

programs to provide the needed functionality for the applications. In this example, there

are three Java servlets and two HTML pages that make up the middleware application.

Figure 4.2 illustrates the application structure and its components.

Fig. 4.2 Alumni Registration Application components.

55

4.3.1 HTML pages: Main Page and Search Page

The main page, named members.html, is the starting point for interacting with the

ARA. Figure 4.3 shows the main page in a web browser. This HTML file is located in the

publicjhtml subdirectory under the default web server root directory. Typically, all

HTML files, for the purposes of security and organization, are collected in a designated

area in the server's directory structure. The JWS installation creates the public_html

subdirectory automatically.

3 Home Page - Micioxoft Internet Exploiei
Fie View Go Fjvwitei ydp

* . a j] £ d 4 vj :3 ftSlop fletresh Home Search Favontec Hwlcfy Charmefe Fufecreen Mai Flin» E<Sf
Addtftst 1^1 C\lavdWebServei1 1 3\pii3bc_h!ml\mefnbe»s hlrri

o

"3^

Alumni Database

We are ven> glad that you are
visilmg with us.

Search - to see the members.

Register - to become a member.

Update your record.

jUscr Id*| PasswordJ GQ1

"3

'#] ! MyComptrter
|^S(art| OP MrsceHaneom [jj Eiytonng • wv | ^FronlPaoe Exp< | "^FrontPage EtB [|g]Ho»e Page!"

Fig. 4.3 ARA main page, (members.html)

Q 4:05 PM

The HTML tables and forms give the main page its appearance and organization.

The main page includes a welcome message as well as a menu of functions to allow

interaction with the alumni membership database.

56

Selecting the register link provides the user with the registration page for

information collection. The update function requires user id and user password which can

be entered in the provided text boxes on the main page. The "GO" button invokes the

update program to give the user access to his or her record.

Searching the alumni database starts with the search link from the main page. This

link takes the user to the search page where the user creates the search query by providing

the text and field to search. Figure 4.4 shows a snapshot of the search page, search.html.

| 3 Seafch - MiciotoH Inletnel ExploreT
J fie £cfc View Qo Fsvontes Help
T * J 4 -a ft ^ * J®#
: j 9«k Sloo Reftesh Home Search FoYorilfti Hutory Channdi FulscfMn W«l Prirt
, j Addtew |<] hiip //s«va1 8080/se*ch Wrrj 2 ; Linkj _

Alumni Search Form

Search for: |

as ^Last Name rMajoE ^Grad.year rCity

| Search | Exrt|

 jJ
£2 f ! Lowirtianot swib

^Start | OPMBcefaneout Ftet .J ^ ZntUvng ■ servteU | jjy Moo»oft Wwd - 0 . j|jgjScaicli • Mictw.. 4 09PM

Fig. 4.4 The search form, search.html.

The design details of these pages are not pertinent at this point and their HTML

source code is included in Appendix C. However, the following three points are

important examples of using hyperlinks to servlet invocations from HTML pages.

57

1. The servlet for registration is called directly with the

<ahref=,'http:servername:port/servlet/registerServlet>

tag in the members.html file.

2. The servlet for updating function is called from a form with a button

component.

<form action="http://servername:port/servlet/updateServlet

method="post" name="update">

<input type^submit" name="Submit" valiie="GO">

</form>

3. The servlet that performs the searching is called indirectly from the search
page, search.html.

<ahref= http://servername:port/search.html>

4.3.2 The Serviets: RegisterServlet, UpdateServlet, and SearchServlet

4.3.2.1 RegisterServlet

The RegisterServlet is for member registration for the application. It is invoked

from the main page of the application. Initially, this servlet creates a registration form

(See Appendix B, Figure B.l) with HTML tags and sends it back to the user's browser.

After the user enters the data into the form, he/she submits it by clicking the submit

button.

The servlet receives the entered data in the form of parameters attached to the

URL. In order to place them into the member object, it parses the URL. The registration

58

gets completed by sending that member object to the database via the SetMember method

of the UserRegistryJdbdmpl class.

The RegisterServlet follows the following outline to serve client requests:

1) Initialize the servlet; establish database connection

2) Service method is called

A) If this is a first call:

i) Create a new session

ii) Send the registration form

B) Consecutive calls (with form already containing data)

i) Exit if exit requested

ii) Registration requested

1) Required fields are okay

a) Verify user id uniqueness

b) Existing user id. Send the form back

c) New member. Perform registration

i) Place the member into the database

ii) Send confirmation and exit

2) Incomplete form. Send the form back

The following explains this process in further detail:

1) Initialize the servlet.

The servlet must be initialized prior to servicing any request from the browser.
The Java web server loads the servlet and initializes. This method is called once
by the server, and once the servlet is loaded, it stays loaded until it is destroyed by
the server.

Public void init (ServletConfig config) throws ServletException {

Super.init (config);
_registry = new UserRegisterJdbclmpl ();

}

59

The servlet calls super.init (config) to initialize itself and to log the initialization
with the JWS. The next line instantiates the UserRegistryJdbcImpl class. The

reason for doing this here is that a single instance of that class serves all instance
of the RegisterServlet class. Since that class establishes database connection and

compiles prepared statements, it requires more time to load. It is a good idea to
place such time-consuming operations in the servlet initialization.

2) Service the user requests.

In the service method all the functionality of this serv let exists. The service

method does registration with these steps:

A) If this is a first call to this servlet

i) Create a new session

A session object allows for maintaining state information during
the client's interaction with the HTML pages through the browser.
Typically, the web pages are stateless, i.e., once a servlet program
creates a page and sends it back to the browser, any data related to
that page is no longer available to the program. In order to retain
some or all of that information, some state tracking mechanism is
needed. The session object maintains any information stored in it,
as long as it is not destroyed exclusively. For example, if the client
submits the form with missing data such as user id or password, the
servlet sends the form back with existing data in the fields. It uses
session tracking to identify the HTML pages so it can receive and
send data to the right pages.

String ticket;
HttpSession session = request.getSession (true);
ticket = (String) session.getValue ("ticketNo");

The ticket object represents this session. The session id is assigned
to a session variable called ticketNo.

Session putValue ("ticketNo'\ ticket);

ii) Send the registration form to the browser.

SendRegistrationForm (request, response, message);

The request parameter provides the received values from the form.
Initially, since it is a blank form, there are no values associated with
the fields of the registration form.
The response parameter represents the output stream that sends the
form back to the browser.
The message parameter provides a text string with a message to be

sent back to the browser.

If this call to the servlet is not the very first, perform insertion into the
database.

At this point the registration form contains member's data.

i) If user decides to exit before requesting registration.

1) Close the session.

session.invalidate ();

2) Send the main page back to the browser.

response.send Redirect ("/members, htm P);

The servlet completes its service at this point.

ii) If the user requested registration

1. Check the required fields, user id, and password for
validity.

a) Search the database to see if this is a pre-existing
user id.

AlumniMember members[] =
registry.getMember

(request.getParameter ("userld"));

b) If the user id is not unique, send the registration
form back to the browser with a warning message.

Send Registration Form (request, response,
message):

61

c) This is a new member. Perform registration.

i) Create a new member object and assign the

input values to the member object's
attributes.

AlumniMember.member =
new AlumniMember ();

Member.setuserld (request.getParameter
("userld"));

Member.setuserld (request.getParameter
("password"))

Store the member object into the members
database.

registry.setMember (member);

ii) Job is complete; kill this session,

session.invalidate ();

Send the browser a confirmation page to let
the user know that the registration is
complete (See Appendix B, Fig. B.2).

send confirmation (request, response);

The service method finishes its job here.

2. There are missing fields in the received form from the
browser. Send a message with the incomplete form back
to the user's browser.

String message="Form must be complete before
registration.";

SendRegistrationForm(request, response, message);

At this point, the RegisterServlet has completed its task.

62

There are two private methods, which are SendRegistrationForm and

SendConfirmation. The following briefly explains their inner workings.

SendRegistrationForm Method: This method dynamically creates the registration form

with HTML tags. Initially, field values in the form are blank. In consecutive calls to this

method, it retains the existing field values in their proper areas.

1. The output stream back to the browser object requires the following code:

response.setContentType ("text/html")
PrintWriter out = response.get Writer ();

2. Extract the field values from the received form, and initialize the field values
in the new form.

String firstName = request.getParameter ("firbitName");

3. If any field value is null, initialize it to an empty string.

If (firstName = null) firstName = "

4. Prepare the HTML form, and write it to the output with the PrintWriter object

"out."

out.println ("<html><head> +
: +
: +

"FirstName: <input type = V'textV...
+ firstName + "\" >" +

"<input type = V'submitV'name = V'ActionV'..
show: the next two lines

"</body></html>,,);

63

Clear and close the output stream

out.flush ();
out.close ();

SendConfirmation Method: This method sends the user a confirmation page

constructed with HTML tags. Its structure is basically like the method SendRegistration.

They differ on the actual contents of the HTML page. Its code is provided in Appendix C.

4.3.2.2 UpdateServlet

The updateServlet facilitates modifications to the membership records in the

members database. By using this servlet, the user can change any information on his/her

record. Figure 4.5 illustrates the process of how the update servlet interacts with the other

components.

First tier Second tier Third tier

Fig. 4.5 Members database update process.

64

The interaction with the updateServlet starts by the user clicking on the GO

button on the main page after providing the userid and the password (1). The Java Web

Server, or JWS, calls the servlet with the password and the userid (2). The updateServlet

connects to the members database and sends a search request with the userid (3). The

database returns the search results back to the servlet. If the search result is not

successful, an error message is returned; otherwise, the member's record is what the

servlet receives (4). At this point, based on the return result, the servlet prepares either

the update form with the membership information or an HTML page with a message

about unsuccessful search. The prepared page is channeled back to the JWS (5) and the

JWS sends it to the user's browser (6).

The update form is basically the same form as the registration form (See

Appendix B, Figure B.3). During its the creation, the servlet places the membership

information in the appropriate text fields.

As with any servlet, the JWS initializes the updateServlet before the service

method starts. The servlet's structure is similar to the RegisterServlet in that it consists of

two public methods: init() and service(). The following outline shows this structure.

1) Initialize the servlet and establish database connection

2) Service the user requests

A) Create a new session if there is not one already

B) Initial call to the servlet

i) Get the userid and password

(1) Create a session identification

(2) Search the database

(a) Member located, password verified

(i) Password verified; send the update form

65

(ii) Password mismatch; send a message back and exit servlet (kill

session)

(b) Member userid not in records; send a message and exit servlet

(c) Problem with user id (duplicate userid); send a message: user needs to

register again, exit servlet

(3) Problem with the database; send a message and exit

ii) User id and/or password not provided; send a message and exit

C) Consecutive calls to this servlet

i) User requested record update; rewrite the record to the database; send a

confirmation page; exit the servlet

ii) User requested record delete; delete the record; send confirmation; exit

iii) User requested exit; send confirmation (no changes made); exit

In order to provide the client with a well-behaved web application, the servlet

design must anticipate various situations. As the outline above indicates, there are

several conditions that the user must be made aware of, such as a password mismatch or

failure of the requested update or delete operation, etc.

The following explains the UpdateServlet in further detail:

1) Servlet initialization

The JWS calls the init() method to load the servlet to make it an extention for

itself. The servlet is instantiated by the JWS once and that particular
instantiation serves all requests to the update servlet. This way, once the
servlet is initialized and loaded, the JWS directs all calls to the same copy of
the servlet.
Other time-consuming operations take place during initialization, such as

establishing database connection.

super.init(config);
registry = new.UserRegistryJdbdmpl ();

66

2) Service the user requests.

The service method performs all the work of receiving the user requests as
well as responding them. First it checks for session information. If there is
not one already, it creates a session object to maintain the state.

A) Create a new session

HttpSession session = request.getSession(true);
ticket = (String) session.getValue("ticketNo");

The value of the ticketNo variable indicates whether this is an existing
session or not. The "null" value indicates that no ticket was issued to this
user (or the session) previously.

B) First call to this servlet is detected by checking the ticket. If the ticket is
null, then the user clicked the go button from the main page. Thus, a ticket
will be issued.

if (ticket = = null)

i) Get the user id and password, and if they are not null.

String userld = request.getParameter ("Userld");
String userPassword = request.getParameter ("Password''');
if (userld ! = null && userPassword ! = null)

(1) Create a session identification

The object "ticket" represents an identification tag for this session
and the session id becomes its value.

ticket = session.get Jd ();
session.putValue ("ticketNo", ticket);

(2) Search the database by calling the getMember method and place
the returned results in the members array

AlumniMember members[] = registry.getMember(userld);

(a) If the userid is in the database, then the member record is
found. Now, authenticate the password.

67

if (userPassword.equals(member.getpassvvord());

{

(i) The user supplied password matches what is in the
member record, so send the browser the update form with
all the information in the record.

send UpdateForm (request, response, member);

(ii) Password did not match the record. Send a message and
kill the session.

session.invalidate():
String message = "This password is not correct.";
SendProblemMessage (request, response, message);

(b) If the member is not in the database, i.e., the members array
length is 0, send a message and kill the session (fig. B.5).

{
session.invalidate ();
String message = "This userld is not in our records!";
sendProblemMessage (request, response, message);

}

(c) There is a problem with this user id. There is more than one
occurrence of this userid in the database. The database
administrator must resolve this problem.
The user is encouraged to re-register with a different user id.
The session is killed after sending the message.

{
session.invalidate ();
String message = "Please register again with a different

userld.";
sendProblemMessage (request, response, message);

}

(3) There is a problem with the database. The servlet receives a SQL
statement error (SQLException) from the database. The session is
killed, and a message is sent back to the user.

68

{
e.printStackTrace ();
session.invalidate ();
String message = "There is a problem with our database ";
sendProblemMessage (request, response, message);

}

ii) The user left either the userid and/or the password field blank and clicked
the "GO" button. These two fields are necessary to locate the member's
record and to validate the password. Send a message and kill the
session.

{
session.invalidate ();
String message = "We need your userid and password.Try again!";
sendProblemMessage (request, response, message);
I r

C) The servlet was triggered from the update form—not from the main page

i) User clicked on the update button to record the changes in the database.
Get the values from the form and store them in a member object before
sending that to the database.

{
AlumniMember member = new AlumniMember ();
member.setuserld (request.getParameter ("userid"));
member.setpassword (request.getParameter ("password));

registry.setMember (member);
session.invalidate ();
String message = "Your record has been updated.";
sendConfirmation (request, response, message);

}

After updating the record, a confirmation page (See Appendix B, Fig.
B.4) informs the user that the update was successful. The service
method exits after killing (invalidating) the session. If a problem arises
with the database, a message informs the user.

{
e.printStackTrace ();
session.invalidate ();
String message = "There is a problem with update operation.";
SendProblemMessage (request, response, message);

}

69

ii) User requested delete operation by clicking the delete button on the
update form. The servlet calls the deleteMember method of the
database engine, which in turn sends the proper SQL command to
perform the operation. After deleting the record, a confirmation page
with a proper message completes the action, and the session is

terminated.

{
String userld = request.getParameter ("userld");
AlumniMember member = new AlumniMember ();
member.setuserld (userld);
registry.deleteMember (member);

session.invalidate ();
String message = "Your record has been deleted.";
sendConfirmation (request, response, message);

If delete operation is not successful, invalidate the session and inform
the user.

r i
e.printStackTrace ();
session.invalidate ();
String message = "There is a problem with delete operation.
sendProblemMessage (request, response, message);

iii) If the user clicks the exit button on the update form, the session gets
completed, and again, a confirmation page is sent back with a message.

There are three public methods in the update servlet; namely. sendUpdate form,

sendConfirmation and sendProblemMessage. All three of these methods are for the

purpose of constructing HTML pages for the browser. The details are similar to the

sendRegistrationForm method of the RegisterServlet. The Appendix C includes the

actual code for these methods.

70

4.3.2.3 SearchServlet

The purpose of the SearchServlet, as its name suggets, is to provide a search

functionality for the application. By using this function, a visitor to the alumni page can

search for registered members by providing search keys such as last name, graduation

year or city of residence. The HTML page, search.html. provides the necessary interface

to create a desired search query. Once the user enters the text to search for and chooses

the field to search in the database, clicking the seach button on the form activates the

SearchServlet.

There are three tiers that are involved in the search process. The first tier is the

user's browser. The main page, as mentioned earlier, is an HTML page which provides

links to servlets or other HTML pages. The search process flows as depicted in Figure

4.6. The "Search" link on the main page directs the user to the search page (1). This page

is another H TML page with a text field for a search key and a set of radio buttons to

choose a field. (See Figure 4.4). The "Exit" button on this page takes the user back to the

main page of the ARA. The search button, on the other hand, calls the SearchServlet to

search the database (2).

The middle tier gets involved at this point. The servlet issues a SQL search

statement to the database (3). The members database in the third tier returns the results of

the request back to the servlet (4). The servlet prepares an HTML page with the returned

results and sends that page back to the user's browser via the JWS (5).

71

First tier Second tier Third tier

Fig. 4.6 Members database search process.

As with the other servlets, the SearchServlet is in the middle tier of the three-

tiered application and is independent of the tiers on either side. The JWS deals with the

browser platform and the JDBC bridge deals with the database. The program logic or

even the compiled code of the sen/let do not need any changes if either or both of tier 1

or tier 3 change platforms.

The SearchServlet program logic can be outlined as follows:

1) Initialize the servlet

a) Connect to the database

2) Service client requests,

a) If search requested

i) Get the search key and the search field

(1) Search the database

(a) If not found send a message.

72

(b) Otherwise, return the results.

(2) Error returned from the database

ii) No search key or search field; send error message

b) If exit requested send the main page back.

The program code for the SearchServlet is shorter in comparison to the

RegisterServlet and the UpdateServlet. The search process does not involve insertion,

update or delete operations on the database; it is basically a read-only operation.

Updating databases require care and caution to maintain the data safety and the integrity.

Search operations on databases pose less risks to the data itself. However, what

information is not accessible with a particular access right is the issue with searching

databases. For example, the SearchServlet excludes the user id and the user password in

the returned results page. Placing such security rules in the middle tier leaves the client

side, tier 1, and the DBMS, tier 3, free of application details.

The actual program code for the SearchServlet and further explanations are as

follows:

1) Initialize the servlet.

As with the previous two servlets, the JWS calls this method to load the servlet.
Other time consuming tasks, such as connections to database, take place during

this initialization.

public void init (ServletConfig config) throws ServletException

{
super.init(config);
_registry = new UserRegistryJdbclmpl();

}

2) Service client requests.

The service() method provides all the functionality for the SearchServlet.

73

a) If search is requested (user clicked on "search")

if ((request.getParameter("Action").equals("Search")))

I

i) Get the search key and the search field.

String columnName = request.getParameter("Field");
String searchString = request.getParameter("searchString");

(1) Search the database by calling the searchRegistryQ method of the

_registry object.

AlumniMember members[] = _registry.searchRegistry (columnName,
searchString);

The columnName and the searchString parameters provide the

necessary information for the search operation.

(a) No member is found with the given criteria,
if (members.length == 0)
> i

String message = "Can not find matching data !";
sendProbleniMessage(request, response, message);

}

(b) There is at least one record found.
Prepare the output stream to write back to the browser.

response.setContentType("text/html");
PrintWriter out = response.getWriter();
String serverName = request.getServerName();
int serverPort = request.getServerPortQ;
out.println("<html>"+"<head>"+

"<title>Results Page</title></head>"+

The length of the members array represents the number of
the returned record from the database. The for loop

74

generates an HTML table (fig. B.6) with rows and columns
to display all the record with the matching criteria.

for (int i = 0; i < members.length; i++)

{
out.prmtln("<TR>");
out.println("<TD>" + members[i].gettitle());
out.println("<TD>" + members[i].getfirstName());
OLit.println("<TD>" + members[i].getmiddlelnitial());

The printWriter object gets closed after emptying its buffer.

out.flushQ;
out.closeO;

(2) Error occurred with the database.
The database returned an error condition so no search was
performed. 1 he user gets a message with SendProblemMessage()
method.

catch (RegistryException e)

{
e.printStackTrace();
String message = "There is a problem with our database.";
sendProblemMessage(reqiiest, response, message);

}

ii) User requested search operation without a search text and/or search field.
The search form is sent back to the user with a message.

String message = "You did not enter any data to search. Try again!";
sendConfirmation(request, response, message);

If user clicked on Exit button on the search form, send the main page back
to the browser.

response.sendRedirect("/members.html");

75

There are two private methods, sendProblemMessage and sendConfirmation

in the SearchServlet. They basically send various messages back to the browser by

placing them in HTML pages. The actual code is almost identical to those methods

with the same names in the RegisterServlet and the UpdateServlet.

4.4 Design and Implementation Details

Java is a an object-oriented language. The servlet components of this application

utilize the object classes and methods that are readily available from Java core API.

Object-oriented design encourages more concentration on functionality of object

components of an application than the actual implementation details. In creating

abstractions for various classes, a designer identifies class methods, responsibilities, and

relationships. The class's relationships for Alumni Registry Application can be

diagrammed using Booch notation [13].

In Booch notation, as in Figure 4.7, the clouds represent classes, the open circles

represent ''uses a" relationship. The RegisterServlet, the UpdateServlet, and the

SearchServlet use the UserRegistry class. This class is an abstract class and is

differentiated with an inverted triangle. The solid circles represent "has a" relationship,

so the UserRegistry class has an AlumniMember class. The arrows from the

UserRegistryJdbcImpl indicate the class implementation for the UserRegistry abstraction

class.

76

Fig. 4.7 Representation of class relations with Booch notation.

By representing the application components this way, how those components

work with one another becomes more clear. Using this diagram, one can easily see that

the three servlets use the UserRegistry class which serves as an interface for the class

UserRegistryJdbcImpl. The UserRegistry uses the RegistryException class, and it has the

AlumniMember as a subclass. The following briefly describes each class's

characteristics:

• UserRegistry - provides interface for the methods getMember, setMember,
deleteMember, and SearchRegistry

• UserRegistryJdbcImpl - this class contains the actual implementations of the
above methods

• RegistryException - implementation class for extending more generic class
called Exception

• AlumniMember - definition of data structures for the members database and
implementation of set and get methods for member variables

By using an object-oriented paradigm to design this project, all the

implementation specific details are compartmentalized in classes. When changes are

77

needed in the applications, it is easier to identify the affected classes, therefore

simplifying the process of maintenance. For example, all the database specific coding in

this example is in the UserRegistryJdbcImpl class; the other classes don't care if the

implementation for the deleteMember method changes, as long as it conforms to its

interface in the UserRegistry abstract class.

The actual implementation where the database connections take place, the SQL

statements for insert, delete, update, and search are constructed in the

UserRegistryJdbcImpl class. Therefore, the following section explains this class in detail.

4.4.1 JDBC Implementation

UserRegistryJdbcImpl class primarily establishes the connection to the database

and facilitates insert, update, delete, and search operations. There are four methods to

perform those operations; namely getMember, setMember, deleteMember, and

searchRegistry respectively.

Figure 4.8 illustrates the basic three stages in working with databases. First of all.

Fig. 4.8 Steps of working with databases.

a connection to the database must be established. Once a connection is available, various

SQL statements allow interaction with the database. The final step is. naturally, closing

the connection. Ideally, connections will be made as the need arrives, rather than keeping

a connection alive for a long period of time. The process of establishing a connection is a

time consuming task and frequent connection requests can create a burden on system

resources.

Making a connection to a database requires defining a driver name and a database

name. The database name is defined using URL syntax as follows:

Jdbc:<subprotocol>:<subname>

Jdbc indicates the JDBC protocol. The subprotocol is the name of the protocol that

provides the database-dependent interface. The subname is the name of the database.

Since the database is MS Access with name "members'' and the ODBC interface is the

driver for it, the following code defines the static variable representing the database:

_url = "jdbc:odbc:members"

The database driver name is required for a connection. For the "members" ODBC

compliant database, a JDBC-ODBC bridge driver is necessary. Although there are pure

Java drivers for MS Access, the JDBC-ODBC driver works well, and it comes as part of

the JDK1.2 or Java2.

_driver = "sun.jdbc.odbc.JdbcOdbcDriver"

It is possible to provide more than one driver name to the JDBC Driver Manager

by separating them with a colon between each driver. The Driver Manager tries each

driver until it can connect to the database. After defining the driver name, it is loaded

with jdbcDriver = Class.forName(_driver) statement. The driver is placed in a static

79

area, so all instances of the UserRegistryJdbcImpl class access the same instantiation of

the driver.

The private method _init() creates the connection and performs initialization of

the prepared statements.

static private void _init()

{
synchronized (JdbcDriver)
f \

try
> <

_db = JdbcDriver.connect (_url, _dbProperties);

insertStatement = db.prepareStatement ("insert into UTH (userld,...

updateStatement = db.prepareStatement ("update UTH set ...

queryStatement = db.prepareStatement ("select * from UTH ...

deleteStatement = _db.prepareStateinent ("delete from UTH where
userid=?");

1
catch (SQLException e)
> i

e.printStackTraceQ;

}
}

}

The statement jdbcDriver.connect (_url, dbProperties) actually establishes the

connection with the given parameters. As mentioned earlier, the variable _url provides

the driver name and the variable dbProperties provides the user name and user password

that are specific to the database. These values are not the same values as the member's

user name and the password, which are maintained as part of the member record in the

member's database.

80

Public Methods

getMember - This method accepts a user id as a string and searches the database for its

occurrence. The returned results, member records, are stored in an array of member

objects and returned. The logic of the method is as follows:

1. Check for database connection, and open connection if closed.

If(db.isClosed())

{
_init();

}

2. Prepare for search by setting the query statement.

_queryStatement.setstring(1 .userld)

The queryStatement is already loaded and compiled during
initialization.

_queryStatement = _db.prepareStatement ("select * from UTH where
userid=?");

At this point only the value of userid is supplied with the setString
method, where the parameter 1 points to the first parameter in the
prepareStatement and the value of userld gets substituted where is.

3. Perform the search.

r = _queryStatement.executeQuery();

The JDBC interface sends the prepared SQL statement to the DBMS at
this point, and the results are stored in the resultSet object "r". The
resultSet is the rows of records that are returned from the members
database.

4. Fill the member array with the return information.

while there are more rows

while(r.next())

81

{
// create a new member object

member = new AlumniMember():
member = setuserId(r.getString("userID"));

(•PASS
(-•FIRSTNAMF;,));

member.addElement(member);
}

5. Clear the result set if it is not null,

if (r != null)
i i

r.close();

6. Close the database connection if it is open

if (_db! = null)
i i

_db.close();

}

7. Create a clone of the member array called memberArray, and return it

AlumniMember memberArray[] = new

AlumniMember[members.size()];

members.copylnto (memberArray);

return memberArray;

SetMember - This method adds a new member to the database as well as

replacing the existing member information with new information.

A member object as a parameter supplies all the information about the member. If

setMember cannot find the member in the members database, it inserts it; otherwise, it

replaces the record and returns the original record back. The steps in this method are the

following:

1. Search the database with the member's userid.

getMember (member.getUserId());

2. Check to see if the database connection is still there.

3. If there is exactly one member found
a. Prepare the update statement

_updateStateinent.setstring(1 ,member.getpassword());

b. Execute the update statement.

_updateStatement.executeUpdate();

4. If there is no existing member, insert the member record into the

database.
a. Prepare the insert Statement

_insertStatement.setstring(1 ,member.getuserld());

b. Execute the insert Statement

_insertStatement.executeUpdate());

5. If the search returns multiple records, return an error message. Userid
is supposed to be a unique key. and it should not have multiple copies.

throw new RegistryException("Duplicate Userid!")

6. Clear prepared statement parameters

statement.clearParameters();

83

7. Close the connection

_db.close();

8. Return the old member record. Although this example application does
not utilize the returned value, it could be useful if later it was desired to

undo the saved information.

DeleteMember - This method deletes a member from the database. As with setMember.

it receives a member object as a parameter. It deletes this member if it finds it in the

database; otherwise, it returns an error message. If there are multiple records with the

given user id, it returns an error. Once a successful delete is performed, it returns the

original record back in case a recovery is later needed.

Steps of delete method:

1. Search the database with getMember method.

getMember(member.getuserId());

2. Check for database connection. Open a connection if there is no
connection.

if (_db.isClosed ())

{
_init();

}

3. If only one record found prepare the delete statement and execute.

_deleteStatement.setString(1,member.getuserld());
_deleteStatement.executeUpdate();

4. If duplicate userids found or no userid found, return error message.

throw new RegistryException ("Duplicate or unavailable userid!");

84

5. Clear prepared statement parameters.

Statement.clearParameters();

6. Close the connection.

db.close();

7. Return the deleted record in case it is needed

return oldMember;

searchRegistry - There are two parameters for this method: columnName and

searchString. The searchString provides the key value to search, and the columnName

provides the name of the column to search for the given key value. A successful search

returns an array of member objects to the calling object.

Steps of searchRegistry method:

1. Create the SQL statement to do the search

query = "select * from UTH where (" + columnName + " like " +
searchString +

2. Check for database connection; if it is closed, open it.

if (_db.isClosed ())

{
_init();

}

3. Prepare the query statement and execute it.

_searchStatement = _dbprepareStatement(query);
r = _searchStatement.executeQuery();

85

4. If there are results returned, create an array of member objects

member = new AlumniMember();
member.setuserId(nulltoString(r.getString("userId"));
members.addElement(member)

5. If there are no results, return an error message

String s = e.getMessageQ;
throw new Registry Exception (e.getMessageQ);

6. Clear the query statement parameters

_searchStatement.clearParameters();

7. Close the resultSet

r.close();

8. Close the connections

_db.close();

9. Return the results in member array

AlumniMember memberArray[] = new
Alumni Mem ber[members.size()];

members.copylnto (memberArray);
return memberArray;

CHAPTER 5

CONCLUSION

The Internet is shaping the way companies do business, as well as the way

individuals think in our society. This vast network is spanning the globe and has already

penetrated the daily activities of nearly all computer users. New possibilities,

opportunities and ideas are fueling the growth of the Internet, WWW, and web

applications. At the same time, the software industry has grown exponentially. Software

manufacturers, in order to meet the demand for the massive World Wide Web application

market, must adopt new concepts and tools. Putting software components together to

develop applications is the new trend in the industry.

Using components to develop applications is the core idea behind 00 design

concept. Although different vendors may develop the components, they provide

interfaces so that the individual components can work with one another to make up a

complete application. This project is about integrating software components to build a

web database application with Java and Java's JDBC interface.

The first chapter discussed the three components of a web database application.

The concept of three-tiered client/server application design serves as a model for the

example application. The first tier is the client's web browser that interacts with the

middleware programs in the middle tier. The third tier is the database, and it serves the

middle tier for client requests.

86

87

The second chapter covered the single most important component between the

middle application and the backend database in the third tier. The JDBC interlace

captures attention in the chapter since the example application is a Java application, and

JDBC is what Java applications use to connect to databases.

Java language offers applets and servlets to develop applications. With a three-

tier database application design, Java servlets surpass applets or even languages like C++

or PERL for efficiency and simplicity of development. Therefore, chapter three covered

servlets more in depth than applets. There is also a brief description of RMI and CORBA

in this chapter as Java tools for more resource-intensive application development.

Chapter four covered the example application in detail. This middleware

application consists of components such as HTML pages and Java servlets. There is a

detailed explanation of the inner workings of the servlets in this chapter.

The client side browser, the middleware application and the backend database

make up the complete application. Each one of these components carry no dependency

on the others in their internal designs; they are the "plug-and-play" parts of an

application.

Appendices

APPENDIX A: The data dictionary for members database

APPENDIX B: Application interface screens

APPENDIX C: Application source code

APPENDIX A: The data dictionary for members database

Columns

Name Type Size

title Text 4
firstName Text 20
middlelnitial Text 2
lastName Text 20
degreel Text 22
majorl Text 15
gradDatel Text 8
degree2 Text 10
major2 Text 15
gradDate2 Text 8
homeStreet Text 25
homePObox Text 6
homeCity Text 20
homeState Text 2
homeZip Text 5
homeCountry Text 20
homeEmail Text 50
homeTel Text 15
company Text 25
workTitle Text 20
workStreet Text 25
workPObox Text 6
workCity Text 20
workState Text 2
workZip Text 5
workCountry Text 20
workEmail Text 50
worktel Text 15
comment Text 50
userid Text 10
password Text 10

Table Indexes

Fields: userid, Ascending

89

APPENDIX B: Application interface screens

J Regitliation • Microtofl Inteinel Explore!
| 5^ £<& '/ew go F$vorte« yelp

EME1
;Lr*s tf]8«s«c<ihcWeb Chomd Guide Cwstorow Lr*.* Internet Explciw »

*> . . o □ a" @ 0 § a ® a & a Back -foP Rohesh Horn® SM»cn Favort« Hutorji CKannek Fjfcaeen Mai Fonh Prim Eat
; Addwt j®] hUpV/teivwl 8060^(ervletAegittef "3

Alumni Registration Form

Welcome to registration. Please complete ail f/etos.

Tide: 3 Urst Name: | MX: I Last Name:]

Degree:) Bachelors ot Soence M^or. | Mathematics 3 Graduation Date: f

Please tell us how we can contact yatL

Your home Your work
Company; |

Street: I ilitle: f

P.O.Box: | rStreet I

icity: | State: \ Zip: I iJp. O. Box: |

'Country: I Tel: | City: 1 State: | Zip:!

Email: | !Country: j Tel: !

email: j

Please tell us about yoursetf or your comments:

i^Start[|gJBeqi«tf«bow • Micnn.""

To op dale year record a the futwe,
5a LooM rtranet zone

c3B &2$PW

Fig. B1 Blank membership registration form.

90

91

3 Confirmation Page - Microsoft Internet Explorer

j £ie Edit View So Favorites Help
Back rcrt^-ard

a
Sfop Refresh Home

i -a a
Search Favorites Ha

j j Address htlp./Vserverl :8080/'seivlet/RegislerServlel zl.
3

Confirmation Page

Nusret, you are now a member.

Congratulations!

Back to mam page

! 0J Done |
jJBStart)]5yMicicreo(t Word - tegSctee... [0]Corrfinnation Page - ...

| jflg Locd intranet zone
d

6:41 PM

Fig. B2 Confirmation message after successful registration.

92

1 '3 Recoid Update - MicmmoII Inlemel EKploter pinni
Fie £o ydp : 1 ^ • i SacK *<V>3rh_ © □ (3 © Q Slcp Refresh Home Saach Fsvortet 0 § ea Htstoy Chir»Tate Fufeaeen © Mai Addrew 1# H fontt 1 1 -s

Pfease make changes to your record. Z1

Titie: [Mr 3 First Name: jNusret MX: 1 Last Name: JConk

Degree:) Bectielors of Saence jJ M^or | Mathematics ^ Graduation Date: 11986

Please tell us how we can contact you.

Your home Yourwork]
Coapany: (Food Assoc

Street: j4 Greenwocod Ave Title: [Programmer

P.O.Box: I'" Street |7 N Main St.

City: jStaiesboro State: Jga Zip: {30450 P.O.Box: |222

Country: JuSA Tel; |(912)681-6505 City: |Statesboro State: [ga Zip:|30459

|nconk<3>hotmajl com Country: |USA Tel: 1(912) 764-9991

Eaail: |fo001($ffontiemet net

Please tell us about yourself or your comments:
To update your record in the future,

I am very proud of my mathematics education at ^
d

please choose CSC
QSBrId4nC(:irik password; F

Update | Delete j Cancel |

i€] •••••,:■ l ^ —rrrm
Cock Wrartrt Tons

Hstwt||gJRecofJUpJato • Mto..- y MooroftVoid j 630PN

Fig. B3 Update form with a member information.

93

'31 Confiimation Page - Microsoft Internet Explorer

Re Edit View go Favoi^es Help ^ *
i Back

. 3 ^ £
Stop Refre^> Home

■a a
Search Favorites Ha

; j Address |^J htlp; //server 1. SOSO/servlet/UpdateServlet _ j

Confirmation Page

Your record has been updated.

Back to mam p.age

 J
;£JDone | | | [.^ Locdintfanet zone
ijiHStart []3y MjcrosdtWord ■ tegSaee.- HgjConfiimalion Page -... B:43PM

Fig. B4 Confirmation message after a successful update.

94

"3

We had a problem and can not process your request.

This userld is not in our records!

This page automatically resets.

3 Done
^9 Start I]jy Miciosoft Wwd

Lccal intranet zone
zi

jglReceipt Microsoft In.. Ic^l 6:37 PM

Fig. B5 Update function returns refusal for database access.

95

J Results Page • Miciotofl Inletnel Exploiei
Fits id £cm go Fflvortej UHo C3 . 8aci ©□(3 ©|5]0§ HSA lrt. Scop Retrtsh Hone Saoch Favonles Hsiay Chdmels FuCtcieen Mai Forts ^

~3
Search Results

FIRST
NAME degree; major orat; vr HOME HOME HOME

CITY STATE ZIP

;Mr iNusret Conk Bachelors
of Science

HOME HOME ifovnr FTV^fan W0RK

COU>"TRY TELEPHONE ^^iau.

Mathematics; 1986 GrcenwooocHll ;Statesboro;GA 30458 |USA 6^505^^^ nconk@hotiiiail com-Pood Assoc
Avt • |

 _j
£] ^ ! f f 1 ?k '-'oc^ inbanet zone

|jgJRetu»» Papa • Mkao. |yMcnw^tWcrd | "5® S:34PM

Fig. B6 Search results in a HTML table.

APPENDIX C: Application source code

■ members.html

■ search.html

■ RegisterServlet.java

■ UpdateServlet.java

■ SearchServlet.java

■ UserRegistryJdbcImpl.java

■ User Registry.Java

■ RegistryException.java

■ AlumniMember.java

96

C:\members.html 1

<!DOCTYPE HTML PUBLIC "-//IETF//DTD HTML//EN">
<html>

<head>
<meta http-equiv="Content-Type"
content= "text/html; charset=iso-8859-1 ">
<meta name="GENERATOR" content=:"Microsoft FrontPage 2.0">
<title>Home Page</title>
</head>

<body bgcolor="#CAD0C6">

<p align="center">Alumni Database </p>

<hr size="5">
<div align="center"><center>

<table border="3" width="100%">
<tr>

<td width="50%" bgcolor="#C8F2C9"><p align="center"><font
color="#008000" size="5">We are very glad that you
are visiting with us.</p>
</td>
<td width-"50%" bgcolor="#F3EDBC">Search<font
size="5"> -</strongx/fontxfont
size="5"> to
see the members.<p><font
size="5">Register - to
become a member.</p>
<table border="l" cellpadding="0" cellspacing="l"
width=" 100%" bgcolor="#EC9BDC">

<tr>
<td>Update your record. <form
act ion^ "http ://server 1:80 80/serv let/update"
method="post" name="Update">

<p>User Id:<input type="text"
size="6" name="UserId">Password:<input
type="password" size="6" name="Password"><input
type^'^ubmit" name-"Submit" value="GO"></p>

</form>
</td>

</tr>
</table>
</td>

</tr>

C :\members.html

</table>
</center></div>

<hr size="5">

<p> </p>
</body>
</html>

C:\search.html

<!DOCTYPE HTML PUBLIC "-//IETF//DTD HTML//EN">
<html>

<head>
<meta http-equiv="Content-Type"
content= "text/html; charset=iso-8859-l ">
<meta name="GENERATOR" content="Microsoft FrontPage 2.0">
<title>Search</title>
</head>

<body bgcolor="#DBDlE9">

<p align="center">Alumni Search Form</fbnt></p>

<fonn action="http://serverl :8080/servlet/search" method="POST"
name="Search">

<pre> </pre>
<div align="center"><center><table border="3" width="100%">

<tr>
<td width="100%" bgcolor="#F7FBC6"><div
align="center"><center><pre>Search for: < *

input
type="text" size="20" name="searchString"> </pre>

</center></div><div align="center"><center><pre><font
size="5">as <input
type="radio" checked name="Field" value="lastName">Last Name</ ^

strong> <input
type="radio" name="Field" value="niajorl "xfont size="4">Major < ^

input
type="radio" name="Field" value="gradDatel "xfont size^"4">Grad.year</ *

font> <input
type="radio" name="Field" value="homeCity">City</K'

pre>
</centerX/divxdiv align="center"xcenter><pre><input

type="subniit" name="Action" value="Search"> <input type="submit"
name="Action" value="Exit"></pre>

</center></ d i v></td>
</tr>

</table>
</centerX/divXpre> <!*

font></pre>
</form>
</body>
</htm]>

C ARegisterServlet.java 1

import java.net.URL;
import javax.servlet.*;
import javax.servlet.http.*;
import java.util.*;
import Java.io.*;

*

* @author Nusret Conk
* @version 1.0 April 3, 1999
*/

public class RegisterServlet extends HttpServlet

{
jif.*

* The UserRegistry implementation that provides access to a storage of users.
*/

private UserRegistry registry;
private final String servletName = "RegisterServlet";

/**

* @param stub Arguments passed by the Servlet loader
* @retum void
*!

public void init (ServletConfig config) throws ServletException

{
super.init(config);
registry = new UserRegistryJdbclmpl();

}

*

* Main service routine.
* @param request The HttpServletRequest.
* @param response The HttpServletResponse.
* @throws ServletException
* @throws lOException
*/

public void service (HttpServletRequest request, HttpServletResponse response)
throws ServletException, lOException

{
String ticket;

HttpSession session = request.getSession(true);
ticket = (String)session.getValue("ticketNo");

C :\RegisterServlet.java 2

if (ticket == null)

{

ticket = session.getld();
session.putValue("ticketNo",ticket);
String message = "Welcome to registration. Please complete all fields.";
sendRegistrationForm(request, response, message);

}
else

{
if ((request.getParameter("Action").equals("Exit")))

{
session. invalidateQ;
response. sendRedirect(7members. html");

if (!(request.getParameter("userId").equals("")) &&
!(request.getParameter("password").equals("")))

{
try

AlumniMember members[] = registry.getMember (request.getParameter("userId"));

if (members.length > 0)

{
// Duplicate
//response.sendError (HttpServletResponse.SC_INTERNAL_SERVER_ERROR ^

, "The Userld you've chosen already exist, please go back and pick another one *

■");
String message ="This usemame is assign to someone else. Please pick another ✓

username.";
sendRegistrationForm(request, response, message);

}
else

{
AlumniMember member = new AlumniMember ();

member.setuserld (request.getParameter("userId"));
member.setpassword (request.getParameter("password"));
member.settitle (request.getParameter("title"));
member.setfirstName (request.getParameter("firstName"));
member.setmiddlelnitial (request.getParameterC'middlelnitial"));

C:\RegisterServlet.java 3

member.setlastName (request.getParameter("lastName"));
member.setdegreel (request.getParameter("degree!"));
member.setmajorl (request.getParameter("majorl"));
member.setgradDatel (request.getParameter("gradDatel"));
member.setdegree2 (request.getParameter("degree2"));
member.setmajor2 (request.getParameter("major2"));
member.setgradDate2 (request.getParameter("gradDate2"));
member.sethomeStreet (request.getParameter("homeStreet"));
member.sethomePObox (request.getParameter("homePObox"));
member.sethomeCity (request.getParameter("homeCity"));
member.sethomeState (request.getParameter("homeState"));
member.sethomeZip (request.getParameter("homeZip"));
member.sethomeCountry (request.getParameter("homeCountry"));
member.sethomeTel (request.getParameter("homeTel"));
member.sethomeEmail (request.getParameter("homeEmail")),
member.setcompany (request.getParameter("company"));
member.setworkTitle (request.getParameter("workTitle"));
member.setworkStreet (request.getParameter("workStreet"));
member.setworkPObox (request.getParameter("workPObox"));
member.setworkCity (request.getParameter("workCity"));
member.setworkState (request.getParameter("workState"));
member.setworkZip (request.getParameter("workZip"));
member.setworkCountry (request.getParameter("workCountry"));
member.setworktel (request.getParameter("worktel"));
member.setworkEmail (request.getParameter("workEmail"));
member.setcomment (request.getParameter("comment"));

registry.setMember (member);
session. invalidateQ;
sendConf»Tnation(request, response);

}
}
catch (RegistryException e)

{
e.printStackTraceQ;
session. invalidateQ;

// set content type header before accessing the Writer
response. setContentType("text/htm 1");
PrintWriter out = response.getWriterQ;

// then write the response
out.println("<html>" +

"<head><title> Receipt </title>" +
"<meta http-equiv=A"refresh\" content=\"4; url=M +
"http://" + request.getHeader("Host") +

C:\RegisterServlet.java 4

"/members.html;\"></head><body bgcolor=\"#FFFFFF\">" +
"<center><hr>

 <hr>
 ");

out.println("<h3>Thank you for trying to register."+
"<p>Unfortunately, something went wrong with our database."+
"<p>Please try this again later.</h3>" +
"<p><i>This page automatically resets.</i>" +
" c/bodyx/htm 1>");

out.flushQ;
out.close();

}
}
else //missing fields

{
// Show the register page again.
String message - "Form must be completed before registration.";
sendRegistrationForm(request, response, message);

}
}//ticket check

}//end of service

private void sendRegistrationForm(HttpServletRequest req, HttpServletResponse res, String *
message)
throws ServletException, lOException

{
re s. setC ontentType("text/htm 1");
PrintWriter out = res.getWriter();
String serverName = req.getServerName();
int serverPort = req.gctServerPort();

String userld = req.getParameter("userId");
String password = req.getParameter("password");
String title = req.getParameter("title");
String firstName = req.getParameter("firstName");
String middlelnitial = req.getParameter("middleInitial");
String lastName = req.getParameter("lastName");
String degree! = req.getParameter("degreel");
String majorl = req.getParameter("majorl");
String gradDatel = req.getParameter("gradDate]");
String degree2 = req.getParameter("degree2");
String major2 = req.getParameter("major2");
String gradDate2 = req.getParameter("gradDate2");
String homeStreet = req.getParameter("homeStreet");
String homePObox = req.getParameter("homePObox");
String homeCity = req.getParameter("homeCity");
String homeState = req.getParameter("homeState");

C:\RegisterServlet.java 5

String homeZip = req.getParameter("homeZip");
String homeCountry = req.getParameter("homeCountry");
String homeTel = req.getParameter("homeTel");
String homeEmail = req.getParanieter("homeEmai]");
String company = req.getParameter("company");
String workTitle = req.getParameter("workTitle");
String workStreet = req.getParameter("workStreet");
String workPObox = req.getParameter("workPObox");
String workCity = req.getParameter("workCity");
String workState = req.getParameter("workState");
String workZip = req.getParameter("workZip");
String workCountry = req.getParameter("workCountry");
String worktel = req.getParameter("worktel");
String workEmail = req.getParameter("workEmail");
String comment = req.getParameter("comment");

f (userld == null) userld =
f (password == null) password =
f (title == null) title =
f (firstName = null) firstName =
f (middlelnitial == null) middlelnitial =
f (lastName == null) lastName =
f (degreel = null) degreel =
f (majorl == null) majorl =
f (gradDatel == null) gradDatel =
f (degree2 == null) degree2 =
f (major2 == null) major2 =
1 (gradDate2 — null) gradDate2 =
f (homeStreet == null) homeStreet =
f (homePObox == null) homePObox =
f (homeCity = null) homeCity =
f (homeState — null) homeState =
f (homeZip == null) homeZip =
f (homeCountry = null) homeCountry =
f (homeTel = null) homeTel =
f (homeEmail == null) homeEmail =
f (company = null) company =
f (workTitle — null) workTitle =
f (workStreet == null) workStreet =
f (workPObox == null) workPObox =
f (workCity = null) workCity =
f (workState — null) workState =
f (workZip == null) workZip =
f (workCountry = null) workCountry =
f (worktel = null) worktel =
f (workEmail == null) workEmail =
f (comment == null) comment =

C:\RegisterServlet.java 6

out.println("<html><head><meta http-equiv=\"Content-Type\" content=\"text/html; charset^
iso-8859-1\">"+

"<title>Registration</title></head>"+
"<body bgcolor=\"#CAD0C6\">"+
"<p align=\"center\">Alumni Registration Form</strong *

></p> "+
"<hr size=\"5\"><pre>< *

blink>" + message +
"</blink></fbnt></pre>"+
"<form action=http://" + serverName + + serverPort + "/servlet/" + servletName ^

+ " method=\"POST\" name=\"Registration\">"+
"<p>Tit]e: <select name=\"title\" size=\"l\">"+
"<option>Mr.</option><option>Mrs.</option><option>Ms.</option><option>Dr.</^

option>"+
"</select>"+
" First Name: <input type=\"text\" size=\" 17\" name=\"firstName\" value=\"" + /■

firstName + "\">,,+
" M.I.: <input type=\,,text\" size=\"2\" narne=\"middlelnitial\" value=\"" + ^

middlelnitial + ,,\">"+
" Last Name: "+
"<input type=\"text\" size=\"18\" naine=\"lastName\" value=\"" + lastNamebr

+ "\"></p>"+
"<p>Degree:<select name=\"degreel\" size=\"l\">"+
" <option>Bachelors of Science</option>"+
" <option>Masters of Science</option>"+
"</select> Major: <select name=\"majorl\" size=\"l\">"+
" <option>Mathematics</option>"+
" <option>Computer Science</option>"+
"</select> Graduation Date: <input type=\"text\" size=\"5\" name=\"gradDatel\" ^

value=\"" + gradDate 1 + "\">"+
"</p>"+
//"<p>Degree 2:<select name=\"degree2\" size=\"l\">"+
//" <option selected>Masters of Science</option>"+
//" <option>Bachelors of Science</option>"+
//"</select> Major: <select name=\"major2\" size=\"l\">"+
//" <option selected>Mathematics</option>"+
//" <option>Computer Science</option>"+
//"</se]ect> Graduation Date: <input type=\"text\" size=\"5\" name=\"gradDate2\" *

value=\"" + gradDate2 + "\"></p>"+
"<hr size=\"5\">"+
"<p>Please tell us how we can contact you.</ ^

font></p>"+
"<table border=\"3\" width=\"100%\" bgcolor=\"#00FFFF\" bordercolor=\"#0080C0 *

"<tr>"+
"<th align=\"left\" width^'^O0^" bgcolor=\"#AFEOCO\"><div align=\"center *

C:\RegisterServlet.java 7

\"><center><address>"+
"Your home </address></center></V

div></th>"+
"<td width=\"50%\" bgcolor=\"#C0C0C0\"><p align=\"center\"><font size=\"3 ^

\">Your work</stTong></p>"+
"</td>"+

"</tr>"+
"<tr>"+

"<td width-\"50%\" bgcolor=\"#AFEOCO\"><pre>"+
"Street: <input type=\"text\" size=\"25\" name=\"homeStreet\" value *

=\"" + homeStreet + "\"></pre>"+
"<pre>P.O.Box: <input type=\"text\" size=\"6\" name^

=\"homePObox\" value=\"" ■+ homePObox+ "\"></pre>"+
"<pre>City: <input type=\"text\" size=\"l 1\" name ^

=\"homeCity\" value=\"" + homeCity + "\">"+
" State:<input type=\"text\" size=\"4\" name=\"homeState\" value=\"" + ^

homeState + "\">"+
" Zip:<input type=\"text\" size=\"6\" name=\"homeZip\" value=\"" + homeZip </

+ "\"></pre>"+
"<pre>Country: <input type=\"text\" size=\"10\" ^

name=\"homeCountry\" value=\"" + homeCountry + "\">"+
" Tel: <input type=\"text\" size=\"]2\" name=\"homeTel\" value=\"" + homeTeli^

+ "\"></pre>"+
"<pre>Email: <input type=\"text\" size=\"25\" name^

=\"homeEmail\" value=\"" + homeEmail + "\"></pre>"+
"</td><td width=\"50%\" bgcolor=\"#C0C0C0\"><pre>"+
"Company: <input type=\"text\" size=\"22\" name=\"company\" value *

=\"" + company + "\"></pre>"+
"<pre>Title: <input type-\"text\" size=\"21\" name *

=\"workTitle\" value=\"" + workTitle + "\"></pre>"+
"<pre>Street <input type=\"text\" size=\"25\" name

=\"workStreet\" value=\"" + workStreet + "\"></pre>"+
"<pre>P.O.Box: <input type=\"text\" size=\"6\" namew

=\"workPObox\" value=\"" + workPObox + "\"></pre>"+
"<pre>City: <input type=\"text\" size=\"l 1\" name *

=\"workCity\" value=\M" + workCity +
"State:<input type=\"text\" size=\"4\" name=\"workState\" value=\"" + *

workState -r "\"> Zip:<input type=\"text\" size=\"6\" name=\"workZip\" valua-
=\"" + workZip + "\"></pre>"+

"<pre>Country: <input type=\"text\" size=\" 10\" ^
name=\"workCountry\" value=\"" + workCountry + "\">"+

" Tel: <input type=\"text\" size=\"12\" name=\"worktel\" value=\"" + worktel *
+ "\ "></ strong></pre> "+

"<pre>Email: <input type=\"text\" size=\"25\" namev
=\"workEmail\" value=\"" + workEmail + "\"></pre>"+

"</td>"+
"</tr></table>");

C :\RegisterServlet.java 8

out.println("<table border=\"0\" width=\"100%\">"-
"<tr>"+

"<td width=\"50%\" bgcolor=\"#ECEFC7\">Please"+
" tell us about yourself or your comments:</td>"-f
"<td width=\"50%\"> </td>"+

"</tr>"+
"<tr>"+

"<td width=\"50%\" bgcolor=\"#ECEFC7\"><textarea 1/
"+

"name=\"comment\" rows=\"3\" cols=\"48\">"+comment+"</textarea><^
font></td>"+

"<td width=\"50%\" bgcolor=\"#D39D96\"><p align=\"center\"><font size=\"3 ^
\">"+

"To update your record in the future,</p>"+
"<p align=\"center\">please choose </^

p>"+
"<div align=\"center\"><center><pre><font size=\"3\" face=\"Times New Roman *

\">"+
"user Id:"+
"<input type=\"text\" size=\"6\" name=\"userld\" valued"" + userld

+ "\">"+

"
password: "+

""+
"<input type=\"password\" size=\"6\" name=\"password\" value=\"" + password *

+ "\"></pre>"+
"</center></div></td>"+

"</tr>"+
"</table>"+
"<p align=\"center\">"+
"<input type=\"submit\" name=\"Action\" value=\"Register\">"+
"<input type=\"reset\" name=\"Reset\" value=\"Clear Form\">"+
"<input type^'^ubmi^" name=\"Action\" value=\"Exit\"></p>"+
"</form>"+
"</body>"+
"</html>");

out.flush();
out.close();

}//end of sendRegistrationForm

private void sendConfirmation(HttpServletRequest req, HttpServletResponse res)
throws ServletException, lOException

{
res.setContentType("text/html");
PrintWriter out = res.getWriterQ;
String serverName = req.getServerName();
int serverPort = req.getServerPort();

C:\RegisterServlet.java 9

String firstName = req.getParameter("firstName");

out.println("<html>"+
"<head>"+
"<title>Confirmation Page</title></head>"+
"<body bgcolor=\"#FFFFFF\">"+
"<p align=\"center\">Confirmation Page</p>"+
"<p align=\"center\">" + firstName + you are now a member. </ ^

font></p>"+
"<p align=\"center\">Congratulations!</p>"+
"<p align=\"center\"><a href=http://" + serverName + + serverPort + "/members.^

html>Back to main page</p>"^
"</body></html>");

out.flush();
out.close();

}//end of confirmation

}//end of servlet

C:\UpdateServlet.java

import Java.net.URL;
import javax.servlet.*;
import javax.servlet.http.*;
import java.util.*;
import Java.io.*;

!**

* @author Nusret Conk
* @version 1.0 April 3, 1999
*!

public class UpdateServlet extends HttpServlet

{
/**

* The UserRegistr>' implementation that provides access to a storage of users.
*/

private UserRegistry registry;
private final String servletName = "UpdateServlet";

/**

* @param stub Arguments passed by the Servlet loader
* @return void
*/

public void init (ServletConfig config) throws ServletException

{
super, init(config);
registry = new UserRegistryJdbcImplQ;

}

* Main service routine.
* @param request The HttpServletRequest.
* @param response The HttpServletResponse.
* @throws ServletException
* @throws lOException
*/

public void service (HttpServletRequest request, HttpServletResponse response)
throws ServletException, lOException

{
String ticket;

HttpSession session = request.getSession(true);
ticket = (String)session.getValue("ticketNo");

C:\UpdateServlet.java 2

if (ticket = null)
<

String userld = request.getParameter("UserId");
String userPassword = request.getParameter("Password");

if (userJd != null && userPassword != null)
f t

ticket = session.getldQ;
session.putValue("ticketNo",ticket);
try

{

AlumniMember members[] = registry.getMember (userld);

if (members.length == 1)

{
AlumniMember member = members[OJ;

if (userPassword.equals(member.getpassword()))
i \

sendUpdateFonn(request, response, member);

}
else //password did not match

{
session.invalidate();
String message = "This password is not correct.";
sendProblemMessage(request, response, message);

}

}
else if (members.length == 0)

{
session.invalidate();
String message = "This userld is not in our records!";
sendProblemMessage(request, response, message);

}
else

{
session. invalidateQ;
String message = "Please register again with a different userld.";
sendProblemMessage(request, response, message);

}
}
catch (RegistryException e)

{

C:\UpdateServlet.java 3

e.printStackTrace();
session.invalidate();
String message = "There is a problem with our database.";
sendProblemMessage(request, response, message);

}
}
else //bad userld and/or userPassword

{
session. invalidateQ;
String message = "We need your userld and password. Try again!";
sendProblemMessage(request, response, message);

*

}
else // ticket is not null

{
if (request.getParameter("Action").equals("Update"))

{
try

{
AlumniMember member - new AlumniMember ();

member.setuserld (request.getParameter("userld"));
member.setpassword (request.getParameter("password"));
member.settitle (request.getParameter("title"));
member.setfirstName (request.getParameter("firstName"));
member.setmiddlelnitial (request.getParameter("middleInitial"));
member.setlastName (request.getParameter("lastName"));
member.setdegreel (request.getParameter("degreel"));
member.setmajorl (request.getParameter("major 1"));
member.setgradDatel (request.getParameter("gradDatcl"));
member.setdegree2 (request.getParameter("degree2")):
member.setmajor2 (request.getParameter("major2"));
member.setgradDate2 (request.getParameter("gradDate2"));
member.sethomeStreet (request.getParameter("homeStreet"));
member.sethomePObox (request.getParameter("homePObox"));
member.sethomeCity (request.getParameter("homeCity"));
member.sethomeState (request.getParameterC'homeState"));
member.sethomeZip (request.getParameter("homeZip"));
member.sethomeCountry (request.getParameter("homeCountry"));
member.sethomeTel (request.getParameter("homeTel"));
member.sethomeEmail (request.getParameterC'homeEmail"));
member.setcompany (request.getParameter("company"));
member.setworkTitle (request.getParameter("workTitle"));
member.setworkStreet (request.getParameter("workStreet"));
member.setworkPObox (request.getParameter("workPObox"));
member.setworkCity (request.getParameter("workCity"));

C AUpdateServlet.java 4

member.setworkState (request.getParameter("workState"));
member.setworkZip (request.getParameter("workZip"));
member.setworkCountr>' (request.getParameter("workCountr>'"));
member.setworktel (request.getParameterC'worktel"));
member.setworkEmail (request.getParameter("workEmail"));
member.setcomment (request.getParameter("comment"));

_registry.setMember (member);
session.invalidate();
String message = "Your record has been updated.";
sendConfirmation(request, response, message);

catch (RegistryException e)

{
e.printStackTraceO;
session.invalidate();
String message = "There is a problem with update operation.";
sendProbfemMessage(request, response, message);

}
}
else if (request.getParameter("Action").equals("Delete"))

{
trv

{
String userld = request.getParameter("userId");
AlumniMember member = new AlumniMember ();
member.setuserld (userld);
_registry.deleteMember(member);
session.invalidate();
String message = "Your record has been deleted.";
sendConfirmation(request, response, message);

}
catch (RegistryException e)

{
e.printStackTrace();
session.invalidateQ;
String message = "There is a problem with delete operation.";
sendProblemMessage(request, response, message);

}
}
else

{
session.invalidateQ;
String message = "No changes are made to your record.";
sendConfirmation(request, response, message);

C:\UpdateServlet.java 5

}
{//ticket check

}//end of service

private void sendUpdateForm(HttpServletRequest req, HttpServletResponse res, ^
AlumniMember member)
throws ServletException, lOException

{
res.setContentType("text/htm]");
PrintWriter out = res.getWriterQ;
String serverName = req.getServerName();
int serverPort = req.getServerPort();

String userld = member.getuserldQ;
String password = member.getpassword();

String title = member.gettitle();
String firstName = member.getfirstName();
String middlelnitial = member.getmiddlelnitial();
String lastName = member.getlastName();
String degree 1 = member.getdegreel();
String majorl = member.getmajorlQ;
String gradDatel = member.getgradDatelQ;
String degree2 = member.getdegree2();
String major2 = member.getmajor2();
String gradDate2 = member.getgradDate2();
String homeStreet = member.gethomeStreetQ;
String homePObox = member.gethomePOboxQ;
String homeCity = member.gethomeCity();
String homeState = member.gethomeState();
String homeZip = member.gethomeZip();
String homeCountry = member.gethomeCountry();
String homeTel = member.gethomeTelQ;
String homeEmail = member.gethomeEmailQ;
String company = member.getcompany();
String workTitle = member.getworkTitle();
String workStreet = member.getworkStreetQ;
String workPObox = member.getworkPObox();
String workCity = member.getworkCity();
String workState = member.getworkState();
String workZip = member.getworkZip();
String workCountry = member.getworkCountry();
String worktel = member.getworktel();
String workEmail = member.getworkEmail();

C:\UpdateServlet.java 6

String comment = member.getcomment();

if (userld ~ null) userld =
if (password == null) password =
if (title = null) title =
if (firstName == null) firstName =
if (middlelnitial == null) middlelnitial =
if (lastName = null) lastName =
if (degree! == null) degree! =
if (majorl == null) major! =
if (gradDatel == null) gradDatel =
if (degree2 == null) degree2 =
if (major2 == null) major2 =
if (gradDate2 = null) gradDate2 =
if (homeStreet = null) homeStreet =
if (homePObox ~ null) homePObox =
if (homeCity — null) homeCity =
if (homeState = null) homeState =
if (homeZip == null) homeZip =
if (homeCountry — null) HomeCountry =
if (homeTe! = null) homeTel =
if (homeEmail == null) homeEmail =
if (company = null) company =
if (workTit'le == null) workTitle =
if (workStreet == null) workStreet =
if (workPObox == null) workPObox =
if (workCity = null) workCity =
if (workState == null) workState =
if (workZip == null) workZip =
if (workCountry == null) workCountry =
if (worktel = null) worktel =
if (workEmail = null) workEmail =
if (comment == null) comment =

out.println("<html><head><title>Record Update</title></head>"+
"<body bgcolor=\"#CAD0C6\">"+
"<p align=\"center\">Member Record Update</ «•

font></p>"+
"<hr size=\"5\">"+
"<pre><blink>" +
"Please make changes to your record.</blink></pre>"+
"<form action=http://" + serverName + + serverPort + "/servlet/" + servletName *

+ " method=\"POS'P1" name=\"Registration\">"+
"<p>Tit]e: <select name=\"title\" size=\"l\">"^
"<option selected>"+ title +"</option><option>Mr.</option><option>Mrs.</option ^

><option>Ms.</option><option>Dr.</option>"+
"</select>"+

C:\UpdateServlet.java 7

" First Name: <input type=\"text\" size=\"17\" name^'TirstNameV" value=\"" + *
firstName + "\">"+

" M.I.: <input type=\"text\" size=\"2\" name^\"middlelnitial\" valued"" + ^
middlelnitial + "\">"+

" Last Name: "+
"<input type=\"text\" size=\"18\" name=\"lastName\" value=\"" + lastName.'

+ "\"></p>"+

"<p>Degree:<select name=\"degreel\" size=\"l\">"+
" <option selected>" + degree 1 +
" <option>Bachelors of Science</option>"+
" <option>Masters of Science</option>"+
"</select> Major: <select name=\"majorl\" size=\"l\">"+
" <option selected>" + majorl +
" <option>Mathematics</option>"+
" <option>Computer Science</option>"+
"</select> Graduation Date: <input type=\"text\" size=\"5\" name=\"gradDatel\" *

value=\"" + gradDatel + "\">"+
" </p>"+
//"<p>Degree 2:<select name=\"degree2\" size=\"l\">"+
//" <option selected>Masters of Science</option>"+
//" <option>Bachelors of Science</option>"+
//"</select> Major: <select name=\"major2\" size=\"l\">"+
//" <option selected>Mathematics</option>"+
//" <option>Computer Science</option>"+
//"</select> Graduation Date: <input type=\"text\" size=\"5\" name=\"gradDate2\" *

value=\"" + gradDate2 + "\"></p>"+
"<hr size=\"5\">"+
"<p>Please tell us how we can contact you.</ *

font></p>"+
"<table border=\"3\" width^HOO0^" bgcolor=\"#00FFFF\" bordercolor=\"#0080C0 ^

\">"+

"<tr>"+
"<th align=\"left\" width=\"50%\" bgcoloi-V'tfAFEOCOV'xdiv align=\"center ^

\"><center><address> "+
"Your home </address></center></ ✓

div></th>"+
"<td width=\"50%\" bgcolor=\"#C0C0C0\"><p align=\"center\"><font size=\"3 *

\">Your work</p>"+
"</td>"+

"</tr>"+
"<tr>"+

"<td width=\"50%\" bgcolor=\"#AFEOCO\"><pre>"+
"Street: <input type=\"text\" size=\"25\" name=\"homeStreet\" value *

=\"" + homeStreet + "\"></pre>"+
"<pre>P.O.Box: <input type=\"text\" size=\"6\" namo^

=\"homePObox\" value=\"" + homePObox + "\"></pre>"+
"<pre>City: <input type-\"text\" size=\"l 1\" name *

C:\UpdateServlet.java 8

=\"homeCity\" value=\nn + homeCity + "\">"+
" State:<input type=\"text\" size=\"4\" name=\"homeState\" valued"" + ✓

homeState + "\">"+
" Zip:<input type=\"text\" size=\"6\" name=\"homeZip\" value=\"" + homeZip

+ "\"></pre>"+

"<pre>Countr>': <input type=\"text\" size=\"10\" *
name=\"homeCountry\" value=\"" + homeCountry + "\">"+

" Tel: <input type=\"tcxt\" size=\"12\" name=\"homeTel\" value=\"" + homeTel*-
+ "\"></pre>"+

"<pre>Email: <input type=\"text\" size=\"25\" name^
=\"homeEmail\" value=\"" + homeEmail + "\"></pre>"+

"</td><td width=\"50%\" bgcolor=\"#C0C0C0\"><pre><f'ont size=\"3\">"+
"Company: <input type=\"text\" size=\"22\" name=\"company\" value *

=\"" + company + "\"></stTong></pre>"+
"<pre>Title: <input type=\"text\" size=\"21\" name *

=:\"workTitle\" value=\"" + workTitle + "\"></pre>"+
"<prc>Street <input type=\"text\" size=\"25\" name z

=\"workStreet\" value=\"" + workStreet + "\"></pre>"+
"<pre>P.O.Box: <input type=\"text\" size=\"6\" namo^

=\"workPObox\" value=\"" + workPObox + "\"></pre>"+
"<pre>City: <input type=\"text\" size=\"l 1\" name *

=\"workCity\" value=\"" + workCity + "\">"+
"State:<input type=\"text\" size=\"4\" name=\"workState\" value=\"" + *

workState + "\"> Zip:<input type=\"text\" size=\"6\" name=\"workZip\" valuar
=\"" + workZip + "\"></pre>"+

"<pre>Countr>': <input type=\"text\" size=\"10\" *
name=\"workCountry\" value=\"" + workCountry + "\">"+

" Tel: <input type=\"text\" size=\"12\" name=\"worktel\" value-\"" + worktel
+ "></fon t></pre>"+

"<pre>Email: <input type=\"text\" size=\"25\" name^
=\"workEmail\" value=\"" + workEmail + "\"></pre>"+

"</td>"+
"</tr></table>");

out.println("<table border=\"0\" width=\"100o/o\">"+
"<tr>"+

"<td width=\"50%\" bgcolor=\"#ECEFC7\">Please"+
" tell us about yourself or your comments:</td>"+
"<td width=\"50%\"> </td>"+

"</tr>"+
"<tr>"+

"<td width=\"50%\" bgcolor=\"#ECEFC7\"><textarea *
"+

"name=\"comment\" rows=\"3\" cols=\"48\">"+ comment +"</textarea></strong *
></td>"+

"<td width=\"50%\" bgcolor=\"#D39D96\"><p align=\"center\"><font size=\"3 ^
\">M+

"To update your record in the future,</p>"+

C:\SearchServlet.java 1

import Java.net.URL;
import javax.servlet.*;
import javax.servlet.http.*;
import java.util.*;
import java.io.*;

*

* @author Nusret Conk
* @version 1.0 April 3, 1999
*/

public class SearchServlet extends HttpServlet

{
/**

* The UserRegistry implementation that provides access to a storage of users.
*/

private UserRegistry _registry;
private final String servletName = "SearchServlet";

/**

* @param stub Arguments passed by the Servlet loader
* @retum void
*/

public void init (ServletConfig config) throws ServletException

{
super.init(config);
_registry = new UserRegistryJdbclmplQ;

}

/**

* Main service routine - do a search.
* @param request The HttpServletRequest.
* @param response The HttpServletResponse.
* @throws ServletException
* @throws lOException
*1

public void service (HttpServletRequest request, HttpServletResponse response)
throws ServletException, lOException

{

if ((request.getParameter("Action").equals("Search")))

{
String columnName = request.getParameter("Field");

C:\SearchServlet.java i

String searchString = request.getParameter("searchString");

if (columnName != null && searchString != null)

{

trv

{'
AlumniMember membersf] = _registry.searchRegistry (columnName, searchString);

if (members.length == 0)

{
//session. invalidateQ;
String message = "Can not find matching data !";
sendProblemMessage(request, response, message);

}
else
i i

response. setContentT ype("text/htm 1");
PrintWriter out = response.getWriter();
String serverName = request.getServerNameQ;
int serverPort = request.getServerPortQ;
out.println("<html>"+

"<head>"+
"<title>Results Page</title></head>"+
"<body bgcolor=\"#FFFFFF\">"+
"<p align=\"ccnter\">Search Results</p>"+
"<TABLE><table border=\"l\" cellspacing=\"0\" width=\"100%\">");

out.println("<th>TITLE"+
"<th>FIRST NAME"+
"<th>Mr,+
"<th>LAST NAME"+
"<th>DEGREE "+
"<th>MAJOR "+
"<th>GRAD.YR"+
//"<th>DEGREE2"+
//,,<th>M AJOR2 "+
//"<th>GRAD.YR"+
"<th>HOME STREET"+
"<th>HOME P.O. BOX"+
"<th>HOME CITY"+
"<th>HOME STATE"+
"<th>HOME ZIP"+
"<th>HOME COUNTRY"+
"<th>HOME TELEPHONE'-
"<th>HOME EMAIL "+
"<th>WORK COMPANY ,,J-

C:\RegisterServlet.java 3

member.setlastName (request.getParameter("lastName"));
member.setdegree 1 (request.getParameterC'degreel"));
member.setmaj or 1 (request.getParameter("majorl"));
member.setgradDatel (request.getParameter("gradDatel"));
member.setdegree2 (request.getParameter("degree2"));
member.setmajor2 (request.getParameter("major2"));
member.setgradDate2 (request.getParameter("gradDate2"));
member.sethomeStreet (request.getParameter("homeStreet"));
member.sethomePObox (request.getParameter("homePObox"));
member.sethomeCity (request.getParameter("homeCity"));
member.sethomeState (request.getParameter("homeState"));
member.sethomeZip (request.getParameter("homeZip"));
member.sethomeCountry (request.getParameterC'homeCountry"));
member.sethomeTel (request.getParameter("homeTel"));
member.sethomeEmail (request.getParameter("homeEmail"));
member.setcompany (request.getParameter("company"));
member.setworkTitle (request.getParameter("workTitle"));
member.setworkStreet (request.getParameter("workStreet"));
member.setworkPObox (request.getParameter("workPObox"));
member.setworkCity (request.getParameter("workCity"));
member.setworkState (request.getParameter("workState"));
member.setworkZip (request.getParameter("workZip"));
member.setworkCountry (request.getParameter("workCountry"));
member.setworktel (request.getParameter("worktel"));
member.setworkEmail (request.getParameter("workEmail"));
member.setcomment (request.getParameter("comment"));

_registry.setMember (member);
session. invalidateQ;
sendConrirmation(request, response);

}
}
catch (RegistryException e)

{
e.printStackTraceQ;
session. invalidateQ;

// set content type header before accessing the Writer
response.setContentType("text/html");
PrintWriter out = response.getWriter();

// then write the response
out.printLn("<htmI>" +

"<head><title> Receipt </title>" +
"<meta http-equiv;=\"refresh\" content=\"4; url=" +
"http://" + request.getHeader("Host") +

C ARegisterServlet.java 4

"/members.html;\"></head><body bgcolor=\"#FFFFFF\">" +
"<center><hr>

 <hr>
 ");

out.println("<h3>Thank you for trying to register."+
"<p>Unfortunately, something went wrong with our database."+
"<p>Please try this again later.</h3>" +
"<p><i>This page automatically resets.</i>" +
"</body></html>");

out.flush();
out.close();

}
}
else //missing fields

{
// Show the register page again.
String message = "Form must be completed before registration.";
sendRegistrationForm(request, response, message);

}
}//ticket check

}//end of service

private void sendRegistrationForm(HttpServletRequest req, HttpServletResponse res. String *
message)
throws ServletException, lOException

{
res.setContentType("text/html");
PrintWriter out = res.getWriterQ;
String serverName = req.getServerNameQ;
int serverPort = req.getServerPort();

String userld = req.getParameter("userId");
String password = req.getParameter("password");
String title = req.getParameter("title");
String firstName = req.getParameter("firstName");
String middlelnitial = req.getParameter("middleInitial");
String lastName = req.getParameter("lastName");
String degreel = req.getParameter("degreel");
String majorl = req.getParameter("majorl");
String gradDatel = req.getParameterC'gradDatel");
String degree2 = req.getParameter("degree2");
String major2 = req.getParameter("major2");
String gradDate2 = req.getParameter("gradDate2");
String homeStreet = req.getParameter("homeStreet");
String homePObox = req.getParameter("homePObox");
String homeCity = req.getParameter("homeCity");
String homeState = req.getParameter("homeStateM);

C:\RegisterServlet.java 5

String homeZip = req.getParameter("homeZip");
String homeCountry = req.getParameter("homeCountry");
String homeTel = req.getParameter("homeTel");
String homeEmail = req.getParameterC'homeEmail");
String company = req.getParameter("company");
String workTitle = req.getParameter("workTitle");
String workStreet = req.getParameter("workStreet");
String workPObox = req.getParameter("workPObox");
String workCity = req.getParameter("workCity");
String workState = req.getParanieter("workState");
String workZip = req.getParameter("workZip");
String workCountry = req.getParameter("workCountry");
String worktel = req.getParameter("worktel");
String workEmail = req.getParameter("workEmail");
String comment = req.getParameter("comment");

f (userld = null) userld =
f (password = null) password =
f (title = null) title =
f (flrstName = null) firstName =
f (middlelnitial = null) middlelnitial =
f (lastName = null) lastName =
f (degreel — null) degreel =
f (major 1 = null) majorl =
f (gradDatel = null) gradDatel =
f (degree2 == null) degree2 =
f (major2 = null) major2 =
f (gradDate2 = null) gradDate2 =
f (homeStreet = null) homeStreet =
f (homePObox = null) homePObox =
f (homeCity = null) homeCity =
f (homeState = null) homeState =
f (homeZip = null) homeZip =
f (homeCountry = null) homeCountry =
f (homeTel = null) homeTel =
f (homeEmail = null) homeEmail =
f (company = null) company =
f (workTitle = null) workTitle =
f (workStreet = null) workStreet =
f (workPObox = null) workPObox =
f (workCity = null) workCity =
f (workState = null) workState =
f (workZip = null) workZip =
f (workCountry = null) workCountry =
f (worktel = null) worktel =
f (workEmail = null) workEmail =
f (comment = null) comment =

C:\RegisterServlet.java 6

out.println("<htm]><head><meta http-equiv—\"Content-Type\" content=\"text/html; charset^
iso-8859-l\">"+

"<title>Registration</title></head>"+
"<body bgcolor=\"#CAD0C6\">"+
"<p align=\"center\"><stTong>Alumni Registration Form</fon[t></p>"+
"<hr size=\"5\"><pre>< ^

blink>" + message +

"</blink></pre> "+
"<form action=http://" + serverName + + serverPort + "/servlet/" + servletName

+ " method=\"POST\" name=\"Registration\">"+
"<p>Title: <select name=\"title\" size=\"l\">"+

"<option>Mr.</option><option>Mrs.</option><option>Ms.</option><option>Dr.<A^
option>"+

"</select>"+
" First Name: <input type=\"text\" size=\"l 7\" name=\"firstName\" value=\"" + ^

firstName + ,1\">"+
" M.I.: <input type=\"text\" size=\"2\" name=\"middlelnitia]\" value=\"" + *

middlelnitial + "\">"+
" Last Name: "+
"<input type=\"text\" size=\"18\" name=\"lastName\" value=\"" + lastName^

+ "\"></p>"+

"<p>Degree:<select name=\"degreel\" size=\" 1 \">"+
" <optior»Bachelors of Science</option>"+
" <option>Masters of Science</option>"+
"</select> Major: <select name=\"majorl\" size=\"l\">"+
" <option>Mathematics</option>"+
" <option>Computer Science</option>"+
"</select> Graduation Date: <input type=\"text\" size=\"5\" name-\"gradDatel\" *

va]ue=\"" + gradDatel + "\">"+
"</p>"+
//"<p>Degree 2:<select name=\"degree2\" size=\"l\">"+
//" <option selected>Masters of Science</option>M+
//" <option>Bachelors of Science</option>"+
//"</select> Major: <select name-\"major2\" size=\"l\">"+
//" <option selected>Mathematics</option>"+
I!" <option>Computer Science</option>"+
//"</select> Graduation Date: <input type=\"text\" size=\"5\" name=\"gradDate2\" ^

value=\"" + gradDate2 + "\"></p>"+
"<hr size=\"5\">"+
"<p>Please tell us how we can contact you.</ *

font></p>"+
"<table border=\"3\" width=\"100%\" bgcolor=\"#00FFFF\" bordercolor=\"#0080C0 ^

\">"+

"<tr>"+
"<th align=\"left\" width=\"50%\" bgcolor=\"#AFEOCO\"><div align=\"center *

C:\RegisterServlet.java 7

\"><center><address>"+
"Your home </address></center></ ^

div></th>"+
"<td width=\"50%\" bgco]or=\"#C0C0C0\"><p align=\"center\"><font size-\"3 ^

\"><stTong>Y our work</p>"+
"</td>"+

"</tr>"+
"<tr>"+

"<td width=\"50%\" bgcolor=\"#AFEOCO\"><pre>"+
"Street: <input type=\"text\" size=\"25\" name=\"homeStreet\" value e

=\"" + homeStreet + "\"></pre>"+
"<pre>P.O.Box: <input type=\"text\" si2e=\"6\" namev

=\"homePObox\" valued"" + homePObox + "\"></pre>"+
"<pre>City: <input type=\"text\" size=\"l 1\" name *

=\"homeCity\" value=\"" + homeCity + "\">"+
" State:<input type=\"text\" size=\M4\" name=\"homeState\" value=\"" +

homeState + "\">"+
" Zip:<input type=\"text\" size=\"6\" name=\"homeZip\" value=\"" + homeZip *

+ "\"></pre>"+

"<pre>CountTy: <input type=\"text\" size=\"10\" ^
name=\"homeCountry\" value=\"" + homeCountry + "\">"+

" Tel: <input type=\"text\" size=\"12\" name=\"homeTel\" value=\"" + homeTel*r
+ "\"></pre>"+

"<pre>Email: <input type=\"text\" size=\"25\" name^
=\"homeEmail\" value=\"" + homeEmail + "\"></pre>"+

"</td><td width=\"50%\" bgcolor=\"#C0C0C0\"><pre>"+
"Company: <input type=\"text\" size=\"22\" name=\"company\" value

=\"" + company + "\"></pre>"+
"<pre>Title: <input type=\"text\" size=\"21\" name ^

=\"workTitle\" value=\"" + worklitle + "\"></pre>"+
"<pre>Street <input type=\"text\" size=\"25\" name ✓

=\"workStreet\" value=\"" + workStreet + "\"></pre>"+
"<pre>P.O.Box: <input type=\"text\" size=\"6\" nama^

=\"workPObox\" value=\"" + workPObox + M\"></pre>"+
"<pre>City: <input type=\"text\" size=\"l 1\" name *

=\"workCity\" value=\"" + workCity +
"State:<input type-\"text\" size=\"4\" name=\"workState\" value=\"" + ^

workState + "\"> Zip:<inputtype=\"text\" size=\"6\" name=\"workZip\" valuar
=\"" + workZip + "\"></pre>"+

"<pre>Country: <input type=\"text\" size=\" 10\" ^
name=\"workCountry\" value=\"" + workCountry + "\">"+

" Tel: <input type=\"text\" size=\" 12\" name=\"worktel\" value=\"" + worktel ✓
+ "\"></fbnt></pre>"+

"<pre>Email: <input type=\"text\" size=\"25\" namtv
=\"workEmail\" value=\"" + workEmail + "\"></pre>"+

M</td>"+
"</tr></table>");

C:\RegisterServlet.java 8

out.println("<table border=\"0\" width=\"100%\">"+
"<tr>"+

"<td width=\"50%\" bgcolor=\"#ECEFC7\">Please"+
" tell us about yourself or your comrnents:</td>"+
"<td width=\"50%\"> </td>"+

"</tr>"+
"<tr>"+

"<td width=\"50%\" bgcolor=\"#ECEFC7\"><textarea *
"+

"name=\"comment\" rows=\"3\" cols=\"48\">"+comment+"</textarea><^
font></td>"+

"<td width=\"50%\" bgcolor=\"#D39D96\"><p align=\"center\"><font size=\"3 *
\">"+

"To update your record in the future,</p>"+
"<p align=\"center\">please choose </✓

p>"+
"<div align=\"center\"><center><pre><font size=\"3\" face=\"Times New Romans

\">"+

"user Id:"+
"<input type=\"text\" size=\"6\" name=\"userld\" value=\"" + userld y?

+ "\">"+

" *
password: "+

""+
"<input type=\"password\" size=\"6\" name=\"password\" value=\"" + password *

+ "\"></pre>"+

"</center></div></td>"+
"</tr>"+

"</table>"+
"<p align=\"center\">"+
"<input type=\"submit\" name=\"Action\" value=\"Register\">"+
"<input type=\"reset\" name=\"Reset\" value=\"Clear Fonn\">"+
"<input type=\"submit\" name=\"Action\" value=\"Exit\"></p>"+
"</form>"+
"</body>"+
"</html>");

out.flush();
out.closeQ;

}//end of sendRegistrationForm

private void sendConfirmation(HttpServletRequest req, HttpServletResponse res)
throws ServletException, lOException

{
res. setContentT ype("text/html");
PrintWriter out = res.getWriterQ;
String serverName = req.getServerName();
int serverPort = req.getServerPortQ;

C:\UpdateServlet.java 9

"<p align-\"center\">plea.se choose </
p>"+

"<div align^\"center\"><center><pre><font size=\"3\" face=\"Times New Roman
\">"+

"user Id:"+
"<input type::=\"text\" size=\"6\" name=\"userld\" va]ue=\"" i- userld

+ "\»>"+

"
password: "+

"" t-
"<input type=\"password\" size=\"6\" name=\"password\" value=\"" + password i

+ "\"></pre>"+

"</center></div></td>"+
"</tr>"+

"</table>"+
"<p align^V'centerV'xfont size=\"3\">"+
"<input type=\"submit\" name=\"Action\" value=\"Update\">"+
"<input type=\"submit\" name=\"Action\" value=\"Delete\">"+
"<input type=\"submit\" name=\"Action\" value=\"Cancel\"></p>"+
"</form>"+
"</body>"+
"</html>");

out.flush();
out.close();

}//end of sendUpdateForm

private void sendConfinnation(HttpServletRequest req, HttpServletResponse res. String »
message)
throws ServletException, lOException

/ •
res.setContentType("text/html");
PrintWriter out = res.getWriterQ;
String serverName = req.getServerName();
int serverPort = req.getServerPortQ;
String userld = req.getParameter("UserId");

out.println("<html>"+
"<head>"+
"<title>Confirmation Page</title></head>"+
"<body bgcolor=\"#FFFFFF\">"+
"<p align=\"center\">Confirmation Page</p>"+
"<p align:=\"center\">" + message + "</p>"+
"<p align=\"center\"><a href=http://" + serverName + + serverPort + "/members, i.

html>Back to main page</p>"+
"</body></html>");

out.flush();

C:\UpdateServlet.java 10

out.close();
}//end of confirmation

private void sendProblemMessage(HttpServletRequest req, HttpServletResponse res, String *
message)
throws ServletException, lOException

{
// set content type header before accessing the Writer
res.setContentType("text/html");
FrintWriter out =■ res.getWriter();

// then write the response
out.println("<html>" +

"<head><title> Receipt </title>" +
"<meta http-equiv=\"refresh\" content=\"4; url=" +
"http://" + req.getHeader("Host") +
"/members.html;\"></head><body bgcolor=\"#FFFFFF\">" +
"<center><hr>

 <hr>
 ");

out.println("<h3>We had a problem and can not process your request."+
"<p>" + message + "</h3>" +
"<p><i>This page automatically resets.</i>" +
" </body></htm 1>");

out.flush();
out.close();

}//end of scndProblemMessage

}//end of servlet

C:\SearchServlet.java 3

"<th>TITLE "+
"<th>WORK STREET "+
"<th>WORK P.O. BOX "+
"<th>WORK CITY"+
"<th>WORK STATE"+
"<th>WORK ZIP"+
"<th>WORK COUNTRY"+
"<th>WORK TELEPHONE"+
"<th>WORK EMAIL "+
"<th>COMMENTS </th>");

for (int i = 0; i < members.length; 1++)

{
out.println("<TR>");
out.println("<TD>" + members[i].gettitle());
out.println("<TD>" + members[i].getfirstName());
out.println("<TD>" + members[i].getmiddlelnitial());
out.println("<TD>" + members[i].getlastName());
out.println("<TD>" + members[i].getdegreel());
out.println("<TD>" + members[i].getmajorl());
out.println("<TD>" + members[i].getgradDatel());
//out.println("<TD>" + members[i].getdegree2());
//out.println("<TD>" + members[i].getmajor2());
//out.println("<TD>" + members[iJ.getgradDate2());
out.println("<TD>" + members[i].gethomeStreet());
out.println("<TD>" + members[i].gethomePObox());
out.println("<TD>" + members[i].gethomeCity());
out.println("<TD>" + members[i].gethomeState());
out.println("<TD>" + members[i].gethomeZip());
out.println("<TD>" + members [i].gethomeCountry());
out.println("<TD>" + members[i].gethomeTel());
out.println("<TD>" + members[i].gethomeEmail());
out.println("<TD>" + members[i].getcompany());
out.println("<TD>" + members[i].getworkTitle());
out.println("<TD>" + members[i].getworkStreet());
out.println("<TD>" + members[iJ.getworkPObox());
out.println("<TD>" + members[i].getworkCity());
out.println("<TD>" + members[i].getworkState());
out.println("<TD>" + members[i].getworkZip());
out.println("<TD>" + members[i].getworkCountry());
out.println("<TD>" + members[i].getworktel());
out.println("<TD>" + members[i].getworkEmail());
out.println("<TD>" + members[i].getcomment());

}
out.println("</TABLE><HR WIDTH= 100%>"+

C:\SearchServlet.java 4

"<p align=\"center\"><a href=http://" + serverName + + serverPort + "/*•
search.html>Try again</p>"+

"<p align=\"center\"><a href=http://" + serverName + + serverPort + "/*•
members.html>Exit</p>"+

"</body></html>");
out.flush();
out.close();

}
}
catch (RegistryException e)

{
e.printStackTraceQ;
String message = "There is a problem with our database ";
sendProblemMessage(request, response, message);

}
}
else //no search data was entered

{
//session. invalidateQ;
String message = "You did not enter any data to search. Try again!";
sendConfirmation(request, response, message);
// need to go back to search servlet

}
}
else // exit requested

{
response.sendRedirectC'/members.html");

}

}//end of service

private void sendConfirmation(HttpServletRequest req, HttpServletResponse res. String *
message)
throws ServletException, lOException

{
res. setContentT ype("text/htm 1");
PrintWriter out = res.getWriter();
String serverName = req.getServerName();
int serverPort = req.getServerPort();

out.println("<html>"+
"<head>"+
"<title>Confirmation Page</title></head>"+
"<body bgcolor=\"#FFFFFF\">"+

C:\SearchServlet.java 5

"<p align=\"center\">Conrirmation Page</p>"+
"<p align=\"center\">" + message + "</p>"+
"<p align=\"center\"><a href=http://" + serverName + + serverPort + "/search. *

html>Try again</p>"+
"<p align=\"center\"><a href=http://" + serverName + + serverPort + "/members.^

html>Exit</p>"+
"</body></html>");

out.flushQ;
out.close();

}//end of confirmation

private void sendProblemMessage(HttpServletRequest req, HttpServletResponse res, String
message)
throws ServletException, lOException

{
// set content type header before accessing the Writer
res. setContentType("text/htm 1");
PrintWriter out = res.getWriterQ;

// then write the response
out.println("<html>" +

"<head><title> Problem </title>" +
"<meta http-equiv=\"refresh\" content=\"4; url=" +
"http://" + req.getHeader("Host") +
"/members.html;\"></head><body bgcolor=\"#FFFFFF\">" +
"<center><hr>

 <hr>
 ");

out.println("<h3>Sorry, we can not process your request."+
"<p>" + message + "</h3>" +
"<p><i>This page automatically resets.</i>" +
" </body></htm 1>");

out.flush();
out.close();

}//end of sendProblemMessage

}//end of servlet

C:\UserRegistryJdbcImpl.java 1

/**

* Implementation of the UserRegistry.
*/

import java.util.*;
import java.sql.*;

public class UserRegistryJdbcImpl implements UserRegistry

{

* Name of Table entries are queried from.
*/

final static private String driver = "sun.jdbc.odbc.JdbcOdbcDriver";
final static private String user =
final static private String _pass =
final static private String _url = "jdbc:odbc:members";

* Database Connection.
*7

static private Properties dbProperties = null;
static private Driver JdbcDriver = null;
static private Connection _db = null;

/**

* Insert and Update statements
*/

static private PreparedStatement _insertStatement;
static private PreparedStatement update Statement;
static private PreparedStatement queryStatement;
static private PreparedStatement _deleteStatement;
static private PreparedStatement searchStatement;

/**

* search query
*/

static private String query;

/**

* Initialize driver. We do this here so that we only have
* one driver to use for all instances of this class.
*/

static

{

C:\UserRegistryJdbcImpl.java

try

{
JdbcDriver = (Driver)Class.forName (driver).newlnstance();

dbProperties = new PropertiesQ;
_dbProperties.put ("user", user);
_dbProperties.put ("password", _pass);
_init();

}
catch (Exception e)

{
e. printStackTraceQ;

*
}

*

* Returns an array of found AlumniMcmbers
* @param userld Search text.
* @return AlumniMember[] Array AlumniMembers instances found in the database.
* @throws RegistryException Error occured in database.
*!

public AlumniMember[] getMember (String Userld) throws RegistryException

{
Vector members = new VectorQ;
String sql;
ResultSet r = null;
Statement statement = null;

synchronized (jdbcDriver)

{
try

{
// Check to see if the database connection
// is still open, if not re-open,
if (_db.isClosed ())

{
initQ;

\ s

// Now, lets do the query.
AlumniMember member;
queryStatement.setString (1, Userld);

r = queryStatement.executeQueryQ;
while (r.nextQ)

{
member = new AlumniMember ();

member.setuserld (r.getString ("USERID"));

C:\UserRegistryJdbcImpl.java 3

member.setpassword (r.getString ("PASSWORD"));
member.settitle (r.getString ("TITLE"));
member.setfirstName (r.getString ("FIRSTNAMF"));
member.setmiddlelnitial (r.getString ("MIDDLEINITIAL"));
member.setlastName (r.getString ("LASTNAME"));
member.setdegreel (r.getString ("DEGREE1"));
member.setmajorl (r.getString ("MAJOR!"));
member.setgradDatel (r.getString ("GRADDATE1"));
member.setdegree2 (r.getString ("DEGREE2"));
member.setmajor2 (r.getString ("MAJOR2"));
member.setgradDate2 (r.getString ("GRADDATE2"));
member.sethomeStreet (r.getString ("HOMESTREET"));
member.sethomePObox (r.getString ("HOMEPOBOX"));
member.sethomeCity (r.getString ("HOMECITY"));
member.sethomeState (r.getString ("HOMESTATE"));
member.sethomeZip (r.getString ("HOMEZIP"));
member.sethomeCountry (r.getString ("HOMECOUNTRY"));
member.sethomeTel (r.getString ("HOMETEL"));
member.sethomeEmail (r.getString ("HOMEEMAIL"));
member.setcompany (r.getString ("COMPANY"));
member.setworkTitlc (r.getString ("WORKTITLE"));
member.setworkStreet (r.getString ("WORKSTREET"));
member.setworkPObox (r.getString ("WORKPOBOX"));
member.setworkCity (r.getString ("WORKCITY"));
member.setworkState (r.getString ("WORKSTATE"));
member.setworkZip (r.getString ("WORKZIP"));
member.setworkCountry (r.getString ("WORKCOUNTRY"));
member.setworktel (r.getString ("WORKTEL"));
member.setworkEmail (r.getString ("WORKEMA1L"));
member.setcomment (r.getString ("COMMENT"));

memberclearChangedQ;
members.addElement (member);

}
}
catch (SQLException e)

{
//throw new RegistryException (e.getMessageQ);
throw new RegistryException ("error in getMember");

}
finally

{
try

{
_queryStatement.clearParameters();

}
catch (SQLException e)

C:\UserRegistryJdbcImpl.java 4

{
e.printStackTrace();

}
try
> i

if (r != null)

{
r.closeQ;

» >
}
catch (SQLException e)

{
e.printStackTrace();

}
try

{
if (_db !- null)

{
_db.close();

} ~
}
catch (SQLException e)

{
e.printStackTraceQ;

}
}

}
AlumniMember memberArray[] = new AlumniMember[members.size()J;
members.copylnto (memberArray);
return memberArray;

* Adds a member to the database.
* @param member The AlumniMember to add/replace.
* @retum AlumniMember The original value of the member or null if
* it didn't exist.
* @throws RegistryException
*/

public AlumniMember setMember (AlumniMember member) throws RegistryException

{
AlumniMember hold[];
AlumniMember oldMember = null;
ResultSet results = null;
PreparedStatemcnt statement = null;

// See if member exists

C:\UserRegistryJdbcImpl.java 5

hold = getMember (member.getuserld());

synchronized (_jdbcDriver)

{
try
{

// Check to see if the database connection
// is still open, if not re-open,
if (_db.isClosed ())

{
_init();

}
int resultCode;

// We've found an existing member, so keep it because
// we return the old value. Also, we must do an update
// not an insert,
if (hold.length = 1)

oldMember = hold|0];

updateStatement.setStr ng 31
updateStatement.setStr ng 1,
updateStatement.setStr ng 2,

updateStatement.setStr ng 3,
updateStatement.setStr ng 4,
updateStatement.setStr ng 5,
updateStatement.setStr ng 6,

_updateStatement.setStr ng 7,
updateStatement.setStr ng 8,
updateStatement.setStr ng 9,
updateStatement.setStr ng 10
updateStatement.setStr ng 11
updateStatement.setStr ng 12
updateStatement.setStr ng 13
updateStatement.setStr ng 14
updateStatement.setStr ng 15

_updateStatement.setStr ng 16
updateStatement.setStr ng 17
updateStatement.setStr ng 18
updateStatement.setStr ng 19

_updateStatement.setStr ng 20
_updateStatement.setStr ng 21
_updateStatement. setStr ng 22
_updateStatement.setStr ng 23
_updateStatement.setStr ng 24

updateStatement.setStr ng 25

, member.getuserld());
member.getpasswordO);
member.gettitle());
member.getfirstName());
member.getmiddlelnitialO);
member.getlastNameO);
member.getdegree 1 ());
member.getmajor1());
member.getgradDate 1 ());
member.getdegree2());
, member.getmajor2());
, member.getgradDate2());
, member.gethomeStreet());
, member.gethomePOboxO);
, member.gethomeCityO);
, member.gethomeState());
, member.gethomeZipO);
, member.gethomeCountryO);
, member.gethomeTelO);
, member.gethomeEmailO);
, member.getcompanyO);
, member.getworkTitleO);
, member.getworkStreet());
, member.getworkPObox());
, member.getworkCityQ);
, member.getworkState());

C:\UserRegistryJdbcImpl.java 6

_updateStatement.setString (26, member.getworkZipQ);
updateStatement.setString (27, member.getworkCountry());
updateStatement.setString (28, member.getworktelQ):
updateStatement.setString (29, member.getworkEmail()):

_updateStatement.setString (30. member.getcomment());

}

statement = updateStatement;
resultCode = statement.executeUpdateO;

// No existing member, so do
else if (hold.length == 0)

{
insertStatement.setString
insertStatement.setString
insertStatement.setString

InsertStatement.setString
insertStatement.setString
insertStatement.setString

_insertStatement.setString
_insertStatement.setString

insertStatement.setString
insertStatement.setString
insertStatement.setString

_insertStatement.setString
_insertStatement.setString

insertStatement.setString
insertStatement.setString
insertStatement.setString
insertStatement.setString

_insertStatement.setString
_i n sert Statem ent. setStr i ng

insertStatement.setString
insertStatement.setString
insertStatement.setString

_insertStatement.setString
insertStatement.setString
insertStatement.setString
insertStatement.setString

InsertStatement.setString
InsertStatement.setString
InsertStatement.setString

insertStatement.setString
insertStatement.setString

an insert.

member.getuserldQ);
member.getpassword());

3, member.gettitle());
4, membergetfirstNameQ);
5, member.getmiddlelnitial());
6, member.getlastName());
7, member.getdegreel());
8, member.getmajorl());
9, membengetgradDatelQ);
10, member.getdegree2());
11, member.getmajor2());
12, member.getgradDate2());
13, member.gethomeStreet());
14, member.gethomePObox());
15, member.gethomeCityO);
16, member.gethomeStateQ);
17, member.gethomeZip());
18, member.gethomeCountry());
19, member.gethomeTel());
20, member.gethomeEmailQ);
21, member.getcompany());
22, member.getworkTitleQ);
23, member.getworkStreet());
24, member.getworkPOboxO);
25, member.getworkCityO);
26, member.getworkStateQ);
27, member.getworkZip());
28, member.getworkCountryO);
29, member.getworktel());
30, member.getworkEmailQ);
31, member.getcommentQ);

statement = insertStatement;
resultCode = statement.executeUpdate ();

C:\UserRegistryJdbcImpl.java 7

// More then one member with the given user id is in the
// database - this should never happen if we are
// using user id as a unqiue key.
else

{
throw new RegistryException ("Duplicate Userld!");

}

// Problem occured while doing the update/insert,
if (resultCode == -1)

{
throw new RegistryException ("Result Code: " + resultCode);

}
}
catch (SQLException e)

{
String s = e.getMessage();
throw new RegistryException (e.getMessageQ);

}
finally

{
if (statement != null)

{
try

{
statement.clearParameters();

}
catch (SQLException e)
i i

e.printStackTrace();

}
}
try

{
if (_db != null)

{
_db.close();

x

}
catch (SQLException e)

{
e. prints tackTraceQ;

}
<

}

C:\UserRegistryJdbcImpl.java 8

return oldMember;
I I

/**

* Deletes a member from the database.
* @param member The AlumniMember to delete.
* @retum AlumniMember The original value of the member or null if
* it didn't exist.
* @throws RegistryException
*/

public AlumniMember deleteMember (AlumniMember member) throws RegistryException

{
AlumniMember hold[];
AlumniMember oldMember = null;
ResultSet results = null;
PreparedStatement statement = null;

// See if member exists
hold = getMember (member.getuserld());

synchronized (_jdbcDriver)

{
try

{
// Check to see if the database connection
// is still open, if not re-open,
if (db.isClosed ())

{
_init();

}
int resultCode;

// We've found an existing member, so keep it because
// we return the old value. Also, we must do an update
// not an insert,
if (hold.length == 1)
f i

oldMember = hold[0];

_deleteStatement.setString (1, member.getuserld());
statement = deleteStatement;
resultCode = statement. executeUpdateQ;

}

// More then one member with the given user id or record is not
// available for delete.
else

C :\U serRegistryJdbdmpI .java 9

{
throw new RegistryException ("Duplicate or unavailable userld!");

}
catch (SQLException e)

{
String s = e.getMessage();
throw new RegistryException (e.getMessageQ);

}
finally

{
if (statement != null)

{
try

{
statement.clearParameters();

}
catch (SQLException c)

{
e.printStackTrace();

}
}
try

{
if (_db != null)

{
_db.close();

}
}
catch (SQLException e)

{
e.printStackTrace();

}
}

}
return oldMember;

}

/**

* Searches the database with a given column name and a string.
* @param columnName
* @param search String
* @retum the array of members with matching criteria.
* @throws RegistryException
*/

public AlumniMemberf] searchRegistry (String columnName, String searchString) throws *

C:\UserRegistryJdbcImpl.java 10

Regi stryException

{
Vector members = new Vector();
ResultSet r = null;
PreparedStatement statement = null;

synchronized (JdbcDriver)

{
try

{
query = "select * from UTH where (" + columnName + " like + searchString +

// Check to see if the database connection
// is still open, if not re-open,
if (db.isClosed ())

{
JnitQ;

}

// Now, lets do the query.
AlumniMember member;

_searchStatement = db.prepareStatement (query);

r = _searchStatement.executeQuery();

while (r.nextQ)

{
member = new AlumniMember ();

member.setuserld (nullToString(r.getString ("USERID")));
member.setpassword (nullToString(r.getString ("PASSWORD")));
member.settitle (nullToString(r.getString ("TITLE")));
member.setfirstName (nullToString(r.getString ("FIRSTNAME")));
member.setmiddlelnitial (nullToString(r.getString ("MIDDLEINITIAL")));
member.setlastName (nullToString(r.getString ("LASTNAME")));
member.setdegreel (nuHToString(r.getString ("DEGREE!")));
member.setmajorl (nulIToString(r.getString ("MAJOR1")));
member.setgradDatel (nullToString(r.getString ("GRADDATE1")));
member.setdegree2 (nullToString(r.getString ("DEGREE2")));
member.setmajor2 (nullToString(r.getString ("MAJOR2")));
member.setgradDate2 (nullToString(r.getString ("GRADDATE2")));
member.sethomeStreet (null l oString(r.getString ("HOMESTREET")));
member.sethomePObox (nullToString(r.getString ("HOMEPOBOX")));
member.sethomeCity (nullToString(r.getString ("HOMECITY")));
member.sethomeState (nullToString(r.getString ("HOMESTATE")));
member.sethomeZip (nullToString(r.getString ("HOMEZIP")));

C:\UserRegistryJdbcImpl.java 11

member.sethomeCountry (nullToString(r.getString ("HOMECOUNTRY")));
member.sethomeTel (nullToString(r.getString ("HOMETEL")));
member.sethomeEmail (nullToString(r.getString ("HOMEEMAIL")));
member.setcompany (nulIToString(r.getString ("COMPANY")));
member.setworkTitle (nullToString(r.getString ("WORKTITLE"))):
member.setworkStreet (nullToString(r.getString ("WORKSTREET")));
member.setworkPObox (nulIToString(r.getString ("WORKPOBOX")));
member.setworkCity (nullToString(r.getString ("WORKCITY")));
member.setworkState (nullToString(r.getString ("WORKSTATE")));
member.setworkZip (nuIlToString(r.getString ("WORKZIP")));
member.setworkCountry (nunToString(r.getString ("WORKCOUNTRY")));
member.setworktel (nullToString(r.getString ("WORKTEE")));
member.setworkEmail (nullToString(r.getString ("WORKEMAIL")));
member.setcomment (nullToString(r.getString ("COMMENT")));

member.clearChanged();
members.addElement (member);

}

}
catch (SQLException e)

{
String s = e.getMessageQ;
throw new RegistryException (e.getMessageQ);

}
finally

{
try

{
searchStatement. c 1 earParameter s();

}
catch (SQLException e)

{
e.printStackTraceQ;

}
try

{
if (r != null)

{
r.closeQ;

}
}
catch (SQLException e)

{
e .printStackT race();

}

C; \U serReg i stry J dbcl m pi .j ava 12

try

{
if (_db != null)
/ i

_db.close();

}
}
catch (SQLException e)

I
e.printStackTrace();

}
i

}
AlumniMember memberArray[] = new AlumniMember[members.size()];
members.copylnto (memberArray);
return memberArray;

}
*

* Convience method to initalize the database connection
* and create the Prepared statements.
* @retum void
*/

static private void _init()

{
synchronized (jdbcDriver)
; i

try

{
db = jdbcDriver.connect (_url, _dbProperties):

_insertStatement = db.prepareStatement ("insert into UTH (userld,"+
"password,title,firstName,middleInitial,lastName, degree l,majorl,gradDatel,"+
"degree2.major2,gradDate2,homeStreet,honiePObox,homeCity,homeState,homeZip

"homeCountry,homeTel,homeEmail,company,workTitle,workStreet,workPObox,

workCity,"+
"workState,workZip,workCountry,worktel,workEmail,comment) "+

_updateStatement = db.prepareStatement ("update UTH set "+
"password=?,title=?,firstName=?,middleInitial=?,]astName=:?,degreel=?,majorl=?,

gradDatel=?,"+
"degree2=?,major2=?,gradDate2=?,homeStreet=?,homePObox=?,homeCity=?,

homeState=?,homeZip=?,"+
"homeCountry=?,homeTel^?,homeEmail=?,company=?,workTitle=?,workStreet=?,

workPObox=?,workCity=?,"+
"workState=?,workZip=?,workCountry=?,worktel=?,workEmail=?,comment-?

C: \U serRegi stryJ dbclmpl .Java 13

where userid=?");
queryStatement = db.prepareStatement ("select * from UTH where userid=?");
deleteStatement = _db.prepareStatement ("delete from UTH where iiserid=?");

* r
catch (SQLException e)

{
e .printStackT race();

}
}

}

/* *

* This method returns an empty string if a given field has a null value in it.
*/

static private String nullToString(String fieldValue)

{
if (fieldValue = null)

return
else

return fieldValue;

}

C:\UserRegistry.java

/* *

* Interface for UserRegistryJDBCImpl class.
*/

public interface UserRegistry

{
*

* Returns an array of AlumniMembers based on the search criteria.
* @param user id User id to search for.
* @retum AlumniMemberf] Array AlumniMembers instances found in the database.
* @throws RegistryException
*/

public AlumniMember[] getMember (String text) throws RegistryException;

/**

* Adds a member to the database.
* @param member The AlumniMember to add/replace.
* @retum AlumniMember The original value of the member or null if
* it didn't exist.
* @throws RegistryException
*/

public AlumniMember setMember (AlumniMember member) throws RegistryException;

*

* Adds a member to the database.
* @param member The AlumniMember to delete.
* @retum AlumniMember The original value of the member or null if
* it didn't exist.
* @throws RegistryException
*/

public AlumniMember deleteMember (AlumniMember member) throws RegistryException;

* Searches the database with a given column name and a string.
* @param columnName
* @param searchString
* @retum the result set.
* @throws RegistryException
*1

public AlumniMember[] searchRegistry (String columnName, String searchString) throws ✓
RegistryException;

}

C ARegistryException.java 1

* Exception thrown if an error occurs in the UserRegistry.
*

*/
public class RegistryException extends Exception

{
/**

* Create a new RegistryException instance
* with a message.
* @param s Exception message.
*/

public RegistryException (String s)

v
super(s);

}

/* *

* Create a new RegistryException with no message
*/

public RegistryExceptionQ

{
super();

i
}

C:\AlumniMember.java 1

/**

* Implementation of AlumniMember class.
*

public class AlumniMember implements Cloneable

{

private String userld;
private String password;
private String title;
private String firstName;
private String middlelnitial;
private String lastName;
private String degree 1;
private String majorl;
private String gradDatel;
private String degree2;
private String major2;
private String gradDate2;
private String homeStreet;
private String homePObox;
private String homeCity;
private String homeState;
private String homeZip;
private String homeCountry;
private String home Teh
private String homeEmail;
private String company;
private String workTitle;
private String workStreet;
private String workPObox;
private String workCity;
private String workState;
private String workZip;
private String workCountry;
private String worktel;
private String workEmail;
private String comment;
private Boolean changed;

/**

* Create a new AlumniMember instance.
*/

public AlumniMemberQ

{

C AAlumniMember.java 2

userld =
password =
title =
firstName =
middlelnitial =
lastName =
degree 1 =
majorl =
gradDatel =
degree! =
major2 =
gradDate2 =
homeStreet =
homePObox =
homeCity =
homeState =
homeZip =
homeCountry =
homeTel =
homeEmail =
company =
work Title -
workStreet =
workPObox =
workCity =
workState =
workZip =
workCountry =
worktel =
workEmail =
comment =

changed = new Boolean (false);

}

public void setuserld (String s) {userld = s;}
public void setpassword (String s) {password = s;}
public void settitle (String s) {if (s != null) title = s; else title =
public void setfirstName (String s) {if (s != null) firstName = s; else firstName =
public void setmiddlelnitial (String s) {if (s != null) middlelnitial = s; else middlelnitial =
public void setlastName (String s) {if (s != null) lastName = s; else lastName =
public void setdegreel (String s) {if (s \- null) degreel = s; else degree! =
public void setmajorl (String s) {if (s != null) majorl = s; else majorl =
public void setgradDatel (String s) {if(s != null) gradDatel = s; else gradDatel =
public void setdegree2 (String s) {if (s != null) degree2 = s; else degree2 =
public void setmajor2 (String s) {if (s != null) major2 = s; else major2 =
public void setgradDate2 (String s) {if (s != null) gradDate2 = s; else gradDate2 =
public void sethomeStreet (String s) {if (s != null) homeStreet = s; else homeStreet ■=■

C:\AlumniMember.java 3

public void sethomePObox (String s) {if (s != null) homePObox - s; else homePObox =
public void sethomeCity (String s) {if (s != null) homeCity = s; else homeCity =
public void sethomeState (String s) {if (s != null) homeState = s; else homeState ~
public void sethomeZip (String s) {if (s != null) homeZip = s; else homeZip =
public void sethomeCountry (String s) {if (s != null) homeCountry = s; else homeCountry x

=
public void sethomeTel (String s) {if (s != null) homeTel = s; else homeTel -
public void sethomeEmail (String s) {if (s != null) homeEmail = s; else homeEmail =
public void setcompany (String s) {if (s != null) company = s; else company =
public void setworkTitle (String s) {if (s != null) workTitle = s; else workTitle =
public void setworkStreet (String s) {if (s != null) workStreet = s; else workStreet =
public void setworkPObox (String s) {if (s != null) workPObox = s; else workPObox =
public void setworkCity (String s) {if (s != null) workCity = s; else workCity =
public void setworkState (String s) {if (s != null) workState = s; else workState =
public void setworkZip (String s) {if (s != null) workZip = s; else workZip -
public void setworkCountry (String s) {if (s != null) workCountry = s; else workCountry =
public void setworktel (String s) {if (s !- null) worktel = s; else worktel =
public void setworkEmail (String s) {if (s != null) workEmail = s; else workEmail =
public void setcomment (String s) {if (s != null) comment = s; else comment =

public String getuserld () {return new String (userld);}
public String getpassword () {return new String (password);}
public String gettitle () {return new String (title);}
public String getfirstName () {return new String (firstName);}
public String getmiddlelnitial () {return new String (middlelnitial);}
public String getlastName () {return new String (lastName);}
public String getdegreel () {return new String (degreel);}
public String getmajorl () {return new String (majorl);}
public String gctgradDatel () {return new String (gradDatel);}
public String getdegree2 () {return new String (degree2);}
public String getmajor2 () {return new String (major2);}
public String getgradDate2 () {return new String (gradDate2);}
public String gethomeStreet () {return new String (homeStreet);}
public String gethomePObox () {return new String (homePObox);}
public String gethomeCity () {return new String (homeCity);}
public String gethomeState () {return new String (homeState);}
public String gethomeZip () {return new String (homeZip);}
public String gethomcCountry () {return new String (homeCountry);}
public String gethomeTel () {return new String (homeTel);}
public String gethomeEmail () {return new String (homeEmail);}
public String getcompany () {return new String (company);}
public String getworkTitie () {return new String (workTitle);}
public String getworkStreet () {return new String (workStreet);}
public String getworkPObox () {return new String (workPObox);}
public String getworkCity () {return new String (workCity);}
public String getworkState () {return new String (workState);}

C:\AlumniMember.java 4

public String getworkZip () {return new String (workZip);}
public String getworkCountry () {return new String (workCountry);}
public String getworktel () {return new String (worktel);}
public String getworkEmail () {return new String (workEmail);}
public String getcomment () {return new String (comment);}

/**

* Clone a AlumniMember instance
* @retum Object AlumniMember instance copy.
*r

public Object clone()

{
AlumniMember clone = new AlumniMember();

clone.setuserl d (this.getuserld());
clone.setpassword (this.getpasswordQ);
clone.settitle (this.gettitleQ);
clone.setfirstName (this.getfirstNameQ);
clone.setmiddlelnitial (this.getmiddlelnitial());
clone.setlastName (this.getlastName());
clone.setdegreel (this.getdegreelQ);
clone.setmajorl (this.getmajorlQ);
clone.setgradDate 1 (this.getgradDate 1 ());
clone.setdegree2 (this.getdegree2());
clone.setmajor2 (this.getmajor2());
clone.setgradDate2 (this.getgradDate2());
clone.sethomeStreet (this.gethomeStreet());
clone.sethomePObox (this.gethomePOboxQ);
clone.sethomeCity (this.gethomeCity());
clone.sethomeState (this.gethomeState());
clone.sethomeZip (this.gethomeZipO);
clone.sethomeCountry (this.gethomeCountryO);
clone.sethomeTel (this.gethomeTel());
clone.sethomeEmail (this.gethomeEmail());
clone.setcompany (this.getcompany());
clone.setworkTitle (this.getworkTitleQ);
clone.setworkStreet (this.getworkStreet());
clone.setworkPObox (this.getworkPObox());
clone.setworkCity (this.getworkCityO);
clone.setworkState (this.getworkStateQ);
clone.setworkZip (this.getworkZipO);
clone.setworkCountry (this.getworkCountryO);
clone.setworktel (this.getworktelQ);
clone.setworkEmail (this.getworkEmail());
clone.setcomment (this.getcomment());
return clone;

}

C:\AlumniMember.java 5

j**

* Indicates if the instance has changed, meaning
* one of the set methods was called.
* @retum Boolean True if changed, False otherwise
*/

public Boolean isChangedQ

i
Boolean retvalue = new Boolean (_changed.booleanValue());

changed =■ new Boolean (false);
return retvalue;

}

/**

* Clear the value of changed
* @retum void
*!

public void clearChanged()

{
_changed = new Boolean (false);

}
}

BIBLIOGRAPHY

[1] George Reese, Database Programming with JDBC and Java. O'Reilly, 1997.

[2] Roger Jennings, Using Access 97. Que Corporation, 1997.

[3] G. Hamilton, R. Cattell, JDBC: A Java SQL API. JavaSoft, January' 1997.

[4] JavaSoft Web site, "JDBC Drivers11. Sun Microsystems Inc., Source:
"http://java.sun.com/products/jdbc/jdbc.drivers.htmr* October 1998.

[5J JavaSoft Web site, "The JDBC Database Access API"'. Sun Microsystems Inc.,
Source: "http://java.sun.com/products/jdbc/JDBC-ODBC Bridge Driver"
October 1997.

[6] Sun Microsystems, "The JDBC rM API Version 1.20" Source:
"http://splash.javasoft.com/jdbc" January 1997.

[7] Caribou Lake Software Web site, "Java Servlets and Applets". Caribou Lake
Software Inc., Source: "http://www.cariboulake.com/techinfo/servlet_applet.htmr

[8] M. Champione, K. Walwrath, The Java Tutorial. Addison-Wesley, 1998.

[9] Sys-Con Web site, "Developing 3-Tier Database Applications with Java
Servlets", Sys-Con Publications, Source:
http://www.sys-con.com/java/feature/3-2/3-tier/index.html", 1998.

[10] William Crawford, "Developing Java Servlets". Source:
"http^/webreview. com/97/10/10/feature/main. html"

[11] JavaSoft Web site, "Remote Method Invocation: Creating Distributed
Java-to-Java Applications", Sun Microsystems, Source:
"http://developer.java.sun.com/devel... technical Articles/Mccluskey/rmi.html"

[12] Scott Oaks, Java security. O'Reilly. 1998

[13] Grady Booch, Object Solutions: Managing the Object Oriented Project.
Addison-Wesley, October 1995.

	Developing Database Applications by Using Software Components
	Recommended Citation

	tmp.1439905929.pdf.y3M7k

