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ABSTRACT

In the design of a clinical trial, the study of the effect of an intervention for a given

medical condition is frequently of interest to researcher. Also, in recent years, the use

of sequential and adaptive design methods in clinical research and development based

on accrued data has become very popular due to its flexibility and efficiency. In this

thesis, we derive the Behrens-Fisher distribution, and use the distributional result to

examine the effect of an intervention by comparing population means of intervention

group and control group. Sample size prediction methods proporting to solve the

Behrens-Fisher problem are examined. A new method for solving the Behrens-Fisher

problem is proposed. Various sequential and adaptive designs are reviewed.
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CHAPTER 1

INTRODUCTION

The comparison of the means of two populations is frequently of interest to re-

searchers. A variety of statistical methods have been proposed to compare two means.

Each of these methods has been developed around the assumptions made about the

data to be used in the analysis. In Chapter 2, we discuss some of these model-

ing assumptions and some relevant distributional results. In particular, we derive the

Behrens-Fisher distribution along with another commonly used test statistic, we show

that their cumulative distribution (probability density) functions can be expressed as

linear combinations of non-central t-distributions. When the data are available in the

form of two independent samples, a new method making use of the derived cdf of the

Behrens-Fisher distribution is presented in Chapter 3 for comparing two population

means when the ratio of the variances is known. When the ratio of the variances is

known, a FORTRAN program is given for determining the size and power of the test

and the approximation introduced by Welsh(1938).

The “paired data” problem is examined in Chapter 4. A method is given for

determining the appropriate sample size. These results depend on the ratio of the

means and the variances of the distribution of differences. Various sequential and

adaptive methods are given in Chapter 5 for the “paired data” and “independent

sample” cases. Two-stage sample size prediction methods are reviewed that proport

to provide solutions to the Behrens-Fisher problem. A new method is proposed for

solving the Behrens-Fisher problem making use of the Behrens-Fisher distribution

derived in Chapter 2. In the last chapter, some conclusions are expressed along with

several areas of further research.



CHAPTER 2

SOME DISTRIBUTIONAL RESULTS

2.1 Introduction

The Behrens-Fisher problem is a well known problem in statistics. It is concerned

with an interval estimation and testing hypotheses about the difference between two

population means when no assumption is made about the equality of the unknown

variances. Kim and Cohen (1998) stated that “although a number of methods have

been proposed for the Behrens-Fisher problem ... , no definite solutions exists ...

.” On the other hand, Dudewicz, et al. (2007) stated that “this problem has three

known exact solutions ... .” They claimed that the solutions are due to Chapman

(1950), Prokof’yev and Shishkin (1974), and Dudewicz and Ahmed (1998,1999).

In this chapter, we derive the distribution of the statistics

T1 =
XI −XC√

(nI−1)S2
I+(nC−1)S2

C

nI+nC−2
(1/nI + 1/nC)

and T2 =
XI −XC√

S2
I /nI + S2

C/nC

under the independent normal model. According to Kim and Cohen (1998), the

distribution of the statistic T2 is referred to as the Behrens-Fisher distribution. Here,

XI , XC and S2
I , S

2
C are the means and variances of two independent random sample

of size nI , nC from N (µI , σ
2
I ) and N (µC , σ

2
C) respectively. This model will be referred

to as the independent normal model. In this thesis, we do not provide a solution to the

Behrens-Fisher problem but give the exact distribution of the statistic T2 under the

independent normal model. The cumulative distribution functions (cdfs) of T1 and

T2 are shown to be linear combinations of the cdfs of noncentral t-distributions. The

exact probability density functions (pdfs) can then be determined from the cdfs. Nel,

et al (1990) provided an exact solution to the pdf of T2 in terms of a hypergeometric
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function.

In the next section, we give some useful results about the noncentral t-distribution.

The Behrens-Fisher distribution is derived in Section 2.3. Section 2.4 contains Welsh’s

approximation methods. Some concluding remarks are made in the Section 2.5.

2.2 Central and Noncentral t-distributions

It is useful at this point to examine the central and noncentral t-distributions. The

random variable T defined by

T =
Z + θ√
W/ν

with Z ∼ N (0, 1) and W ∼ χ2
ν are independent. T is said to have a noncentral t

distribution with ν > 0 degrees of freedom and noncentrality parameter θ. If θ = 0,

the distribution of T is known as the central t-distribution. We write T = tν,θ or

T ∼ tν,θ.

Theorem 2.2.1. The probability density function fT (t |ν, θ ) of a t-distribution is

given by

fT (t |ν, θ ) =
Γ
(
ν+1
2

)
e−θ

2/2

√
νπΓ

(
ν
2

)
(1 + t2/ν)(ν+1)/2

(
1 +

∑∞

i=1

Γ
(
ν+i+1

2

) (
θ
√

2t
)i

Γ
(
ν+1
2

)
(ν + t2)i/2 i!

)
,

where ν > 0 is the degrees of freedom and θ is the noncentrality parameter.

These results for θ = 0 are presented in Bain and Engelhardt (1992) and for θ 6= 0

can be found in Evans, et al. (1993).

In Figure 2.1, the left most curve is the density function of a central t-distribution

with ν = 20. The right most curve in this figure is that of a noncentral t-distribution

with ν = 20 and θ = 2.0.
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Central (X = 20) and Noncentral (X = 20,S = 2.0) tDistributions

Figure 2.1: Central(ν = 20) and Noncentral(ν = 20, θ = 2.0) t distribution {f2.1}

The cumulative distribution function (cdf) describing the distribution of T can

be expressed by

FT (t |ν, θ ) = Ftν,θ (t) =

∫ ∞
0

Φ
(
t
√
w/ν − θ

)
fW (w) dw

=

∫ t

−∞

Γ
(
ν+1
2

)
e−θ

2/2

√
νπΓ

(
ν
2

)
(1 + w2/ν)(ν+1)/2

×

(
1 +

∑∞

i=1

Γ
(
ν+i+1

2

) (
θ
√

2w
)i

Γ
(
ν+1
2

)
(ν + w2)i/2 i!

)
dw,

where Φ (z) is the cdf of a standard normal distribution. (See Evans, et al. (1993)).

Benton and Drishnamoorthy (2003) gave the cdf of T as

FT (t |ν, θ ) = Φ (−θ) +
1

2

∑∞

i=0

(
PiIx

(
i+

1

2
,
ν

2

)
+

θ√
2
QiIx

(
i+ 1,

ν

2

))
with

Pi =
(θ2/2)

i

i!
e−θ

2/2, Qi =
(θ2/2)

i

Γ (i+ 3/2)
e−θ

2/2, and x =
t2

ν + t2
,
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where

Ix (a, b) =

∫ x

0

Γ (a+ b)

Γ (a) Γ (b)
ya−1 (1− y)b−1 dy and Φ (z) =

∫ z

−∞

1√
2π
e−y

2/2dy.

The function Ix (a, b) is the incomplete Beta function.

2.3 Distributions of T1 and T2

The following theorem will be useful in determining the distributions of T1 and T2.

Theorem 2.3.1. If Z ∼ N (0, 1), WI ∼ χ2
2a, and WC ∼ χ2

2b are independent and

ξ, ν > 0, then T defined by

T =
Z + θ√

(ξWI +WC) /ν

has cdf

FT (t) = ξbFt2(a+b),θ

(
t
√

(ξ/ν) (2 (a+ b))
)

+
∑∞

k=1

ξbΓ (b+ k) (1− ξ)k

Γ (b) k!
Ft2(a+b+k),θ

(
t
√

(ξ/ν) (2 (a+ b+ k))
)

and pdf

fT (t) = ξb
√

(ξ/ν) (2 (a+ b))ft2(a+b),θ

(
t
√

(ξ/ν) (2 (a+ b))
)

+
∑∞

k=1

ξbΓ (b+ k) (1− ξ)k
√

(ξ/ν) (2 (a+ b+ k))

Γ (b) k!

×ft2(a+b+k),θ
(
t
√

(ξ/ν) (2 (a+ b+ k))
)

,

where Ftq,θ (t) and ftq,θ (t) are the cdf and pdf of a noncentral t-distribution with q

degrees of freedom and noncentrality parameter θ, respectively.
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Proof. We begin by examining the distribution of

W = (ξWI +WC) /ν.

For the case in which ξ = 1, it is well known that W ∼ χ2
2(a+b)/ν. Consider now the

case in which ξ 6= 1. Define the linear transformation

Y1 = ξWI +WC and Y2 = WC .

The inverse transformation is

WI = ξ−1 (Y1 − Y2) and WC = Y2

with Jacobian ξ−1. The joint probability density function of Y1 and Y2 is given by

fY1,Y2 (y1, y2) = fWI

(
ξ−1 (y1 − y2)

)
fWC

(y2) ξ
−1.

Since WI ∼ χ2
nI−1 and WC ∼ χ2

nC−1, then

fY1,Y2 (y1, y2) = ξ−1 1

Γ
(
nI−1

2

)
2(nI−1)/2

(
ξ−1 (y1 − y2)

)(nI−1)/2−1
e−ξ

−1(y1−y2)/2

× 1

Γ
(
nC−1

2

)
2(nC−1)/2

(y2)
(nC−1)/2−1 e−y2/2I{(y1,y2)|0<y2≤y1 } (y1, y2) .

For convenience, we let a = (nI − 1) /2 and b = (nC − 1) /2. Using these notations,

we have

fY1,Y2 (y1, y2) =
(ξ−1)

a

Γ (a) 2a
(y1 − y2)

a−1 e−ξ
−1(y1−y2)/2

× 1

Γ (b) 2b
(y2)

b−1 e−y2/2I{(y1,y2)|0<y2≤y1 } (y1, y2) .

Furthermore, note that we can express this joint density for 0 < y2 ≤ y1 as

fY1,Y2 (y1, y2) =
(ξ−1)

a

Γ (a+ b) 2a+b
ya+b−2

1 e−y1/(2ξ)

× Γ (a+ b)

Γ (a) Γ (b)

(
y2

y1

)b−1(
1− y2

y1

)a−1

e−y1(1−ξ−1)(y2/y1)/2.
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It is also convenient to let c = y1 (ξ−1 − 1). Thus, we have

fY1,Y2 (y1, y2) =
(ξ−1)

a

Γ (a+ b) 2a+b
ya+b−2

1 e−y1/(2ξ)

× Γ (a+ b)

Γ (a) Γ (b)

(
y2

y1

)b−1(
1− y2

y1

)a−1

ec(y2/y1)/2.

Making the transformation u = y2/y1, the marginal distribution of Y1 can be expressed

as

fY1 (y1) =
(
ξ−1
)a 1

Γ (a+ b) 2a+b
ya+b−1

1 e−y1/(2ξ)

×
∫ 1

0

Γ (a+ b)

Γ (a) Γ (b)
ub−1 (1− u)a−1 ecu/2du.

Expanding the function ecu/2, we have

fY1 (y1) =
(
ξ−1
)a 1

Γ (a+ b) 2a+b
ya+b−1

1 e−y1/(2ξ)

×
∫ 1

0

Γ (a+ b)

Γ (a) Γ (b)
ub−1 (1− u)a−1

(∑∞

k=0

(cu/2)k

k!

)
du

=
(
ξ−1
)a 1

Γ (a+ b) 2a+b
ya+b−1

1 e−y1/(2ξ)

×
∑∞

k=0

1

k!2k
Γ (a+ b) Γ (b+ k)

Γ (b) Γ (a+ b+ k)
ck

×
∫ 1

0

Γ (a+ b+ k)

Γ (a) Γ (b+ k)
ub+k−1 (1− u)a−1 du.

Since ∫ 1

0

Γ (a+ b+ k)

Γ (a) Γ (b+ k)
ub+k−1 (1− u)a−1 du = 1,

then

fY1 (y1) =
(
ξ−1
)a 1

Γ (a+ b) 2a+b
ya+b−1

1 e−y1/(2ξ)

×
∑∞

k=0

Γ (a+ b) Γ (b+ k)

Γ (b) Γ (a+ b+ k) k!2k
ck.
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It is useful to express the marginal density of Y1 in the form

fY1 (y1) =
(ξ−1)

a

Γ (a+ b) 2a+b
ya+b−1

1 e−y1/(2ξ)

+
∑∞

k=1

Γ (b+ k) (ξ−1)
a

(ξ−1 − 1)
k

Γ (b) k!

× 1

Γ (a+ b+ k) 2a+b+k
ya+b+k−1

1 e−y1/(2ξ).

After some rearrangement of the terms, we have

fY1 (y1) =
ξb

Γ (a+ b) (2ξ)a+b
ya+b−1

1 e−y1/(2ξ)

+ξb
∑∞

k=1

Γ (b+ k) (1− ξ)k

Γ (b) k!

1

Γ (a+ b+ k) (2ξ)a+b+k
ya+b+k−1

1 e−y1/(2ξ).

We see that the density of Y1 can be expressed as

fY1 (y1) = ξb

(
g (y1 |2ξ, a+ b) +

∑∞

k=1

Γ (b+ k) (1− ξ)k

Γ (b) k!
g (y1 |2ξ, a+ b+ k )

)
,

where g (y1 |2ξ, a+ b+ k ) is the probability density function of a gamma distribution

with scale parameter 2ξ and shape parameter a + b + k. Since W = Y1/ν, then for

w > 0, we have

fW (w) = νfY1 (νw) =
νξb

Γ (a+ b) (2ξ)a+b
(νw)a+b−1 e−νw/(2ξ)

+νξb
∑∞

k=1

Γ (b+ k) (1− ξ)k

Γ (b) k!

× 1

Γ (a+ b+ k) (2ξ)a+b+k
(νw)a+b+k−1 e−νw/(2ξ)

= ξb
1

Γ (a+ b) (2ξ/ν)a+b
wa+b−1e−w/(2ξ/ν)

+ξb
∑∞

k=1

Γ (b+ k) (1− ξ)k

Γ (b) k!

1

Γ (a+ b+ k) (2ξ/ν)a+b+k
wa+b+k−1e−w/(2ξ/ν)

= ξb

(
g (w |2ξ/ν, a+ b) +

∑∞

k=1

Γ (b+ k) (1− ξ)k

Γ (b) k!
g (w |2ξ/ν, a+ b+ k )

)
.
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Now consider the distribution of

T =
Z + θ√

(ξWI +WC) /ν
=
Z + θ√
W

.

We have that

FT (t) = P

(
Z + θ√
W
≤ t

)
= P

(
Z ≤ t

√
W − θ

)
=

∫ ∞
0

Φ
(
t
√
w − θ

)
fW (w) dw

= ξb
∫ ∞

0

Φ
(
t
√
w − θ

) 1

Γ (a+ b) (2ξ/ν)a+b
wa+b−1e−w/(2ξ/ν)dw

+ξb
∑∞

k=1

Γ (b+ k) (1− ξ)k

Γ (b) k!

×
∫ ∞

0

Φ
(
t
√
w − θ

) 1

Γ (a+ b+ k) (2ξ/ν)a+b+k
wa+b+k−1e−w/(2ξ/ν)dw.

Consider now the transformation Y = νW/ξ, we have

FT (t) = ξb
∫ ∞

0

Φ
(
t
√
ξy/ν − θ

) 1

Γ (a+ b) (2ξ/ν)a+b

(
ξy

ν

)a+b−1

e−y/2
ξ

ν
dy

+ξb
∑∞

k=1

Γ (b+ k) (1− ξ)k

Γ (b) k!

×
∫ ∞

0

Φ
(
t
√
ξy/ν − θ

) 1

Γ (a+ b+ k) (2ξ/ν)a+b+k

(
ξy

ν

)a+b+k−1

e−y/2
ξ

ν
dy

= ξb
∫ ∞

0

Φ
(
t
√

(ξ/ν) (2 (a+ b))
√
y/ (2 (a+ b))− θ

)
× 1

Γ (a+ b) 2a+b
ya+b−1e−y/2dy

+
∑∞

k=1

ξbΓ (b+ k) (1− ξ)k

Γ (b) k!

×
∫ ∞

0

Φ
(
t
√

(ξ/ν) (2 (a+ b+ k))
√
y/ (2 (a+ b+ k))− θ

)
× 1

Γ (a+ b+ k) 2a+b+k
ya+b+k−1e−y/2dy.
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It follows from the results in the previous section that FT (t) can be expressed as

FT (t) = ξbFt2(a+b),θ

(
t
√

(ξ/ν) (2 (a+ b))
)

+
∑∞

k=1

ξbΓ (b+ k) (1− ξ)k

Γ (b) k!
Ft2(a+b+k),θ

(
t
√

(ξ/ν) (2 (a+ b+ k))
)

= ξbFt2(a+b),θ

(
t
√

(ξ/ν) (2 (a+ b))
)

+
∑∞

k=1

(−1)k ξb+kΓ (b+ k) (1− ξ)k (−ξ−1)
k

Γ (b) k!

×Ft2(a+b+k),θ
(
t
√

(ξ/ν) (2 (a+ b+ k))
)

= ξbFt2(a+b),θ

(
t
√

(ξ/ν) (2 (a+ b))
)

+
∑∞

k=1

(−1)k ξb+kΓ (b+ k) (1− ξ−1)
k

Γ (b) k!

×Ft2(a+b+k),θ
(
t
√

(ξ/ν) (2 (a+ b+ k))
)

.

Hence, the probability density function of T has the form

fT (t) = ξb
√

(ξ/ν) (2 (a+ b))ft2(a+b),θ

(
t
√

(ξ/ν) (2 (a+ b))
)

+
∑∞

k=1

ξbΓ (b+ k) (1− ξ)k
√

(ξ/ν) (2 (a+ b+ k))

Γ (b) k!

×ft2(a+b+k),θ
(
t
√

(ξ/ν) (2 (a+ b+ k))
)

.

It is interesting to note that

ξb

(
1 +

∑∞

k=1

Γ (b+ k) (1− ξ)k

Γ (b) k!

)
= 1.

Thus since
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1 +
∑∞

k=1

Γ (b+ k) (1− ξ)k

Γ (b) k!
=

∑∞

k=0

Γ (b+ k) (1− ξ)k

Γ (b) k!

=
∑∞

k=0

(b+ k − 1) (b+ k − 2) · · · (b) (1− ξ)k

k!

=
∑∞

k=0

(
b+ k − 1

k

)
(1− ξ)k

=
∑∞

k=0
(−1)k

(
−b
k

)
(1− ξ)k

=
∑∞

k=0

(
−b
k

)
(ξ − 1)k

= ξ−b.

It can be shown that

T1 =
Z + θ√

(ξ1WI +WC) /ν1

and T2 =
Z + θ√

(ξ2WI +WC) /ν2

,

where

θ =
µI − µC√

σ2
I/nI + σ2

C/nC
, λ2 =

σ2
I

σ2
C

,

ν1 =
(nI + nC − 2) (λ2/nI + 1/nC)

1/nI + 1/nC
, ξ1 = λ2,

ν2 = nC (nC − 1)
(
λ2/nI + 1/nC

)
, ξ2 = λ2nC (nC − 1)

nI (nI − 1)
,

WI =
(nI − 1)S2

I

σ2
I

∼ χ2
nI−1, and WC =

(nC − 1)S2
C

σ2
C

∼ χ2
nC−1.

Hence, the distributions of T1 and T2 follow from Theorem 1, keeping in mind that

a =
nI − 1

2
and b =

nC − 1

2
.

It is observed that the distributions of T1 and T2 depend in general on the values

µI − µC , σ2
I , σ

2
C , nI , and nC . For the case in which µI = µC , then their distributions
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depend only on the parameter λ2 and the sample sizes nI and nC . Also, we note that

FT (t) can be thought of as a function of θ, ξ, ν, nI , and nC . We observe that

FT (t) = FT (t |θ, ξ, ν, nI , nC )

= P

(
Z + θ√

(ξWI +WC) /ν
≤ t

)

= P

(
Z + θ√

(ξ−1WC +WI) / (ξ−1ν)
≤ t

)
= FT

(
t
∣∣θ, ξ−1, ξ−1ν, nC , nI

)
.

Further we note thatFT (t) can be thought of as a function of δC , λ, nI , and nC . For

the distribution of T1, we see that

FT1 (t) = FT1 (t |δC , λ, nI , nC )

= P

 Z + δC/
√
λ2/nI + 1/nC√

nI(nI−1)(1/nI+1/nC)(λ2/nI)WI

(nI+nC−2)(λ2/nI+1/nC)(nI−1)
+ nC(nC−1)(1/nI+1/nC)(1/nC)WC

(nI+nC−2)(λ2/nI+1/nC)(nC−1)

≤ t


= P

 Z + λ−1δC/
√
λ−2/nC + 1/nI√

nC(nC−1)(1/nI+1/nC)(λ−2/nC)WC

(nI+nC−2)(λ−2/nC+1/nI)(nC−1)
+ nI(nI−1)(1/nI+1/nC)(1/nI)WI

(nI+nC−2)(λ−2/nC+1/nI)(nI−1)

≤ t


= FT1

(
t
∣∣λ−1δC , λ

−1, nC , nI
)

.

Similarly, the distribution of T2 is

FT2 (t) = FT2 (t |δC , λ, nI , nC )

= P

 Z + δC/
√
λ2/nI + 1/nC√

λ2/nI
λ2/nI+1/nC

WI

nI−1
+ 1/nC

λ2/nI+1/nC

WC

nC−1

≤ t


= P

 Z + λ−1δC/
√
λ−2/nC + 1/nI√

λ−2/nC
λ−2/nC+1/nI

WC

nC−1
+ 1/nI

λ−2/nC+1/nI

WI

nI−1

≤ t


= FT2

(
t
∣∣λ−1δC , λ

−1, nC , nI
)

.

We suggest that accurate approximations to the distributions of T1 and T2 can

be obtained by truncating the series for their cdfs and pdfs. The value of k can be
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made to depend on the distributional parameters. This is seen by observing that the

sequence of coefficients of the series

ck =
Γ (b+ k) (1− ξ)k

√
(ξ/ν) (2 (a+ b+ k))

Γ (b) k!

for k > 1 are decreasing to zero for ξ ≤ 1. We note that these values can be obtained

iteratively by

ck =
(b+ k − 1) (1− ξ)

k

Γ (b+ k − 1) (1− ξ)k−1
√

(ξ/ν) (2 (a+ b+ k))

Γ (b) (k − 1)!

=
(b+ k − 1) (1− ξ)

k
ck−1 =

(
1 +

b− 1

k

)
(1− ξ) ck−1

with c0 = 1. Taking the limit of ck as k →∞, we have

lim
k→∞

ck = 0.

This implies that for ε > 0, there exist a value of k0 such that for all k ≥ k0, |ck| < ε. A

FORTRAN program is given in Appendix I for evaluating the cdf FTi (t |δC , λ, nI , nC )

of the distribution of Ti for given values of t, δC , λ, nI , and nC for i = 1, 2. This

program can be modified to obtain the cdf of Ti given the values of t, ∆ = µI − µC ,

σC , λ, nI , and nC .

2.4 Welsh’s Approximation/Estimation Method

It has been suggested by Welsh (1938) that the distribution of T2 can be approximated

by a t-distribution. This approximation is obtained by assuming that the random

quantity

W =
S2
I /nI + S2

C/nC
σ2
I/nI + σ2

C/nC

has approximately the distribution of a chi square random variable that has been

divided by its degrees of freedom ν. Setting the variance of W equal to the variance
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of a chi square random variable that has been divided by its degrees of freedom ν

gives

ν =
(σ2

I/nI + σ2
C/nC)

2

1
nI−1

(σ2
I/nI)

2
+ 1

nC−1
(σ2

C/nC)
2 .

Observing that

ν =
σ4
C

(
σ2
I

σ2
C
/nI + 1/nC

)2

σ4
C

(
1

nI−1

(
σ2
I

σ2
C
/nI

)2

+ 1
nC−1

(1/nC)2

)
=

(λ2/nI + 1/nC)
2

1
nI−1

(λ2/nI)
2 + 1

nC−1
(1/nC)2 ,

we see that ν depends only on the values of nI , nC , and λ. If the researcher does not

specify a value of λ, Welsh (1938) recommended estimating ν with the statistic

ν̂ =
(S2

I /nI + S2
C/nC)

2

1
nI−1

(S2
I /nI)

2
+ 1

nC−1
(S2

C/nC)
2 .

The question that arises at this point is how good is the approximation of Welsh

(1938)? This can be examined in two ways. Firstly, for given values of t, λ, nI , and

nC how well does Ftν,θ (t |ν, θ ) approximate FT2 (t |δC , λ, nI , nC ), where

θ = δC/
√
λ2/nI + 1/nC and ν =

(λ2/nI + 1/nC)
2

1
nI−1

(λ2/nI)
2 + 1

nC−1
(1/nC)2 .

Secondly, we could ask how well does the 100 (1− α)th percentile tν,θ,α approximate

the 100 (1− α)th percentile tδC ,λ,nI ,nC ,α of the distribution of T2 for 0 < α < 1? An-

other way to ask this question, is how well does FT2 (tν,θ,α |δC , λ, nI , nC ) approximate

the value 100 (1− α) %. The FORTRAN program in Appendix I can be used to

study these questions. For the case we examined, it was found that Welch’s method

provides a good approximation to the cdf of the distribution of T2.
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2.5 Conclusion

An exact distribution was given to Behrens-Fisher problem under the independent

normal distribution. It was shown that the cdf (pdf) is an infinite series of the cdfs

(pdfs) of noncentral t-distributions. In general, it was observed that the Behrens-

Fisher distribution depends on the difference in the means, the variances, and the

sample sizes. If the means are equal, then this distribution depends only on the

ratio of the variances and the sample sizes. A numerical method is presented for

obtaining a good approximation to the cdf and pdf of the Behrens-Fisher distribution.

A FORTRAN program was written to implement this method. The approximation

and estimation methods presented in Welch (1938) were discussed. These methods

appear to provide good approximation of the cdf of the distribution of T2. The results

presented in this Chapter are useful in interval estimation and hypothesis testing when

comparing the two population means.



CHAPTER 3

COMPARING TWO POPULATION MEANS: INDEPENDENT

SAMPLES CASE

3.1 Introduction

It is of interest here to study the effect of an intervention for a given medical con-

dition for individuals in a given population. In this chapter, we consider the effect

of the intervention as measured by the mean µI of the distribution of a continuous

measurement X on each individual in the population to receive the intervention. If

µC is the mean of the distribution of X when there is no intervention or when another

treatment is used, it is typically of interest to know the value of µI − µC . If µI − µC

is negative, zero, or positive, then the intervention has made the condition worse, has

had no effect, or has improved the medical condition of the individuals in the given

population, respectively. As is commonly done, we will assume the models for the

two distributions of X to be N (µI , σ
2
I ) over the population with intervention and

N (µC , σ
2
C) for the control.

In order to make an inference about µI−µC , we begin by assuming that samples

from the two populations (intervention and control) of sizes nI and nC , respectively,

are to be taken. The measurement on the individuals in these respective samples will

be denoted by XI,1, . . . , XI,nI and XC,1, . . . , XC,nC . We assume that these measure-

ments are independent random samples with

XI,i ∼ N
(
µI , σ

2
I

)
and XC,j ∼ N

(
µC , σ

2
C

)
,

for i = 1, . . . , nI and j = 1, . . . , nC . The means and variances of these samples

are denoted by XI and S2
I (provided nI > 1) and XC and S2

C (provided nC > 1),

respectively. We observe that the statistic XI−XC provides an unbiased estimator for
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Table 3.1: Sample Size Selection Cases {t3.1}

Case Assumption

1 σ2
I and σ2

C both known;

2 λ2 = σ2
I/σ

2
C is known, and

3 σ2
I and σ2

C both unknown.

the parameter µI −µC and under our model has a Normal distribution with variance

σ2
XI−XC

= σ2
I/nI + σ2

C/nC .

The selection of the sample sizes nI and nC is under the control of the researcher.

How does a researcher select these values? An answer to this question will be discussed

in two parts. Firstly, we examine the selection of these values for a fixed total m =

nI + nC of the two sample sizes with the restriction that 1 ≤ nI , nC < m. Secondly,

we investigate methods for selecting the total sample size m. We further divide the

problem into three cases listed in Table 3.1.

The cases are individually addressed respectively in the next three sections.

Under the aforementioned scenarios, we are interested in testing the null hypoth-

esis H0 : µI = µC (no affect due the intervention) versus the alternative (researcher’s)

hypothesis Ha : µI 6= µC (there is an affect due to the medical intervention). In

general, our test rejects the H0 in favor of Ha if |T | ≥ t∗, where common selections

of the test statistic T in Table 3.2.

where

S2
p =

(nI − 1)S2
I + (nC − 1)S2

C

nI + nC − 2
.

The first test statistic listed in Table 3.2 is used if the variances are known. The second
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Table 3.2: Test Statistics {t3.2}

T = XI−XC√
σ2
I/nI+σ

2
C/nC

T = T1 = XI−XC

Sp
√

1/nI+1/nC

T = T2 = XI−XC√
S2
I /nI+S

2
C/nC

statistic in Table 3.2 is often recommended if the researcher is willing to assume the

unknown variances are equal. If the researcher is not willing to assume the unknown

variances are equal, the third test statistic (whose distribution under the independent

normal model is referred to as the Behrens-Fisher distribution) in Table 3.2 is the

most commonly recommended test.

The critical value t∗ of a test depends on the null distribution of the test statistic

T . The general distribution of T is needed to study the power of the test. The

distribution of the first test statistic in Table 3.2 under the independent normal model

is well known. The distributions of the second and third test statistics are derived in

this chapter. These distributions depend on the ratio λ = σI/σC and hence a test of

a given size cannot be selected unless this ratio is given.

If the researcher is willing to assume that λ = 1, then the test based on T1 is

generally recommended. If the researcher is not willing to make the assumption that

λ = 1, then a test based on T2 is generally recommended. We examine in this chapter

tests when λ is known and when λ is unknown. For each of these tests when λ is

known, we can evaluate the size and power of the test for fixed sample sizes as well

as a method for determining the sample sizes. For test that use the data to estimate

λ, it is shown how these tests perform using simulation.
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3.2 Variances Known Case

If the population variances σ2
I and σ2

C are known, then the test we will consider rejects

H0 : µI = µC in favor of Ha : µI 6= µC if |T | ≥ zα∗/2, where 0 < α∗ < 1 and

T =
XI −XC√

σ2
I/nI + σ2

C/nC
.

We see that T can be expressed as

T =

(
XI −XC

)
− (µI − µC)√

σ2
I/nI + σ2

C/nC
+

µI − µC√
σ2
I/nI + σ2

C/nC

= Z +
δC√

λ2/nI + 1/nC
,

where

Z =

(
XI −XC

)
− (µI − µC)√

σ2
I/nI + σ2

C/nC
, δC =

µI − µC
σC

, and λ =
σI
σC

.

It will be convenient to define

θC =
δC√

λ2/nI + 1/nC
.

Note that the null and alternative hypotheses can be expressed as

H0 : δC = 0 and Ha : δC 6= 0.

Under the independent normal model, the random variable Z has a standard normal

distribution. If the null hypothesis holds, then T has a standard normal distribution

and hence the selection of the critical value zα∗/2. The size of the test is α∗ and the
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power function is

π (δC , λ, nI , nC) = P
(
|T | ≥ zα∗/2

)
= 1− P

(
−zα∗/2 − θC < Z < zα∗/2 − θC

)
= 1− Φ

(
zα∗/2 − θC

)
+ Φ

(
−zα∗/2 − θC

)
= 1− Φ

(
zα∗/2 − θC

)
+ 1− Φ

(
zα∗/2 + θC

)
,

when δC 6= 0. It is clear that the power function depends on the population means

and variances through the parameters δC and λ. The power function also depends on

the sample sizes nI and nC .

Let us assume that δC 6= 0 is fixed. For a fixed total sample size m = nI + nC

and n = nI , we can write

θC = δC
(
λ2n−1 + (m− n)−1)−1/2

.

To determine the value of n that maximizes the power function, we observe that

∂π

∂n
= φ

(
zα∗/2 − θC

) ∂θC
∂n
− φ

(
−zα∗/2 − θC

) ∂θC
∂n

=
(
φ
(
zα∗/2 − θC

)
− φ

(
−zα∗/2 − θC

)) ∂θC
∂n

= A
∂θC
∂n

,

where

A = φ
(
zα∗/2 − θC

)
− φ

(
−zα∗/2 − θC

)
.

Next observe that we can write

A =
1√
2π
e−

1
2(z2α∗/2+2zα∗/2θC+θ2C)

(
1− e−2zα∗/2δC/

√
λ2/n+1/(m−n)

)
.

Since δC 6= 0, then A 6= 0. Hence, a solution to the equation ∂π/∂n = 0 is also a

solution to the equation ∂θC/∂n = 0.
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We see that

∂θC
∂n

= −1

2
δC
(
λ2n−1 + (m− n)−1)−3/2 (−λ2n−2 + (m− n)−2)

and since δC
(
λ2n−1 + (m− n)−1)−3/2 6= 0, then the equation ∂θC/∂n = 0 has the

same solution for n that

−λ2n−2 + (m− n)−2 = 0.

It is easy to see that the real number solution n to this equation is

n =
λ

1 + λ
m.

Since we require n to be a positive integer, then we consider selecting nI = n to

be either

Method (1) n =

⌊
λ

1 + λ
m

⌋
or

Method (2) n =

⌈
λ

1 + λ
m

⌉
.

To maximize the power, the value of n needs to be selected such that

θC = θC (δC , λ, n,m) =
δC√

λ2/n+ 1/ (m− n)

for a fixed value of m and the value |θC | as large as possible. Consider the function

d (δC , λ,m) =
|δC |√

λ2

d λ
1+λ

me + 1

b 1
1+λ

mc

− |δC |√
λ2

b λ
1+λ

mc + 1

d 1
1+λ

me

.

The value of n should be selected according to Method (1) if d (δC , λ,m) ≤ 0 and

using Method (2) if d (δC , λ,m) ≥ 0. The plot of d (1, λ, 10) versus λ (see Figure 3.1)

reveals that there does not exist a simple formula for determining when d (δ, λ,m)

is negative, zero, or positive. Hence, we recommend simply calculating the value of

d (δ, λ,m) for given value of δ, λ, and m to select the value of n.
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{f3.1}

We next consider the selection ofm. Assume the researcher has selected a positive

value δ∗C such that for |δC | ≥ δ∗C it is desired to have the power to be at least 1− β∗.

We stress here that the values α∗, δ∗C and β∗ are to be selected by the researcher. For

all δC such that |δC | ≥ δ∗C , we have that

π (δC , λ, n,m− n) ≥ π (δ∗C , λ, n,m− n)

= 1− Φ

(
zα∗/2 −

δ∗C√
λ2/n+ 1/ (m− n)

)

+1− Φ

(
zα∗/2 +

δ∗C√
λ2/n+ 1/ (m− n)

)
≥ 1− β∗.

We note that the value

1− Φ

(
zα∗/2 +

δ∗C√
λ2/n+ 1/ (m− n)

)
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decreases as m increases and that

1− Φ

(
zα∗/2 −

δ∗C√
λ2/n+ 1/ (m− n)

)

+1− Φ

(
zα∗/2 +

δ∗C√
λ2/n+ 1/ (m− n)

)

≥ 1− Φ

(
zα∗/2 −

δ∗C√
λ2/n+ 1/ (m− n)

)
.

Hence, we elect to choose m such that

1− Φ

(
zα∗/2 −

δ∗C√
λ2/n+ 1/ (m− n)

)
≥ 1− β∗ or

Φ

(
zα∗/2 −

δ∗C√
λ2/n+ 1/ (m− n)

)
≤ β∗.

It then follows that we should choose m such that

zα∗/2 −
δ∗C√

λ2/n+ 1/ (m− n)
≤ −zβ∗ or (3.1) {m1}

δ∗C√
λ2/n+ 1/ (m− n)

≥ zα∗/2 + zβ∗ .

As was previously shown, we have that

δ∗C
√
m

1 + λ
=

δ∗C√
λ2/

(
λ

1+λ
m
)

+ 1/
(

1
1+λ

m
) ≥ δ∗C√

λ2/n+ 1/ (m− n)
.

It follows that for any value of m that satisfies the inequality (3.1) must satisfy the

compound inequality

m ≥ (1 + λ)2

λ2/n+ 1/ (m− n)
≥

(1 + λ)2 (zα∗/2 + zβ∗
)2

(δ∗C)2 .

The smallest value of m that is a solution to the compound inequality is

m =

⌈
(1 + λ)2 (zα∗/2 + zβ∗

)2
(δ∗C)2

⌉

=

⌈
(1 + σI/σC)2 (zα∗/2 + zβ∗

)2
(δ∗C)2

⌉
.

Once m has been selected, then the previous method can be used for selecting n for

a fixed value of m.
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3.3 Unknown Variances

Welch (1938) recommended a test based on the statistic T2 that rejects H0 in favor of

Ha if |T2| ≥ tν,0,α/2, where value tν,0,α/2 is the 100 (1− α/2)th percentile of a central

t-distribution with degrees of freedom

ν =
(σ2

I/nI + σ2
C/nC)

2

(σ2
I/nI)

2
/ (nI − 1) + (σ2

C/nC)
2
/ (nC − 1)

.

The critical value tν,0,α/2 is an approximation to the 100 (1− α/2)th percentile of the

distribution of T2 (see Chapter 2 concerning this approximation). In the case in which

λ = σI/σC is not known, he recommended that ν be estimated from the observed

data using the statistic

V =
(S2

I /nI + S2
C/nC)

2

(S2
I /nI)

2
/ (nI − 1) + (S2

C/nC)
2
/ (nC − 1)

.

In this case, the critical value tV,0,α/2 is a random variable whose observed value will

be used to estimate the 100 (1− α/2)th percentile of the distribution of T2. It then

follows that the size A and the power P of the test are random variables.

How well this tests performs depends on how good the t-distribution with ν

(V ) degrees of freedom approximates (estimates) the distribution of T2. Further, one

would not expect the test based on λ known to perform as well as one based on an

estimated λ. In the case in which λ is known (estimated), the size of the test α and

the power of the test π are approximated (estimated) by, respectively,

a = 1− Ft
ν,δC/

√
λ2/nI+1/nC

(
tν,0,α/2 |0, λ, nI , nC

)
+Ft

ν,δC/

√
λ2/nI+1/nC

(
−tν,0,α/2 |0, λ, nI , nC

)
,

(A = 1− Ft
V,δC/

√
L2/nI+1/nC

(
tV,0,α/2 |0, L, nI , nC

)
+Ft

V,δC/

√
L2/nI+1/nC

(
−tV,0,α/2 |0, L, nI , nC

)
),
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and

p = 1− Ft
ν,δC/

√
λ2/nI+1/nC

(
tν,0,α/2 |δC , λ, nI , nC

)
+Ft

ν,δC/

√
λ2/nI+1/nC

(
−tν,0,α/2 |δC , λ, nI , nC

)
,

(P = 1− Ft
V,δC/

√
L2/nI+1/nC

(
tV,0,α/2 |δC , L, nI , nC

)
+Ft

V,δC/

√
L2/nI+1/nC

(
−tV,0,α/2 |δC , L, nI , nC

)
).

We now consider tests that make use of the exact distribution of Ti for i = 1, 2.

Firstly, we consider tests in which the ratio λ = σI/σC is known. A test of size

α (to be selected by the researcher) rejects null hypothesis H0 : µI = µC in favor

the alternative hypothesis Ha : µI 6= µC if |Ti| ≥ ti (critical value), where ti is the

100 (1− α/2)th percentile of the distribution of Ti when µI = µC , for i = 1 or 2.

That is,

α = 1− FTi (ti |0, λ, nI , nC ) + FTi (−ti |0, λ, nI , nC ) .

The power of this test is

π = 1− FTi (ti |δC , λ, nI , nC ) + FTi (−ti |δC , λ, nI , nC ) ,

for δC 6= 0. Since the value of the function FTi (t |δC , λ, nI , nC ) can be determined

numerically, then the critical value ti can be determined under the independent normal

model as well as the exact power of the test.

A FORTRAN program is given in Appendix II for determining the critical value

ti of this test for given values of α, λ, nI , and nC as well as the power. If the researcher

specifies a value δ∗C and a minimum value 1− β∗ of the power when |δC | ≥ δ∗C , then

the program in Appendix II can be used to determine the minimum value of nI + nC

to meet these requirements. Also, this program can be used for λ known to compare

the method given in Welch (1938) and the exact method presented here. For a few
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values of λ we considered, the approximation in Welch (1938) gives fairly accurate

critical values.

In general, the researcher will not be able to specify the value λ. In this case, a

test can be constructed by first estimating λ and then selecting the critical value as

the value Ci that satisfies the equation

FTi (Ci |0, L, nI , nC ) = 1− α/2,

where L is an estimate/estimator of the parameter λ. A biased choice for L is SI/SC .

An unbiased choice is √
nI − 1Γ

(
nI−1

2

)
Γ
(
nC−1

2

)
√
nC − 1Γ

(
nI
2

)
Γ
(
nC−2

2

) SI
SC

.

It may at this point seem more reasonable to estimate the value of λ2 since it is

this value that is used directly in the evaluation of FTi (t |δC , λ, nI , nC ). An unbiased

estimator for λ2 is the statistic

(nC − 4)

(nC − 1)

S2
I

S2
C

,

provided nC > 4. The size of this test

A = 1− FTi (Ci |0, λ, nI , nC ) + FTi (−Ci |0, λ, nI , nC )

is a random variable as the power of the test

P = 1− FTi (Ci |δC , λ, nI , nC ) + FTi (−Ci |δC , λ, nI , nC ) ,

for fixed values of nI and nC . One can study the distributions of A and P using

simulation, but only for selected values of λ as the value of λ is required to simulate

a value of Ti for i = 1, 2. A FORTRAN program is given in Appendix III that can

be used to estimate E (A) and E (P ) for a given value of λ. This program is only

useful in demonstrating how well the test performs for a given value of λ. Since λ is
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unknown, one cannot use this program to help the researcher select the values of nI

and nC . In Chapter 5, a method for sample size selection will be presented.

3.4 Conclusion

In this chapter, we have discussed statistical tests for comparing two means using

data in the form of independent random samples. The problem of sample size deter-

mination was addressed based on the power of the test. Results are limited to the

case in which the ratio of the standard deviations is given. These methods require

information from the researcher about the distribution of the test statistic when the

alternative hypothesis holds.



CHAPTER 4

COMPARING TWO MEANS: PAIRED DATA CASE

4.1 Introduction

There are a variety of examples in which the intervention can be given to each indi-

vidual in the treatment group with the individual also serving as the control. This is

often referred to as the paired data case. The X measurement is first taken on the

individual and once again after the individual is treated with the intervention. We

will refer to these measurements as XC and XI , respectively. Of interest is to make

an inference about the parameter

µXI−XC = µI − µC .

A commonly used model for these type of data is the bivariate normal distribution.

In particular, we write XI

XC

 ∼ N2


 µI

µC

 ,
 σ2

I ρσIσC

ρσIσC σ2
C


 .

It is not difficult to show under this model that the difference D = XI − XC has a

normal distribution with mean and variance given by

µD = µI − µC and σ2
D = σ2

I + σ2
C − 2cov (XC , XI) .

Let  XI,1

XC,1

 , . . . ,
 XI,n

XC,n


be a random sample, then the sample mean vector and covariance matrix are given
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by  XI

XC

 and

 S2
I SI,C

SI,C S2
C

 .

Let

D1 = XI,1 −XC,1, . . . , Dn = XI,n −XC,n

then D1, . . . , Dn are independent and identically distributed as N (µD, σ
2
D) random

variables. Thus, we have

D ∼ N
(
µD, σ

2
D/n

)
and

(n− 1)S2
D

σ2
D

∼ χ2
n−1.

Further, we have that

T =
D

SD/
√
n
∼ tn−1,

√
nδD ,

where δD = µD/σD. We note that

D = XI −XC and S2
D = S2

I + S2
C − 2SI,C .

4.2 Inference about µD, Variance σ2
D Known

Assuming that σ2
D is known, a test of size α rejects H0 : µD = 0 versus Ha : µD 6= 0

(or equivalently, H0 : δD = 0 versus Ha : δD 6= 0) if |T | ≥ zα/2, where

T =
D

σD/
√
n

.

Observe that

T =
D − µD
σD/
√
n

+
√
n
µD
σD

= Z +
√
nδD

with

Z =
D − µD
σD/
√
n
∼ N (0, 1) .
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The power π (δD, n) of the test for δD 6= 0 is

π (α, δD, n) = P
(
|T | ≥ zα/2

)
= 1− P

(
−zα/2 < T < zα/2

)
= 1− P

(
−zα/2 −

√
nδD < Z < zα/2 −

√
nδD

)
= 1− Φ

(
zα/2 −

√
nδD

)
+ Φ

(
−zα/2 −

√
nδD

)
,

where Φ (z) is the cumulative distribution function of a standard normal distribution.

Assume the researcher desires to use this test of size α∗ with the power of the

test having at least the value 1− β∗ if |δD| ≥ δ∗D > 0. The values β∗ and δ∗D are to be

specified as α∗ by the researcher. Since the function π (δD) is an increasing function

of |δD|, then the researcher must select a sample of size n such that

π (α∗, δ∗D, n) ≥ 1− β∗.

Equivalently, the sample size n must satisfy the inequality

Φ
(
zα∗/2 −

√
nδ∗D

)
− Φ

(
−zα∗/2 −

√
nδ∗D

)
≤ β∗. (4.1) {eq1}

Since 0 < Φ (z) < 1 and Φ
(
zα∗/2 −

√
nδ∗D

)
> Φ

(
−zα∗/2 −

√
nδ∗D

)
for zα∗/2 > 1/2 and

δ∗D > 0, then

Φ
(
zα∗/2 −

√
nδ∗D

)
− Φ

(
−zα∗/2 −

√
nδ∗D

)
≤ Φ

(
zα∗/2 −

√
nδ∗D

)
.

Hence any value of n that satisfies the inequality Φ
(
zα∗/2 −

√
nδ∗D

)
≤ β∗ also satisfies

the inequality in (4.1). Now as n increases, the probability Φ
(
−zα∗/2 −

√
nδ∗D

)
de-

creases. Thus, the smallest value of n that satisfies the inequality Φ
(
zα∗/2 −

√
nδ∗D

)
≤

β∗ also satisfies the inequality in (4.1). The minimum value of n that satisfies the

inequality (4.1) should also satisfies the inequality

zα∗/2 −
√
nδ∗D ≤ −zβ∗ or n ≥

(
zα∗/2 + zβ∗

)2
(δ∗D)2 .
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Hence a conservative choice for the desired sample size is

n ≥

⌈(
zα∗/2 + zβ∗

)2
(δ∗D)2

⌉
.

4.3 Variance σ2
D Unknown

Assuming that σ2
D is unknown, a commonly recommended test of size α rejects H0 :

µD = 0 versus Ha : µD 6= 0 if |T | ≥ tn−1,0,α/2, where

T =
D

SD/
√
n

and tn−1,0,α/2 is the 100 (1− α/2) percentile of a central t-distribution with n − 1

degrees of freedom. Observe that

T =

D−µD
σD/
√
n

+
√
nδD√

(n−1)S2
D

σ2
D

/ (n− 1)
∼ tn−1,

√
nδD ,

where tn−1,
√
nδD is a random variable having a noncentral t-distribution with n − 1

degrees of freedom and noncentrality parameter
√
nδD. The power π (α, δD, n) of the

test for δD 6= 0 is

π (α, δD, n) = 1− P
(
−tn−1,0,α/2 < tn−1,

√
nδD < tn−1,0,α/2

)
= 1− Ftn−1,

√
nδD

(
tn−1,0,α/2 −

√
nδD

)
+ Ftn−1,

√
nδD

(
−tn−1,0,α/2 −

√
nδD

)
,

where Ftn−1,
√
nδD

(t) is the cdf of a noncentral t-distribution with n − 1 degrees of

freedom and noncentrality parameter
√
nδD.

Suppose the researcher desires the test to be of size α∗ and the power of the test

to be at least 1− β∗ when |δD| is at least as large as δ∗D > 0. This requires that n be
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selected such that

π (α∗, δ∗D, n) = 1− Ftn−1,
√
nδ∗
D

(
tn−1,0,α∗/2 −

√
nδ∗D

)
(4.2) {eq3}

+Ftn−1,
√
nδ∗
D

(
−tn−1,0,α∗/2 −

√
nδ∗D

)
(4.3)

≥ 1− β∗.

Since Ftn−1,
√
nδD

(
−tn−1,0,α∗/2 −

√
nδ∗D

)
is approximately zero for relatively small values

of n, then the minimum value of n that satisfies the inequality

Ftn−1,
√
nδ∗
D

(
tn−1,0,α∗/2 −

√
nδ∗D

)
≤ β∗ or n ≥

(
tn−1,0,α∗/2 + tn−1,

√
nδ∗D,β

∗

)2

(δ∗D)2

satisfies inequality (4.2) for researcher specified values α∗, 1− β∗, and δ∗D.

4.4 Conclusion

An individual in some cases can serve as their own control. For this case, we have

presented commonly recommended methods for comparing the means of two popu-

lations for paired data. Methods were given both for the case in which the standard

deviation of the distribution of differences is given and estimated. Relative simple

methods were derived for determining the sample size for the study.



CHAPTER 5

SEQUENTIAL AND ADAPTIVE METHODS

5.1 Introduction

Jennison and Turnbull (2000) noted that “formal application of sequential procedures

started in the late 1920s in the area of statistical quality control in manufacturing

production.” It was in the early 1920s that Walter A. Shewhart introduced the qual-

ity control chart for sequentially analyzing the output of a process for the purpose

of improving the quality of the process (see Shewhart 1931). Shewhart (1925) stated

“the object of this note is to emphasize what appears to be a comparatively new

field of application of statistical methods.” He went on to describe the quality control

chart and pointed out it is used sequentially as a statistical tool for improving and

maintaining the quality of a production process. Dodge and Romig (1929) introduced

acceptance sampling procedures that are sequential methods that today are viewed as

methods for improving the quality of the output of a process by removing poor quality

items. The ideas of Type I and Type II errors have their origin in the producer’s risk

and the customer’s risk. The theory of sequential statistical analysis in designed ex-

periments has its origin in the works of Barnard (1946) and Wald (1947). According

to Wald (1947), “an essential feature of the sequential test, as distinguished from the

current test procedures, is that the number of observations required by the sequential

test depends on the outcome of the observations and is, therefore, not predetermined,

but a random variable.” Chow and Chang (2007) discussed adaptive deign methods

in clinical trials. They stated “the adaptive design methods are usually developed

based on observed treatment effects.” This allows for “wider flexibility, adaptations in

clinical investigation of treatment regimen may include changes of sample size, inclu-
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sion/exclusion criteria, study dose, study endpoints, and methods for analysis (Liu,

Proschan, and Pldeger, 2002).” In this chapter, we will examine (some) sequential

and adaptive methods applied in clinical trials in which the sample size(s) is (are) a

random variable. As of the writing of this thesis, the Food and Drug Administration

(FDA) has become receptive to the use of adaptive designs in drug development and

testing. They are now active in promoting research in the use of adaptive designs in

clinical trials.

Firstly, we discuss some adaptive and sequential methods that use an initial

sample to predict the total sample size(s). These methods have been referred to as

two-stage sample size prediction methods. It is claimed by Dudewicz, et al. (2007)

that three of these methods provide solutions to the Behrens-Fisher problem. The

second method causes the researcher to select more data if a conclusion to fail to

reject or to reject the null hypothesis is not made with the present data. Since the

total sample sizes are not fixed and it is changed based on the prior test it follows

that the total sample sizes are random variables for both types of procedures. The

attempt in all of these cases is to have a test of a fixed size and to have the required

power.

5.2 Two-Stage Sample Prediction Methods

Dantzig (1940) proved that there does not exist any t-test for a fixed sample size(s)

in which the power is independent of the population(s) standard deviation(s). Stein

(1945) introduced a two-stage test of H0 : µ = µ0 versus Ha : µ 6= µ0 in which the

power is independent of σ. To use this procedure, the researcher before collecting any

data first selects “a priori” a positive number u∗ and an initial sample size n∗ ≥ 2.
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Next the researcher selects a sample of size n∗ from the population. Assume the X

measurements X1, . . . , Xn∗ on the individuals in this sample constitutes a random

samples from a N (µ, σ2) distribution. Let S2
n∗ denote the variance of this sample.

The total sample size N for the experiment is the observed value of the random

variable defined by

N = max

{[
S2
n∗

u∗

]
+ 1, n∗ + 1

}
,

where [q] = largest integer ≤ q.

Clearly, the researcher using this method will always select at least one more

individual from the population than the initial sample size n∗. Using these results

the random variables A1, . . . , AN are selected subject to the restrictions

∑N

j=1
Aj = 1; A1 = . . . = An∗ ; and

∑N

j=1
A2
j =

u∗

S2
n∗

.

The following two theorems are used in the design of the test.

Theorem 5.2.1. The random variable

T0 =

∑N
j=1AjXj − µ√

u∗
∼ tn∗−1.

Proof. First observe that

E
(∑N

j=1
AjXj

)
= E

[
E
(∑N

j=1
AjXj

∣∣S2
n∗

)]
= E

(∑N

j=1
AjE (Xj)

∣∣S2
n∗

)
= E

((∑N

j=1
Aj

)
µ
∣∣S2

n∗

)
= E

(
µ
∣∣S2

n∗

)
= µ.
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The variance of
∑N

j=1AjXj can be determined as follows.

V
(∑N

j=1
AjXj

)
= E

[
V
(∑N

j=1
AjXj

∣∣S2
n∗

)]
+ V

[
E
(∑N

j=1
AjXj

∣∣S2
n∗

)]
= E

(∑N

j=1
A2
jV (Xj)

∣∣S2
n∗

)
+ V

(∑N

j=1
AjE (Xj)

∣∣S2
n∗

)
= E

(∑N

j=1
A2
jσ

2
∣∣S2

n∗

)
+ V

(∑N

j=1
Ajµ

∣∣S2
n∗

)
= E

(
u∗σ2

S2
n∗

∣∣S2
n∗

)
+ V

(
µ
∣∣S2

n∗

)
= u∗σ2/S2

n∗ .

We can now write

T0 =

∑N
j=1 AjXj−µ√
u∗σ2/S2

n∗√
u∗√

u∗σ2/S2
n∗

=

∑N
j=1 AjXj−µ√
u∗ν/Wn∗
√
u∗√

u∗ν/Wn∗

=
Z√
Wn∗/ν

,

where

Z =

∑N
j=1AjXj − µ√
u∗ν/Wn∗

and Wn∗ =
νS2

n∗

σ2
∼ χ2

ν with ν = n∗ − 1.

The cdf FT0 (t) of the distribution of T0 is determined as follows.

FT0 (t) =

∫ t

−∞
fT0 (q) dq =

∫ t

−∞

∫ ∞
0

fT0,Wn∗ (q, w) dwdq

=

∫ t

−∞

∫ ∞
0

fT0|Wn∗ (q |w ) fWn∗ (w) dwdq.

Now observe that the conditional distribution of T0 given W is a normal distribution

with mean 0 and variance ν/w since the conditional distribution of Z given W follows

a standard normal distribution. We can now write

FT0 (t) =

∫ t

−∞

∫ ∞
0

1√
2π
√
ν/w

e
− 1

2

(
q√
ν/w

)2

1

Γ
(
ν
2

)
2ν/2

wν/2−1e−w/2dwdq

=

∫ t

−∞

∫ ∞
0

1
√
νπΓ

(
ν
2

)
2(ν+1)/2

w(ν+1)/2−1e−(1+q2/ν)w/2dwdq.
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Making the change of variable r = (1 + q2/ν)w, we have

FT0 (t) =

∫ t

−∞

Γ
(
ν+1
2

)
√
νπΓ

(
ν
2

)
(1 + q2/ν)(ν+1)/2

×

(∫ ∞
0

1

Γ
(
ν+1
2

)
2(ν+1)/2

r(ν+1)/2−1e−r/2dr

)
dq

=

∫ t

−∞

Γ
(
ν+1
2

)
√
νπΓ

(
ν
2

)
(1 + q2/ν)(ν+1)/2

dq.

This is the cdf of a t-distribution with ν = n∗ − 1.

Theorem 5.2.2. The size of the test that rejects H0 : µ = µ0 in favor of Ha : µ 6= µ0

if |T | ≥ tn∗−1,0,α/2 is α, where T =
(∑N

j=1AjXj − µ0

)
/
√
u∗ and tn∗−1,0,α/2 is the

100 (1− α/2)th percentile of a central t-distribution with n∗ − 1 degrees of freedom.

The power of the test is

π = 1− Ftn∗−1

(
tn∗−1,0,α/2 −∆/

√
u∗
)

+ Ftn∗−1

(
−tn∗−1,0,α/2 −∆/

√
u∗
)

,

where ∆ = µ− µ0.

Proof. It is not difficult to see that the size of the test is α. Observe that

T =

∑N
j=1AjXj − µ√

u∗
+
µ− µ0√

u∗
= T0 +

∆√
u∗

.

The power of the test can now be expressed as

π = P

(∣∣∣∣T0 +
∆√
u∗

∣∣∣∣ ≥ tn∗−1,0,α/2

)
= 1− P

(
−tn∗−1,0,α/2 −

∆√
u∗

< T0 < tn∗−1,0,α/2 −
∆√
u∗

)
= 1− P

(
T0 < tn∗−1,0,α/2 −

∆√
u∗

)
+P

(
T0 < −tn∗−1,0,α/2 −

∆√
u∗

)
for ∆ 6= 0. The results now follow.
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The method introduced by Stein (1945) has been used by various authors to

develop adaptive procedures for comparing two population means. We provide a

general outline for the procedures of those introduced by Chapman (1950), Prokof’yev

and Shishkin (1974), and Dudewicz and Ahmed (1998). The procedures begin by

selecting “a priori” the positive real number u∗ and the integer n∗ ≥ 2. Samples of size

n∗ are selected from the intervention and control groups with respective measurements

XI,1, . . . , XI,n∗ and XC,1, . . . , XC,n∗ . These data and future data are assumed to be

stochastically independent with XI,j ∼ N (µI , σ
2
I ) and XC,j ∼ N (µC , σ

2
C) for i =

1, 2, . . .. The total samples sizes from each group are the observed values of the

random variables

NI = max

{[
GI

u∗

]
+ 1, n∗ + 1

}
and NC = max

{[
GC

u∗

]
+ 1, n∗ + 1

}
,

where GI and GC are functions of the sample data XI,1, . . . , XI,n∗ and XC,1, . . . , XC,n∗ .

Next the observed values of the random variables AI,1, . . . , AI,NI and AC,1, . . . , AC,NC

are to be selected based on the restrictions

AI,1 = . . . = AI,n∗ and AC,1 = . . . = AC,n∗ ;∑NI

j=1
AI,j = 1 and

∑NC

j=1
AC,j = 1;∑NI

j=1
A2
I,j =

u∗

HI

and
∑NC

j=1
A2
C,j =

u∗

HC

,

where HI and HC are functions of the sample data XI,1, . . . , XI,n∗ and XC,1, . . . , XC,n∗ .

Chapman (1950) further suggested letting

AI,n∗+1 = . . . = AI,NI and AC,n∗+1 = . . . = AC,NC
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Table 5.1: Behrens-Fisher Procedures {t5.1}

Two-Stage GI HI

Procedure GC HC

Chapman S2
I,n∗ GI

(1950) S2
C,n∗ GC

Prokof’yev and S2
Z,n∗ † u∗N

Shishkin(1974) S2
Z,n∗ u∗N

Dudewicz and SI,n∗ (SI,n∗ + SC,n∗) GI

Ahmed(1998) SC,n∗ (SI,n∗ + SC,n∗) GC

†S2
Z,n∗ = 1

n∗−1

∑n∗

j=1

(
XI,j −XC,j −XI,n∗ +XC,n∗

)2
to eliminate the arbitrariness involved in their selection. It is easy to show that

AI,n∗+1 =
1

NI

(
1 +

√
n∗ (NIu∗ −HI)

(NI − n∗)HI

)
;

AI,1 =
1− (NI − n∗)AI,n∗+1

n∗
;

AC,n∗+1 =
1

NC

(
1 +

√
n∗ (NCu∗ −HC)

(NC − n∗)HC

)
;

AC,1 =
1− (NC − n∗)AC,n∗+1

n∗
.

The test rejects H0 : µI = µC in favor of Ha : µI 6= µC if |T | ≥ t∗α/2, where

T =

∑NI
j=1AI,jXI,j −

∑NC
j=1AC,jXC,j√

u∗

with t∗α/2 is the 100 (1− α/2)th percentile of the null distribution of T . Table 5.1

gives the values of GI , GC , HI , and HC for the procedures introduced by Chapman

(1950), Prokof’yev and Shishkin (1974), and Dudewicz and Ahmed (1998).
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Because the of the restrictions on the AI,j’s, we have that

E
(∑NI

j=1
AI,jXI,j

)
= E

[
E
(∑NI

j=1
AI,jXI,j |NI , AI,j, . . . , AI,NI

)]
= E

(∑NI

j=1
AI,jE (XI,j) |NI , AI,j, . . . , AI,NI

)
= E

(∑NI

j=1
AI,jµI |NI , AI,j, . . . , AI,NI

)
= E (µI |NI , AI,j, . . . , AI,NI ) = µI .

Similarly, one can show that

E
(∑NC

j=1
AC,jXC,j

)
= µC .

We see that T can be expressed as

T =

(∑NI
j=1AI,jXI,j −

∑NC
j=1AC,jXC,j

)
− (µI − µC)

√
u∗

+
µI − µC√

u∗

= T0 +
∆√
u∗

,

where

T0 =

(∑NI
j=1AI,jXI,j −

∑NC
j=1AC,jXC,j

)
− (µI − µC)

√
u∗

and

∆ = µI − µC .

The size of the test has been selected to be α with critical value t∗α/2 and the power

of the test is determined by

π = 1− FT0

(
t∗α/2 −

∆√
u∗

)
+ FT0

(
−t∗α/2 −

∆√
u∗

)
.

It is desirable select the critical value t∗α/2 of the test to be the 100 (1− α/2)th per-

centile of the distribution of T0, if possible. Clearly, it can be seen that as u∗ is

increased the power of the test increases as does the expected values of the sample

sizes NI and NC (as one would expect).
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For the Chapman (1950) procedure, we write T0 as

T0 =

∑NI
j=1AI,jXI,j − µI√

u∗
−
∑NC

j=1AC,jXC,j − µC√
u∗

.

Based on the definitions of NI , AI,1, . . . , AI,NI and NC , AC,1, . . . , AC,NI , we have that

TI,0 =

∑NI
j=1AI,jXI,j − µI√

u∗
∼ tn∗−1 and TC,0 =

∑NC
j=1AC,jXC,j − µC√

u∗
∼ tn∗−1

and independent. These results follow from Theorem 2. Since T0 = TI,0 − TC,0, then

one can express the cdf of T0 by the convolution formula

FT0 (t) = P (TI,0 − TC,0 ≤ t) = P (TI,0 ≤ t+ TC,0)

=

∫ ∞
−∞

Ftn∗−1
(t+ q) ftn∗−1

(q) dq.

(See Taneja and Dudewicz (1993)). Note that FT0 (t) is only a function of n∗−1. This

expression does not reduce to a simple expression and must be evaluated numerically.

The value of FT0 (t)−0.5 for various values of t and n∗−1 = 2, 4, 6, 8, 10, 12 are tabled

in Chapman (1950). For this procedure, it is possible to select the critical value t∗α/2

of the test as the 100 (1− α/2)th percentile of the distribution of T0.

The random variable T in the Prokof’yev and Shishkin (1974) procedure can be

expressed as

T =
XI,N −XC,N

SZ,n∗/
√
N

.

It is not difficult to show that T ∼ tn∗−1 + ∆/
√
u∗ using the results of Theorem 1.

For this test, we have

t∗α/2 = tn∗−1,α/2.

The power of the test for ∆ 6= 0 is

π = 1− Ftn∗−1

(
tn∗−1,α/2 −

∆√
u∗

)
+Ftn∗−1

(
−tn∗−1,α/2 −

∆√
u∗

)
.
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Taneja and Dudewicz (1993) compared the “solutions of the Behrens-Fisher problem”

by Chapman (1950) and Prokof’yev and Shishkin (1974). They recommended the

procedure by Chapman (1950).

Dudewicz and Ahmed (1998) stated the following theorem concerning the distri-

bution of T0. We provide a proof of this theorem with some added results.

Theorem 5.2.3. The cdf of T0 can be expressed as

FT0 (t) =

∫ ∞
0

2qFt2(n∗−1)

(
t

√
2q(λq + 1)

(q + λ) (1 + q2)

)
fFn∗−1,n∗−1

(
q2
)
dq,

where Ft2(n∗−1)
(r) and fFn∗−1,n∗−1

(r) are, respectively, the cdf and pdf function of a

t-distribution with 2 (n∗ − 1) and an F -distribution with numerator and denominator

degrees of freedom both n∗ − 1. The distribution of the random variable T0 depends

only on the values n∗ and λ = σI/σC but not on the value of u∗.

Proof. It is convenient to let

D =
∑NI

j=1
AI,jXI,j −

∑NC

j=1
AC,jXC,j.

Observe that

µD = E
(∑NI

j=1
AI,jXI,j −

∑NC

j=1
AC,jXC,j

)
= E

[
E
(∑NI

j=1
AI,jXI,j −

∑NC

j=1
AC,jXC,j |SI,n∗ , SC,n∗

)]
= E

(∑NI

j=1
AI,jE (XI,j) |SI,n∗ , SC,n∗

)
−E

(∑NC

j=1
AC,jE (XC,j) |SI,n∗ , SC,n∗

)
= E

((∑NI

j=1
AI,j

)
µI |SI,n∗ , SC,n∗

)
−E

((∑NC

j=1
AC,j

)
µC |SI,n∗ , SC,n∗

)
= E (µI |SI,n∗ , SC,n∗ )− E (µC |SI,n∗ , SC,n∗ )

= µI − µC .
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The variance of D is given by

σ2
D = V

(∑NI

j=1
AI,jXI,j −

∑NC

j=1
AC,jXC,j

)
= E

[
V
(∑NI

j=1
AI,jXI,j −

∑NC

j=1
AC,jXC,j |SI,n∗ , SC,n∗

)]
+V

[
E
(∑NI

j=1
AI,jXI,j −

∑NC

j=1
AC,jXC,j |SI,n∗ , SC,n∗

)]
= E

(∑NI

j=1
A2
I,jV (XI,j) +

∑NC

j=1
A2
C,jV (XC,j) |SI,n∗ , SC,n∗

)
+V (µI − µC |SI,n∗ , SC,n∗ )

=
u∗σ2

I

SI,n∗ (SI,n∗ + SC,n∗)
+

u∗σ2
C

SC,n∗ (SI,n∗ + SC,n∗)

= u
σ2
CSI,n∗+σ

2
ISC,n∗

SI,n∗SC,n∗ (SI,n∗ + SC,n∗)
.

We can now express T0 as

T0 =

D−(µI−µC)√
u(σ2

CSI,n∗+σ2
ISC,n∗ )

SI,n∗SC,n∗ (SI,n∗+SC,n∗ )
√
u√

u
σ2

CSI,n∗+σ2
ISC,n∗

SI,n∗SC,n∗ (SI,n∗+SC,n∗ )

=
Z√

SI,n∗SC,n∗(SI,n∗+SC,n∗)
σ2
CSI,n∗+σ

2
ISC,n∗

,

where

Z =
D − (µI − µC)√
u(σ2

CSI,n∗+σ
2
ISC,n∗)

SI,n∗SC,n∗(SI,n∗+SC,n∗)

.

The conditional distribution of the random variables Z and T0 given SI,n∗ and

SC,n∗ are respectively, a standard normal distribuition and a normal distribution mean

zero and variance

σ2
T0|SI,n∗ ,SC,n∗ =

σ2
CSI,n∗+σ

2
ISC,n∗

SI,n∗SC,n∗ (SI,n∗ + SC,n∗)
.

The cumulative distribution function of T0 can be expressed as

FT0 (t) =

∫ ∞
0

∫ ∞
0

Φ

(
t

√
sIsC (sI + sC)

σ2
CsI + σ2

IsC

)
fSI (sI) fSC (sC) dsCdsI .



44

Making the change of variables qI = sI/σI and qC = sC/σC with Jacobian

J = σIσC , we have

FT0 (t) =

∫ ∞
0

∫ ∞
0

Φ

(
t

√
σIσCqIqC(σIqI + σCqC)

σIσ2
CqI + σ2

IσCqC

)
×σIfSI (σIqI)σCfSC (σCqC) dqCdqI .

Next we observe that FSI (σIqI) = Fχ2
n∗−1

((n∗ − 1) q2
I ), hence

σIfSI (σIqI) = 2 (n∗ − 1) qIfχ2
n∗−1

(
(n∗ − 1) q2

I

)
=

2(n∗ − 1)(n∗−1)/2

Γ
(
n∗−1

2

)
2(n∗−1)/2

qI
(
q2
I

)(n∗−1)/2−1
e−(n∗−1)q2I/2.

Similarly, we have that

σCfSC (σCqC) =
2(n∗ − 1)(n∗−1)/2

Γ
(
n∗−1

2

)
2(n∗−1)/2

qC
(
q2
C

)(n∗−1)/2−1
e−(n∗−1)q2C/2.

Hence, we have

FT0 (t) =

∫ ∞
0

∫ ∞
0

Φ

(
t

√
σIσCqIqC(σIqI + σCqC)

σIσ2
CqI + σ2

IσCqC

)

× 2(n∗ − 1)(n∗−1)/2

Γ
(
n∗−1

2

)
2(n∗−1)/2

qI
(
q2
I

)(n∗−1)/2−1
e−(n∗−1)q2I/2

× 2(n∗ − 1)(n∗−1)/2

Γ
(
n∗−1

2

)
2(n∗−1)/2

qC
(
q2
C

)(n∗−1)/2−1
e−(n∗−1)q2C/2

×dqCdqI .

Making the change of variables qI = qqC and qC = qC with J = qC , we have

FT0 (t) =

∫ ∞
0

∫ ∞
0

Φ

(
t

√
σIσCqqCqC(σIqqC + σCqC)

σIσ2
CqqC + σ2

IσCqC

)

× 2(n∗ − 1)(n∗−1)/2

Γ
(
n∗−1

2

)
2(n∗−1)/2

qqC
(
q2q2

C

)(n∗−1)/2−1
e−(n∗−1)q2q2C/2

× 2(n∗ − 1)(n∗−1)/2

Γ
(
n∗−1

2

)
2(n∗−1)/2

qC
(
q2
C

)(n∗−1)/2−1
e−(n∗−1)q2C/2

×qCdqCdq.
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Simplifying and rearranging terms, we can write

FT0 (t) =

∫ ∞
0

∫ ∞
0

2qΦ

(
t

√
q(λq + 1)

q + λ
q2
C

)

× 2(n∗ − 1)(n∗−1)

Γ
(

2(n∗−1)
2

)
22(n∗−1)/2

(
q2
C

)2(n∗−1)/2−1
e−(n∗−1)(1+q2)q2C/2qCdqC

×
Γ
(

2(n∗−1)
2

)
Γ
(
n∗−1

2

)
Γ
(
n∗−1

2

) (q2
)(n∗−1)/2−1

dq.

Now make the change of variable

q2
C =

w

(n∗ − 1) (1 + q2)
with qCdqC =

dw

2 (n∗ − 1) (1 + q2)
.

It follows that

FT0 (t) =

∫ ∞
0

∫ ∞
0

2qΦ

(
t

√
2q(λq + 1)

(q + λ) (1 + q2)

w

2 (n∗ − 1)

)
× 1

Γ
(

2(n∗−1)
2

)
22(n∗−1)/2

w2(n∗−1)/2−1e−w/2dw

×
Γ
(

2(n∗−1)
2

)
Γ
(
n∗−1

2

)
Γ
(
n∗−1

2

) (q2
)(n∗−1)/2−1 (

1 + q2
)−2(n∗−1)/2

dq.

Therefore, we have

FT0 (t) =

∫ ∞
0

2qFt2(n∗−1)

(
t

√
2q(λq + 1)

(q + λ) (1 + q2)

)
fFn∗−1,n∗−1

(
q2
)
dq.

Theorem 5.2.4. The cdf of T is given by

FT (t) = FT0

(
t−∆/

√
u∗
)

,

where ∆ = µI − µC.
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Theorem 5.2.5. The following hold for the cdf of T0:

lim
λ→0

FT0 (t) = Gn∗,0 (t) =

∫ ∞
0

2qFt2(n∗−1)

(
t

√
2

1 + q2

)
fFn∗−1,n∗−1

(
q2
)
dq and

lim
λ→∞

FT0 (t) = Gn∗,∞ (t) =

∫ ∞
0

2qFt2(n∗−1)

(
t

√
2q2

1 + q2

)
fFn∗−1,n∗−1

(
q2
)
dq.

The test suggested by Dudewicz and Ahmed (1998) is given in the following

theorem.

Theorem 5.2.6. A test of size α rejects H0 : µI = µC in favor of Ha : µI 6= µC if

|T | ≥ hn∗,α/2, where hn∗,α/2 is the solution to the equation

inf
λ>0
{h |FT0 (h |n∗, λ) = 1− α/2} .

Proof. At the writing of this thesis, we have not been able to prove this theorem.

An equivalent form of the test of Dudewicz and Ahmed (1998) is presented in

the following theorem.

Theorem 5.2.7. A test of size α rejects H0 : µI = µC in favor of Ha : µI 6= µC if

|T | ≥ hn∗,α/2, where hn∗,α/2 is the solution to the equation

Gn∗,∞ (t) =

∫ ∞
0

2qFt2(n∗−1)

(
t

√
2q2

1 + q2

)
fFn∗−1,n∗−1

(
q2
)
dq = 1− α/2.

Proof. At the writing of this thesis, we have not been able to prove this theorem al-

though the solutions to the equationGn∗,∞ (h) =
∫∞

0
2qFt2(n∗−1)

(
h
√

2q2

1+q2

)
fFn∗−1,n∗−1

(q2) dq =

1− α/2 are those values tabled in Table I of Dudewicz and Ahmed (1998).

The size of the test is α and the power of the test is determined by

π = 1− FT0

(
hn∗,α/2 −∆/

√
u∗
)

+ FT0

(
−hn∗,α/2 −∆/

√
u∗
)

.



47

At the writing of this thesis, we have not been able to show that there is a solution

hn∗,α/2 to the equation

inf
λ>0

FT0 (t |n∗, λ) = 1− α/2.

Consequently, it is not clear that their claim is true. They go on to state that this

procedure is asymptotic optimal in the sense that it “achieves asymptotically what

the fixed sample does with λ known.”

Proschan (2005) described two-stage sample prediction procedure to test for the

difference between means assuming that the population variances are equal. A mod-

ified version of this procedure has the researcher selecting

u∗ =
(∆∗)2

2
(
t2(n1−1),0,α/2 + t2(n1−1),0,β

)2
and n∗ ≥ 2. The values α∗, β∗, and ∆∗ > 0 are to be specified by the researcher,

where ∆∗ is a value chosen such that for all ∆ = µI − µC the power of the test is at

least 1− β∗ for |∆| ≥ ∆∗. The values of AI,j = AC,j = 1/N with

∑N

j=1
A2
I,j =

∑N

j=1
A2
C,j =

u∗

S2
p,n∗

,

where Sp,n∗ = (SI,n∗ + SC,n∗) /2. The test rejects the null hypothesis of equal means

in favor of the alternative hypothesis of unequal means if∣∣∣∣∣∣XI,N −XI,N√
2S2

p,n∗/N

∣∣∣∣∣∣ ≥ t2(n∗−1),α/2.

The test is of size α and has power function

π = 1− Ftn∗−1

(
t2(n∗−1),α/2 −

∆√
u∗

)
+Ftn∗−1

(
−t2(n∗−1),α/2 −

∆√
u∗

)
.
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As discussed in Chapter 3, the sample size problem could only be solved if λ is

known. For the case in which λ is not known, we propose a method for determining

the intervention and control sample sizes. This method requires the researcher provide

the following values: (1) the desired size α∗ of the test; (2) an initial sample size n∗

for both the intervention and the control groups; (3) a value ∆∗ > 0 of ∆; (4) a value

1−β∗ such that the power of the test is at least this value for all |∆| ≥ ∆∗, and (5) a

value u∗ > 0. The proposed method is as follows. Obtain the observed values of the

random sample of X measurements

XI,1, XI,2, . . . , XI,n∗ and XC,1, XC,2, . . . , XC,n∗

to be taken on individuals from the intervention and control groups, respectively.

Determine the variances S2
I,n∗ and S2

C,n∗ from the respective sample values. Calculate

the observed value of the estimator

L = u∗SI,n∗/SC,n∗

of λ. Find the sample sizes NI and NC such that total sample size N = NI + NC is

a minimum, FT2

(
t0,L,NI ,NC ,α∗/2 |∆∗/SC,n∗ , L,NI , NC

)
is a maximum over all pairs of

sample sizes that have a total of N , and

FT2

(
t0,L,NI ,NC ,α∗/2 |∆∗/SC,n∗ , L,NI , NC

)
≥ 1− β∗.

The FORTRAN program given in Appendix II can be used to select the values of

NI and NC . Note that the sample sizes NI and NC are random variables. Next

select the test based on the observed values of the random variables AI,1, . . . , AI,NI ,

AC,1, . . . , AC,NC , and test statistic

T =

∑NI
j=1AI,jXI,j −

∑NC
j=1AC,jXC,j√

u∗
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using one of the procedures by Chapman (1950), Prokof’yev and Shishkin (1974), or

Dudewicz and Ahmed (1998).

No guidance is given by Stein (1945), Chapman (1950), Prokof’yev and Shishkin

(1974), and Proschan (2005) in the selection of the sample size n∗. Seelbinder (1953)

suggested for the procedure by Stein (1945) to select n∗ such that E (N) is minimized.

Moshman (1958) proposed the use of an upper percentage point of the distribution

of N in conjunction with E (N) to guide in the selection of n∗ when selecting a

confidence interval for µI − µC .

For the procedure given in Stein (1945), the variability in the distribution of N

is due to the variability the statistic S2
n∗ . It is not difficult to show, as previously

stated, that

S2
n∗ ∼

σ2

n∗ − 1
χ2
n∗−1.

We can then express N as

N = max

{[
σ2W/ (n∗ − 1)

u∗

]
+ 1, n∗ + 1

}
,

where

W =
(n∗ − 1)S2

n∗

σ2
∼ χ2

n∗−1.

We see that the probability mass function describing the distribution of N is given

by

P (N = n∗ + k) =

 FW (a1) , for k = 1;

FW (ak)− FW (ak−1) for k > 1,

where

ak =
(n∗ − 1) (n∗ + k)u∗

σ2
.

Note that the distribution of the sample size is a function of u∗, n∗, and σ2.
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There are several parameters of the distribution of N that would be of interest

to the researcher. The most noted of these are the mean µN , the standard deviation

σN , and the 100γth percentage point N1−γ for various values of 0 < γ < 1. As is well

known, the mean of the distribution can be expressed as

µN = E (N) =
∞∑
k=0

(n∗ + k)P (N = n∗ + k) .

We observe that we can write

µN = n∗
∞∑
k=0

P (N = n∗ + k) +
∞∑
k=1

kP (N = n∗ + k)

= n∗ +
∞∑
k=1

kP (N = n∗ + k) .

To obtain the standard deviation of the distribution of N , we first find E (N2) which

can be expressed as

µN2 = E
(
N2
)

=
∞∑
k=0

(n∗ + k)2 P (N = n∗ + k) .

Expanding the term (n∗ + k)2 and simplifying, we have

µN2 = n∗ (2µN − n∗) +
∞∑
k=0

k2P (N = n∗ + k) .

It then follows that

σ2
N = E

(
N2
)
− (E (N))2

=
∞∑
k=0

(n∗ + k)2 P (N = n∗ + k)

−

(
∞∑
k=0

(n∗ + k)P (N = n∗ + k)

)2

= n∗ (2µN − n∗) +
∞∑
k=0

k2P (N = n∗ + k)

−

(
n∗ +

∞∑
k=1

kP (N = n∗ + k)

)2

.
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The 100γth percentage point N1−γ can be determined by

P (N < N1−γ) < γ ≤ P (N ≤ N1−γ) .

It follows that

N1−γ−1∑
k=0

P (N = n∗ + k) < γ ≤
N1−γ∑
k=0

P (N = n∗ + k) .

Under the assumption that the null hypothesis holds, it may be of interest to

the researcher to obtain a prediction interval for N . One method for obtaining a

100 (1− α) % prediction interval for N is the interval

(N1−τ , Nα−τ ] ,

where 0 < τ < α.

5.3 Paired Data

In the paired data case, a test of size α∗ (specified by the researcher) to be use to test

the hypotheses H0 : µD = 0 versus Ha : µD 6= 0 rejects H0 if |T | ≥ tn−1,α∗/2, where

T =
D

S/
√
n

.

First we consider selecting the sample size n if the researcher can provide values 1−β∗

(the desired minimum power of the test) and δ∗D > 0 of δD = µD/σD such that for all

values of δD such that |δD| ≥ δ∗D the power of the test is at least 1− β∗. In this case,

we can represent the power function by

π (α∗, δD, n) = 1− Ftn−1,
√
nδD

(
tn−1,0,α∗/2

)
+ Ftn−1,

√
nδD

(
−tn−1,0,α∗/2

)
.
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It is not difficult to show that the desired sample size n is the smallest positive integer

that satisfies the inequality

π (α∗, δ∗D, n) ≥ 1− β∗.

In general, the power function is a function of α, µD, σD, and n. If the researcher

can specify a value µ∗D > 0 such that

π (α∗, µ∗D, σD, n) ≥ 1− β∗,

then the desired sample size is the minimum value of n that satisfies this inequality.

The problem with this method is that it depends on the unknown value σD.

Using the procedure by Stein (1945), the researcher would select the positive real

number u∗ and an initial sample size n∗ ≥ 2. Using the estimator S2
D,n∗ from this

initial sample values D1, . . . , Dn∗ to estimate σ2
D, we predict the total sample size N

by

N = max

{[
S2
D,n∗

u∗

]
+ 1, n∗ + 1

}
.

Assume the measurements D1, . . . , Dn∗ is a random sample from a N (µD, σ
2
D) distri-

bution. Let S2
n∗ denote the variance of this sample. Using these results the random

variables A1, . . . , AN are selected subject to the restrictions∑N

j=1
Aj = 1; A1 = . . . = An∗ ; and

∑N

j=1
A2
j =

u∗

S2
D,n∗

.

The test rejects H0 : µD = 0 in favor of Ha : µD 6= 0 if |T | ≥ tn∗−1,α/2, where

T =

∑N
j=1AjDj√
u∗

.

This test has size α and power function given by

π = 1− Ftn∗−1

(
tn∗−1,α/2 −

µ∗D√
u∗

)
+Ftn∗−1

(
−tn∗−1,α/2 −

µ∗D√
u∗

)
.
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5.4 Multistage Stage Adaptive Methods

The hypotheses to be tested are

H0 : µD = 0 versus H0 : µD 6= 0.

The data will be available in the form of two random samples D1,1, . . . , D1,n1 and

D2,1, . . . , D2,n2 with respective means D1 and D2. The first sample will be used to

decide (1) to fail to reject H0, (2) reject H0, or (3) observe the second sample. If the

measurements on the second sample are taken, then the samples are combined and

this information is used to decide to either fail to reject the null hypothesis or reject

it. The first test we will consider assumes that σD is known. The null hypothesis is

rejected if

(1) |T1| ≥ zα1/2 or (2) zα0/2 ≤ |T1| < zα1/2 and |T | ≥ zα2/2,

where

T1 =
D1

σD/
√
n1

and T =
D

σD/
√
n

with D =
n1D1 + n2D2

n
.

Here n = n1 + n2. This testing method is a two-stage sampling method. The size α

of the test is determined by

α = P

(∣∣∣∣ D1

σD/
√
n1

∣∣∣∣ ≥ zα1/2 |µD = 0

)
+P

(
zα0/2 ≤

∣∣∣∣ D1

σD/
√
n1

∣∣∣∣ < zα1/2,

∣∣∣∣ D

σD/
√
n

∣∣∣∣ ≥ zα2/2 |µD = 0

)
.

The power of the test is determined by

π = P

(∣∣∣∣ D1

σD/
√
n1

∣∣∣∣ ≥ zα1/2 |µD 6= 0

)
+P

(
zα0/2 ≤

∣∣∣∣ D1

σD/
√
n1

∣∣∣∣ < zα1/2,

∣∣∣∣ D

σD/
√
n

∣∣∣∣ ≥ zα2/2 |µD 6= 0

)
.
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It is of interest to be able to determine the size and power of the test. To do so

we examine the statistics T1 and T . We see that we can express T1 as

T1 =
D1 − µD
σD/
√
n1

+
√
n1
µD
σD

= Z1 +
√
n1δD,

where

Z1 =
D1 − µD
σD/
√
n1

and δD =
µD
σD

.

The random variable T can be expressed as

T =

√
n1

n

D1 − µD
σD/
√
n1

+

√
n2

n

D2 − µD
σD/
√
n2

+
√
n
µD
σD

=

√
n1

n
Z1 +

√
n2

n
Z2 +

√
nδD,

where

Z2 =
D2 − µD
σD/
√
n2

.

Further, we observe that we can express T as

T =

√
n2

n

(
Z2 +

√
n1

n2

T1 +
n
√
n2

δ

)
.

We can now express the power function as

π = 1− Φ
(
zα1/2 −

√
n1δD

)
+ Φ

(
−zα1/2 −

√
n1δD

)
−
∫ zα1/2

−√n1δD

zα0/2
−√n1δD

(
Φ

(√
nzα2/2 − h√

n2

)
− Φ

(
−
√
nzα2/2 − h√

n2

))
×φ (t1) dt1

−
∫ −zα0/2

−√n1δD

−zα1/2
−√n1δD

(
Φ

(√
nzα2/2 − h√

n2

)
− Φ

(
−
√
nzα2/2 − h√

n2

))
×φ (t1) dt1,



55

where h =
√
n1t1 + nδD. The size α is equal to π when δD = 0. Hence, we can write

α = α1 +

−
∫ zα1/2

zα0/2

(
Φ

(√
nzα2/2 −

√
n1t1√

n2

)
− Φ

(
−
√
nzα2/2 −

√
n1t1√

n2

))
×φ (t1) dt1

−
∫ −zα0/2

−zα1/2

(
Φ

(√
nzα2/2 −

√
n1t1√

n2

)
− Φ

(
−
√
nzα2/2 −

√
n1t1√

n2

))
×φ (t1) dt1.

A more general setting of this problem allows for upto K samples to be examined

with a decision to fail to reject or reject the null hypothesis to be made at sampling

stage K. A even more general test does not fix K but allows the data to determine

the value of K. This multistage method can be designed as follows. At sampling

stage k, a decision to reject H0 is made if

⋂k−1

i=1

{
zαi,0/2 ≤ |Tn1,...,ni | < zαi,1/2

}
and |Tn1,...,ni | ≥ zαk,2/2,

where

Tn1,...,ni =
Dn1,...,ni

σD/
√
n1 + . . .+ ni

with Dn1,...,ni =
n1D1 + . . .+ niDi

n1 + . . .+ ni

for i = 1, 2, 3, . . .. For the case in which σD is unknown, we would replace zαi,0/2 with

tαi,j/2 for j = 0, 1, 2 and

Tn1,...,ni =
Dn1,...,ni

Sn1,...,ni,p/
√
n1 + . . .+ ni

,

where

S2
n1,...,ni,p

=

∑i
j=1 (nj − 1)S2

nj∑i
j=1 (nj − 1)

.
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5.5 Group Sequential Methods

Although Elfring and Schultz (1973), McPherson (1974) and Canner (1977) provided

some of the earliest sequential medical studies, the methods proposed by Pocock

(1977), O’Brien and Fleming (1979), and Wang and Tsiatis (1987) are typically the

ones most often cited. A family of group sequential tests that include (see Table

5.1) those of Pocock (1977), O’Brien and Fleming (1979), and Wang and Tsiatis

(1987) can be described as follows. Measurements are to be taken sequentially on

samples from the intervention and control in groups each of sizes n1, n2, . . . , nk, . . ..

We denoted the measurements taken at time k by

XI,k,1, . . . , XI,k,nk , XC,k,1, . . . , XC,k,nk

for k = 1, 2, 3, . . .. Our test assuming σ2
I = σ2

C = σ2 is a sequence of decision rules

based on the sequence of statistics
{
T(k)

}
with T(k) defined in general by

T(k) =
XI(k) −XC(k)

Sp(k)
√

2/n(k)

,

where

XI(k) =
1

n(k)

∑k

j=1
njXI,j, XC(k) =

1

n(k)

∑k

j=1
njXC,j, and

S2
p(k) =

1

2
(
n(k) − k

)∑k

j=1
2 (nj − 1)S2

p,j with n(k) =
∑k

j=1
nj.

At time k, a decision is made to either fail to reject H0 : µI = µC or reject H0 in

favor of Ha : µI 6= µC if

0 ≤
∣∣T(k)

∣∣ < ξ0(k) or
∣∣T(k)

∣∣ ≥ ξ1(k),

respectively, where 0 ≤ ξ0(k) ≤ ξ1(k). Otherwise, data is collected at sampling stage

k + 1 and the decision rule is applied at this stage. The event the test will fail to



57

reject the null hypothesis is given by

{fail to reject} =
{

0 ≤
∣∣T(1)

∣∣ < ξ0(1)

}
∪
(⋃∞

k=2

{
ξ0(k−1) ≤

∣∣T(k−1)

∣∣ < ξ1(k−1), 0 ≤
∣∣T(k)

∣∣ < ξ0(k)

})
.

The power of the test can now be expressed as

π = 1− P
(
0 ≤

∣∣T(1)

∣∣ < ξ0(1)

)
−
∑∞

k=2
P
(
ξ0(k−1) ≤

∣∣T(k−1)

∣∣ < ξ1(k−1), 0 ≤
∣∣T(k)

∣∣ < ξ0(k)

)
if the alternative hypothesis holds. The size α of the test is functionally equivalent

to π when the null hypothesis is true.

In the unequal variances case, the sequence of test statistics for the procedures

for Pocock (1977), O’Brien and Fleming (1979), and Wang and Tsiatis (1987) would

have the kth test statistic defined by

T(k) =
XI,k −XC,k√
(σ2

I + σ2
C) /nk

or T(k) =
XI,k −XC,k√(
S2
I,k + S2

C,k

)
/nk

.

If the decision is to collect more data, then the decision rule is applied at sampling

stage k + 1. Otherwise, the test is applied at time k + 1, for j = 1, . . . , k − 1. At

time k, if the test does not reject the null hypothesis then a decision is made to fail

to reject H0. Here we are assuming a common and known variance (σ2
I = σ2

C = σ2).

In the case in which σ is not known, we replace the value of σ in the expressions for

our test statistic with

Sp,j =

√
S2
I,j + S2

C,j

2
,

where S2
I,j and S2

C,j are the sample variances of the intervention and control data,

respectively. For the case in which the variances are unequal and known (unknown),
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Table 5.2: Group Sequential Tests {t5.2}

Authors Critical Values T(k)

ξ0(1) = . . . = ξ0(K−1)

= 0;

Pocock (1977) ξ0(K) = ξ1(1) = . . . T(k) =
XI,k−XC,k

σ
√

2/n

= ξ1(K) = ξ; or

n1 = n2 = . . . T(k) =
XI,k−XC,k

Sp,k
√

2/n

= nK = n.

ξ0(1) = . . . = ξ0(K−1)

= 0;

O’Brien and ξ1(1) = . . . = ξ1(K−1) T(k) =
XI,k−XC,k

σ
√

2/n

Fleming (1979) = ξ
√
K/k; or

ξ0(K) = ξ1(K) = ξ; T(k) =
XI,k−XC,k

Sp,k
√

2/n

n1 = n2 = . . .

= nK = n.

Wang and ξ0(1) = . . . = ξ0(K−1) = 0; T(k) =
XI,k−XC,k

σ
√

2/n
or

Tsiatis (1987) n1 = n2 = . . . = nK = n. T(k) =
XI,k−XC,k

Sp,k
√

2/n

Champ and 0 ≤ ξ0(k) ≤ ξ1(k). T(k) =
XI(k)−XC(k)

σ
√

2/n(k)

or

Hu (2009) T(k) =
XI(k)−XC(k)

Sp(k)
√

2/n(k)

XI(k) = 1
n(k)

∑k
j=1 njXI,j, XC(k) = 1

n(k)

∑k
j=1 njXC,j, and

S2
p(k) = 1

2(n(k)−k)

∑k
j=1 2 (nj − 1)S2

p,j with n(k) =
∑k

j=1 nj.
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we would replace the decision inequality with∣∣∣∣∣ XI,j −XC,j√
(σ2

I + σ2
C) /nj

∣∣∣∣∣ ≥ ξj

and if the variances are unknown with∣∣∣∣∣∣ XI,j −XC,j√(
S2
I,j + S2

C,j

)
/nj

∣∣∣∣∣∣ ≥ ξj.

The values ξ1, . . . , ξk are known as critical values of the test.

For the case in which σ2
I = σ2

C = σ2 and σ is known, the power of the K-stage

test of Pocock (1977) can be expressed as

π (ξ, δ) = 1−
[
Φ
(
ξ −

√
n/2δ

)
− Φ

(
−ξ −

√
n/2δ

)]K
,

for δ 6= 0. The size of the test α is

α = π (ξ, 0) = 1− [2Φ (ξ)− 1]K .

Solving this equation for ξ in terms of α, we have

ξ = z(1+(1−α)1/K)/2.

If λ = σI/σC , then either σI or σC or both are not equal to σ. It then follows that

T(j) =
XI,j −XC,j

σ
√

2/n

=

√
(σ2

I + σ2
C) /n

σ
√

2/n

((
XI,j −XC,j

)
− (µI − µC)√

(σ2
I + σ2

C) /n
+

µI − µC√
(σ2

I + σ2
C) /n

)

=

√
λ2 + 1

(σ/σC)
√

2

(
Zj +

δC√
(λ2 + 1) /n

)
=

σC
σ

√
(λ2 + 1) /2

(
Zj +

√
n/ (λ2 + 1)δC

)
.
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The power of the test is then given by

π = 1−
∏k

j=1
P

(
−ξ (σ/σC)−

√
n/2δC√

(λ2 + 1) /2
< Zj <

ξ (σ/σC)−
√
n/2δC√

(λ2 + 1) /2

)

= 1−

[
Φ

(
ξ (σ/σC)−

√
n/2δC√

(λ2 + 1) /2

)
− Φ

(
−ξ (σ/σC)−

√
n/2δC√

(λ2 + 1) /2

)]K
.

It then follows that the size of the test is given by

α = 1−

[
2Φ

(
ξ√

(λ2 + 1) /2

)
− 1

]K
.

Solving this equation for ξ in terms of α and λ, we have

ξ =
σC
σ

√
(λ2 + 1) /2z(1+(1−α)1/K)/2.

When λ = 1, then

π = 1−
∏k

j=1
P
(
−ξ (σ/σC)−

√
n/2δC < Zj < ξ (σ/σC)−

√
n/2δC

)
= 1−

[
Φ
(
ξ (σ/σC)−

√
n/2δC

)
− Φ

(
−ξ (σ/σC)−

√
n/2δC

)]K
.

The group sequential methods of Pocock (1977) and O’Brien and Fleming (1979)

do not allow for a decision to fail to reject the null hypothesis until all k samples are

measured. In what follows, we propose a family of tests that allow the researcher to

make the decision to fail to reject the null hypothesis on or before all k samples are

measured. Also, this testing procedure allows at time j for all the data collected to

this point in time to be used in the decision making process. A member of this family

of test at sampling stage j = 1, . . . , k − 1

(1) fails to reject H0 if |Tj| < ξ0,j; or (2) reject H0 if |Tj| ≥ ξ1,j;
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or (3) decides to include more data in the decision making process if ξ0,j ≤ |Tj| < ξ1,j.

At sampling stage k, the test

(1) fails to reject H0 if |Tk| < ξk; or (2) reject H0 if |Tk| ≥ ξk.

The test statistics are define by

Tj =

(
n1XI,1A1 + . . .+ njXI,jAj

)
/mj −

(
n1XC,1A1 + . . .+ njXC,jAj

)
/mj

σ
√

2/mj

where

mj = n1A1 + . . .+ njAj

with Ai = 1 if the ith sample (i = 1, . . . , j)is to be included in the decision making

process at time j.

We first examine the case in which we wish to test H0 : µI = µC in favor of

the alternative (researcher’s) hypothesis Ha : µI 6= µC assuming equal variances

(σ2
I = σ2

C = σ2). Two samples are taken, one of size n1 and the second of size n2. We

represent the measurements on these samples by XI,1,1, . . . , XI,1,n1 , XC,1,1, . . . , XC,1,n1

and XI,2,1, . . . , XI,2,n2 , XC,2,1, . . . , XC,2,n2 . The means and variances of these samples

are represented by XI,1, S
2
I,1 and XC,1, S

2
C,1, respectively. First let us assume that σ2

is known. A two stage test rejects H0 if∣∣∣∣∣XI,1 −XC,1

σ
√

2/n1

∣∣∣∣∣ ≥ zα1/2

or if

zα0/2 ≤

∣∣∣∣∣XI,1 −XC,1

σ
√

2/n1

∣∣∣∣∣ < zα1/2 and

∣∣∣∣∣ XI −XC

σ
√

2/ (n1 + n2)

∣∣∣∣∣ ≥ zα2/2.

Here, XI and XC are the means of the combined intervention and control data,
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respectively. The power of the test is

π = 1− Φ

(
zα1/2 −

√
n1

2
δ

)
+ Φ

(
−zα1/2 −

√
n1

2
δ

)
−
∫ zα1/2

−
√
n1/2δ

zα0/2
−
√
n1/2δ

Φ

(
zα2/2

√
n1 + n2

n2

−
√
n1

n2

z1 −
n1 + n2√

2n2

δ

)
φ (z1) dz1

+

∫ zα1/2
−
√
n1/2δ

zα0/2
−
√
n1/2δ

Φ

(
−zα2/2

√
n1 + n2

n2

−
√
n1

n2

z1 −
n1 + n2√

2n2

δ

)
φ (z1) dz1

−
∫ −zα0/2

−
√
n1/2δ

−zα1/2
−
√
n1/2δ

Φ

(
zα2/2

√
n1 + n2

n2

−
√
n1

n2

z1 −
n1 + n2√

2n2

δ

)
φ (z1) dz1

+

∫ −zα0/2
−
√
n1/2δ

−zα1/2
−
√
n1/2δ

Φ

(
−zα2/2

√
n1 + n2

n2

−
√
n1

n2

z1 −
n1 + n2√

2n2

δ

)
φ (z1) dz1,

where φ (z), Φ (z), and z1−γ are the probability density function, the cumulative

distribution function, and the 100γth percentile of a standard normal distribution

and δ = (µI − µC) /σ. We see that the power function is a function of α0, α1, α2, n1,

n2, and δ with the restriction that α0 > α1. It follow that the size α of the test can

be expressed as

α = 2(1− Φ
(
zα1/2

)
)

−2

∫ zα1/2

zα0/2

Φ

(
zα2/2

√
n1 + n2

n2

−
√
n1

n2

z1

)
φ (z1) dz1

+2

∫ zα1/2

zα0/2

Φ

(
−zα2/2

√
n1 + n2

n2

−
√
n1

n2

z1

)
φ (z1) dz1.

The size α is functionally equivalent to π when δ = 0.

Suppose we select n1 = n2 = n. Further, suppose we select zα0/2 = 0. The power
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function can then be expressed as

π = 1− Φ

(
zα1/2 −

√
n

2
δ

)
+ Φ

(
−zα1/2 −

√
n

2
δ

)
−
∫ zα1/2

−
√
n/2δ

−
√
n/2δ

Φ
(
zα2/2

√
2− z1 −

√
2nδ
)
φ (z1) dz1

+

∫ zα1/2
−
√
n/2δ

−
√
n/2δ

Φ
(
−zα2/2

√
2− z1 −

√
2nδ
)
φ (z1) dz1

−
∫ −zα0/2

−
√
n/2δ

−
√
n/2δ

Φ
(
zα2/2

√
2− z1 −

√
2nδ
)
φ (z1) dz1

+

∫ −zα0/2
−
√
n/2δ

−
√
n/2δ

Φ
(
−zα2/2

√
2− z1 −

√
2nδ
)
φ (z1) dz1,

and the size as

α0 = 2
(
1− Φ

(
zα/2

))
.

It then follows that

zα/2 = Φ−1 (1− α0/2) = zα0/2.

Next we consider the case in which σ is unknown. In this case, we consider the

two stage test that rejects H0 if

(1) |T1| ≥ tn1−1,0,α1/2 or (2) if tn1−1,0,α0/2 ≤ |T1| < tn1−1,0,α1/2 and |T | ≥ tn1+n2−2,0,α2/2.

where

T1 =
XI,1 −XC,1

Sp,1
√

2/n1

, T =
XI −XC

Sp
√

2/ (n1 + n2)
, S2

p,1 =
S2
I,1 + S2

C,1

2
,

S2
p,2 =

S2
I,2 + S2

C,2

2
, and S2

p =
(n1 − 1)S2

p,1 + (n2 − 1)S2
p,2

n1 + n2 − 2
.
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The power of the test can be expressed as

π = 1−
∫ ∞

0

Φ

(
t2(n1−1),0,α1/2

√
yp,1

2 (n1 − 1)
− θ1

)
fYp,1 (yp,1) dyp,1

+

∫ ∞
0

Φ

(
−t2(n1−1),0,α1/2

√
yp,1

2 (n1 − 1)
− θ1

)
fYp,1 (yp,1) dyp,1

−
∫ ∞

0

∫ −t(2(n1−1)),0,α0/2

√
yp,1/(2(n1−1))−θ1

−t(2(n1−1)),0,α1/2

√
yp,1/(2(n1−1))−θ1

×
∫ ∞

0

G
(
tn1+n2−2,0,α2/2, n1, n2, z1, yp,1, yp,2, θ

)
×fYp,1 (yp,2)φ (z1) fYp,1 (yp,1) dyp,2dz1dyp,1

−
∫ ∞

0

∫ t(2(n1−1)),0,α1/2

√
yp,1/(2(n1−1))−θ1

t(2(n1−1)),0,α0/2

√
yp,1/(2(n1−1))−θ1

×
∫ ∞

0

G
(
tn1+n2−2,0,α2/2, n1, n2, z1, yp,1, yp,2, θ

)
×fYp,1 (yp,2)φ (z1) fYp,1 (yp,1) dyp,2dz1dyp,1,

where θ1 =
√
n1/2δ, θ =

√
(n1 + n2) /2δ, yp,1 = 2(n1 − 1)S2

p,1/σ
2, and

G (t, n1, n2, z1, y1, y2, θ) = Φ

(
t

√
(n1 + n2) (y1 + y2)

n2 (n1 + n2 − 2)
−
√
n1

n2

z1 −
√
n1 + n2

n2

θ

)

−Φ

(
−t

√
(n1 + n2) (y1 + y2)

n2 (n1 + n2 − 2)
−
√
n1

n2

z1 −
√
n1 + n2

n2

θ

)
.

Note that π is a function of α0, α1, α2, n1, n2, and δ. Since the size of the test α is

functionally equivalent to the power when δ = 0, we can express the size of the test
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as

α = 1−
∫ ∞

0

(
2Φ

(
t2(n1−1),0,α1/2

√
yp,1

2 (n1 − 1)

)
− 1

)
fYp,1 (yp,1) dyp,1

−
∫ ∞

0

∫ −t(2(n1−1)),0,α0/2

√
yp,1/(2(n1−1))

−t(2(n1−1)),0,α1/2

√
yp,1/(2(n1−1))

×
∫ ∞

0

G
(
tn1+n2−2,0,α2/2, n1, n2, z1, yp,1, yp,2, 0

)
×fYp,1 (yp,2)φ (z1) fYp,1 (yp,1) dyp,2dz1dyp,1

−
∫ ∞

0

∫ t(2(n1−1)),0,α1/2

√
yp,1/(2(n1−1))

t(2(n1−1)),0,α0/2

√
yp,1/(2(n1−1))

×
∫ ∞

0

G
(
tn1+n2−2,0,α2/2, n1, n2, z1, yp,1, yp,2, 0

)
×fYp,1 (yp,2)φ (z1) fYp,1 (yp,1) dyp,2dz1dyp,1.

5.6 Conclusion

In this chapter, various sequential and adaptive methods for comparing two popula-

tion means were presented. One is a proposed new method for solving the Behrens-

Fisher problem.



CHAPTER 6

CONCLUSION

6.1 General Conclusions

Various of statistical methods based on the assumptions about the data has been dis-

cussed. Using these methods to comparing two population means and also to compute

the appropriate sample sizes. An exact solution to the Behrens-Fisher distribution

was given in Chapter 2, showing that the pdf and cdf functions can be expressed as

linear combinations of non-central t-distributions. A FORTRAN program was writ-

ten to present the numerical method for obtaining a good approximation to the cdf

and pdf of the Behrens-Fisher distribution. Also it shown that the method proposed

by Welsh(1938) provides a good approximation.

In Chapter 3, methods for comparing two population means were examined either

under the assumption the variances are known or that their ratio is given. Methods

are discussed for selecting the sample sizes based on certain requirements imposed by

the researcher. These methods are based on the power of the test.

Besides the independent sample case, sometimes the intervention can be given

to each individual in the population with the individual also serving as the control.

This is the paired data case. For this case, methods for comparing two population

means were presented and methods for deriving sample sizes were given.

Various sequential and adaptive methods were presented in Chapter 5 for the

“paired data” and “independent sample” cases. These methods included the two-

stage sample size prediction methods, sequential methods, and group sequential meth-

ods. A new method was presented for solving the Behrens-Fisher problem.
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6.2 Areas for Further Research

While in clinical trials, it is usually the case the hypotheses to be tested are that the

means are equal versus them not being equal. In other applications, the appropriate

hypotheses that are one-sided. We are interested in developing our method for this

case.

Missing data is a common problem in designed experiments. We wish to examine

how our method can be adapted to account for missing data. Very little research has

been done in the area of missing data in sequential methods.

We wish to compare our method to the methods of Chapman (1950), Prokof’yev

and Shishkin (1974), and Dudewicz and Ahmed (1998,1999). It has been stated by

Dudewicz, E.J., Ma, Y., Mai, S.E., and Su, H. (2007) that the latter three methods

are solutions to the Behrens-Fisher problem.

Often the response variable is a multivariate measurement. It would be of interest

to study how the univariate methods we have examined could be extended to the

multivariate case.

There is much work to be done in the area of group sequential methods. It would

be interesting to see if our method could be extended to this area.

In actual practice, clinical trials sometimes are expensive and dangerous, so mak-

ing a decision about the size of the sample just based on power may not be feasible. It

may be then necessary do the experiment step by step with a smaller overall expected

sample size.

One can provide a bioequivalence analysis based on control and intervention
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groups, then obtain a confidence interval for the difference in the two means. Based

on the observed confidence interval a decision can made about the affect of the inter-

vention. This bioequivalence analysis idea will give us a much better decision than

the method we use now.
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Appendix A

APPENDIX I

C*

C*---------------------------------------------------*

C* THE CUMULATIVE DISTRIBUTION FUNCTION FOR THE *

C* STATISTICS T_1 AND T_2 EVALUATED AT THE VALUE T *

C* WITH PARAMETERS *

C* *

C* DELTAC = (MU_I-MU_C)/SIGMAC *

C* LAMBDA = SIGMAI/SIGMAC *

C* NI = INTERVENTION GROUP SAMPLE SIZE *

C* NC = CONTROL GROUP SAMPLE SIZE *

C* *

C* WHERE *

C* *

C* XBARI - XBARC *

C* T_1 = --------------------- *

C* S_P*SQRT(1/NI+1/NC) *

C* *

C* AND *

C* *

C* XBARI - XBARC *

C* T_2 = ----------------------------- *

C* SQRT((S_I)^2/NI+(S_C)^2/NC) *

C* *

C* WITH *

C* *
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C* (NI-1)*(S_I)^2+(NC-1)*(S_C)^2 *

C* S_P = ------------------------------- *

C* (NI-1)+(NC-1) *

C* *

C* XBARI AND S_I THE MEAN AND STANDARD DEVIATION OF *

C* THE INTERVENTION GROUP DATA AND XBARC AND S_C THE *

C* MEAN AND STANDARD DEVIATION OF CONTROL GROUP *

C* DATA. *

C* N(MUI,SIGMAI^2) AND N(MUC,SIGMAC^2) *

C* DISTRIBUTIONS, RESPECTIVELY *.

C* *

C* AUTHORS: CHARELS W. CHAMP AND FENGJIAO HU *

C* *

C*---------------------------------------------------*

C*

DOUBLE PRECISION FUNCTION DFTCDF(T,DELTAC,

& LAMBDA,NI,NC,TI)

C*

INTEGER DF,K,NI,NII,NC,NCC,TI

DOUBLE PRECISION B,CK,DELTAC,DTNDF,EP,LAMBDA,

& NU,ONE,T,THETA,TWO,U,XI,ZERO

C*

C* CONSTANT VALUES

C*

ZERO=0.0D0

ONE=1.0D0

TWO=2.0D0
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EP=0.0000000000000001D0

C*

C* PARAMETER CONSTANTS

C*

THETA=DELTAC

& /DSQRT(LAMBDA*LAMBDA/NI+ONE/NC)

NII=NI

NCC=NC

C*

C* T_1: THE VALUES OF XI AND NU ARE CALCULATED

C* (SEE THE RESULTS IN CHAPTER 2)

C*

IF (TI.EQ.1) THEN

XI=LAMBDA*LAMBDA

NU=NII+NCC-TWO

NU=NU*(LAMBDA*LAMBDA/NII+ONE/NCC)

NU=NU/(ONE/NII+ONE/NCC)

ENDIF

C*

C* T_2: THE VALUES OF XI AND NU ARE CALCULATED

C* (SEE THE RESULTS IN CHAPTER 2)

C*

IF (TI.EQ.2) THEN

XI=LAMBDA*LAMBDA*NCC*(NCC-ONE)

XI=XI/(NII*(NII-ONE))

NU=NCC*(NCC-ONE)

NU=NU*(LAMBDA*LAMBDA/NII+ONE/NCC)
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ENDIF

C*

C* IF XI > 1, THEN THE CDF IS EVALUATED AS FUNCTIONS

C* OF THE PARAMETERS 1/XI FOR XI, NU/XI FOR NU, AND

C* THE SAMPLE SIZES ARE INTERCHANGED.

C*

IF (XI.GT.ONE) THEN

XI=ONE/XI

NU=XI*NU

NII=NC

NCC=NI

ENDIF

C*

C* SOME SIMPLIFING CONSTANTS

C*

B=(NCC-ONE)/TWO

DF=NII+NCC-2

U=T*DSQRT((XI/NU)*DF)

C*

C* THE CDF IS INITIALIZED IN TERMS OF THE CDF OF A

C* NON-CENTRAL T-DISTRIBUTION WITH PARAMETERS DF AND

C* THETA EVALUATED AT THE VALUE U

C*

C* THE IMSL ROUTINE DTNDF IS USED TO DETERMINE THE

C* CDF OF A NON-CENTRAL T-DISTRIBUTION

C*

DFTCDF=(XI**B)*DTNDF(U,DF,THETA)
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C*

C* IF XI NOT EQUAL TO ONE, THEN A FINITE NUMBER OF

C* OF TERMS OF THE SERIES REPRESENTATION OF THE

C* DISTRIBUTION OF T_I ARE USED TO APPROXIMATE THE

C* CDF. THE NUMBER OF TERMS USED DEPENDS ON THE

C* VALUES OF XI AND NU.

C*

K=0

CK=ONE

IF (XI.NE.ONE) THEN

CDF=ZERO

1 K=K+1

DF=NII+NCC-2+2*K

U=T*DSQRT((XI/NU)*DF)

CK=(B+K-ONE)*(ONE-XI)*CK/K

CDF=CDF+CK*DTNDF(U,DF,THETA)

IF (DABS(CK).GT.EP) GOTO 1

ENDIF

DFTCDF=DFTCDF+(XI**B)*CDF

C*

RETURN

END
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APPENDIX II

C*---------------------------------------------------*

C* THE SIZE OR POWER OF TEST BASED ON THE STATISTICS *

C* T_1 AND T_2 ARE CALCULATED UNDER GIVE ASSUMPTIONS.*

C* *

C* INPUT *

C* ALPHA = DESIRED SIZE OF THE TEST *

C* DELTAC = (MU_I-MU_C)/SIGMAC *

C* LAMBDA = SIGMAI/SIGMAC *

C* NI = INTERVENTION GROUP SAMPLE SIZE *

C* NC = CONTROL GROUP SAMPLE SIZE *

C* *

C* XBARI - XBARC *

C* T_1 = --------------------- *

C* S_P*SQRT(1/NI+1/NC) *

C* *

C* AND *

C* *

C* XBARI - XBARC *

C* T_2 = ----------------------------- *

C* SQRT((S_I)^2/NI+(S_C)^2/NC) *

C* *

C* WITH *

C* *

C* (NI-1)*(S_I)^2+(NC-1)*(S_C)^2 *
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C* S_P = ------------------------------- *

C* (NI-1)+(NC-1) *

C* AND *

C* *

C* ((S_I)^2/NI+(S_C)^2/NC)^2 *

C* V = ------------------------------------------- *

C* ((S_I)^2/NI)^2/(NI-1)+((S_C)^2/NC)^2/(NC-1) *

C* *

C* FOR WELCH’S APPROXIMATION/ESTIMATION METHOD. *

C* *

C* XBARI AND S_I THE MEAN AND STANDARD DEVIATION OF *

C* THE INTERVENTION GROUP DATA AND XBARC AND S_C THE *

C* MEAN AND STANDARD DEVIATION OF CONTROL GROUP *

C* DATA. *

C* *

C* THE INTERVENTION AND CONTROL GROUP SAMPLES ARE *

C* TO BE INDEPENDENT RANDOM SAMPLES FROM *

C* N(MUI,SIGMAI^2) AND N(MUC,SIGMAC^2) *

C* DISTRIBUTIONS, RESPECTIVELY *.

C* *

C* AUTHORS: CHARELS W. CHAMP AND FENGJIAO HU *

C* *

C*---------------------------------------------------*

USE MSIMSL

C*

INTEGER CK,NI,NC,TI

DOUBLE PRECISION ALPHA,ALPHA0,DELTAC,DF,DFTCDF,
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& LAMBDA,ONE,POWER,T,TA,TB,TP,TWO,V,ZERO

C*

C* CONSTANT VALUES

C*

ONE=1.0D0

TWO=2.0D0

ZERO=0.0D0

C*

WRITE(*,*) ’INPUT ALPHA0’

READ(*,*) ALPHA0

WRITE(*,*) ’INPUT DELTAC’

READ(*,*) DELTAC

WRITE(*,*) ’INPUT LAMBDA’

READ(*,*) LAMBDA

WRITE(*,*) ’INPUT NI’

READ(*,*) NI

WRITE(*,*) ’INPUT NC’

READ(*,*) NC

WRITE(*,*) ’INPUT (1) T_1 EQUAL VARIANCES’

WRITE(*,*) ’INPUT (2) T_1’

WRITE(*,*) ’INPUT (3) T_2’

WRITE(*,*) ’INPUT (4) T_2 WELCH"S APPROXIMATION’

READ(*,*) TI

C*

IF (TI.EQ.1) T=DTIN(ONE-ALPHA0/TWO,NI+NC-TWO)

IF ((TI.EQ.2).OR.(TI.EQ.3)) THEN

IF (TI.EQ.2) TI=1
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IF (TI.EQ.3) TI=2

DF=NI-1.0D0

IF (NI.GT.NC) DF=NC-1.0D0

TA=ZERO

TB=DTIN(1.0D0-ALPHA0/10.0D0,DF)

1 CK=0

T=(TA+TB)/2.0D0

ALPHA=1.0D0-DFTCDF(T,ZERO,LAMBDA,NI,NC,TI)

& +DFTCDF(-T,ZERO,LAMBDA,NI,NC,TI)

IF (DABS(ALPHA0-ALPHA).GT.0.000001D0) THEN

IF (ALPHA.LT.ALPHA0) TB=T

IF (ALPHA.GT.ALPHA0) TA=T

CK=1

ENDIF

IF (CK.EQ.1) GOTO 1

ENDIF

C*

C*---------------------------------------------------*

C* WELSH(1938) SUGGESTED THAT USING T_2 FOR THE *

C* VARIANCE UNKNOWN CASE, AND THE DEGREES OF FREEDOM *

C* IS ESTIMATED BY *

C* (SIGMAI^2/NI+SIGMAC^2/NC)^2 *

C* V = --------------------------------------------- *

C* (SIGMAI^2/NI)^2/(NI-1)+(SIGMAC^2/NC)^2/(NC-1) *

C* *

C*---------------------------------------------------*

C*
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IF (TI.EQ.4) THEN

TI=2

TP=LAMBDA*LAMBDA/NI

V=TP+ONE/NC

V=V*V

TP=TP*TP/(NI-ONE)+ONE/(NC*NC)/(NC-ONE)

V=V/TP

T=DTIN(ONE-ALPHA0/TWO,V)

ENDIF

C*

ALPHA=1.0D0-DFTCDF(T,ZERO,LAMBDA,NI,NC,TI)

& +DFTCDF(-T,ZERO,LAMBDA,NI,NC,TI)

C*

POWER=1.0D0-DFTCDF(T,DELTAC,LAMBDA,NI,NC,TI)

& +DFTCDF(-T,DELTAC,LAMBDA,NI,NC,TI)

C*

WRITE(*,61) ’ DELTAC =’,DELTAC

WRITE(*,61) ’ LAMBDA =’,LAMBDA

WRITE(*,62) ’ NI =’,NI

WRITE(*,62) ’ NC =’,NC

WRITE(*,61) ’ T =’,T

WRITE(*,61) ’ ALPHA =’,ALPHA

IF (DELTAC.NE.ZERO)

& WRITE(*,61) ’ POWER =’,POWER

61 FORMAT(A10,F9.5)

62 FORMAT(A10,I3)

C*
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STOP

END
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APPENDIX III

C*---------------------------------------------------*

C*

C*---------------------------------------------------*

C*

USE MSIMSL

C*

INTEGER CK,ISIM,NI,NC,NR,NSIM,TI,TII

DOUBLE PRECISION ALPHA,ALPHA0,DELTAC,DF,DFTCDF,

& LHAT,LAMBDA,ONE,P,R(1),T,TA,TB,THETAC,TP,

& TSIM,TWO,VHAT,W,WC,WI,Z,ZERO

C*

C* CONSTANT VALUES

C*

NR=1

ONE=1.0D0

TWO=2.0D0

ZERO=0.0D0

C*

WRITE(*,*) ’INPUT ALPHA0’

READ(*,*) ALPHA0

WRITE(*,*) ’INPUT DELTAC’

READ(*,*) DELTAC

WRITE(*,*) ’INPUT LAMBDA’

READ(*,*) LAMBDA

WRITE(*,*) ’INPUT NI’
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READ(*,*) NI

WRITE(*,*) ’INPUT NC’

READ(*,*) NC

WRITE(*,*) ’INPUT (1) T_1 EQUAL VARIANCES’

WRITE(*,*) ’INPUT (2) T_1’

WRITE(*,*) ’INPUT (3) T_2’

WRITE(*,*) ’INPUT (4) T_2 WELCH"S APPROXIMATION’

READ(*,*) TI

WRITE(*,*) ’INPUT NUMBER OF SIMULATIONS’

READ(*,*) NSIM

C*

C* PARAMETER CONSTANTS

C*

THETAC=DELTAC/DSQRT(LAMBDA*LAMBDA/NI+ONE/NC)

TP=LAMBDA*LAMBDA/NI

C*

P=ZERO

C*

C* COMPUTE THE POWER BY SIMULATION

C*

DO 2 ISIM=1,NSIM

C*

CALL DRNNOR(NR,R)

Z=R(1)

DF=NI-ONE

CALL DRNCHI(NR,DF,R)
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WI=R(1)

DF=NC-ONE

CALL DRNCHI(NR,DF,R)

WC=R(1)

TSIM=Z+THETAC

C*

C*---------------------------------------------------*

C* THE CUMULATIVE DISTRIBUTION FUNCTION FOR THE *

C* STATISTICS T_1 AND T_2 CAN BE EXPRESSED AS *

C* *

C* WHERE *

C* *

C* Z+THETAC *

C* T_1 = ------------------------------------ *

C* (1/NI+1/NC)(LAMBDA^2*WI+WC) *

C* SQRT(-----------------------------) *

C* (NI+NC-2)(LAMBDA^2/NI+1/NC) *

C* *

C* AND *

C* Z+THETAC *

C* T_2 = --------------------------------- *

C* LAMBDA^2*WI WC *

C* -------------+--------- *

C* NI(NI-1) NC(NC-1) *

C* SQRT(-------------------------) *

C* LAMBDA^2/NI+1/NC *

C* WITH *
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C* *

C* THETAC=DELTAC/SQRT(LAMBDA*LAMBDA/NI+ONE/NC) *

C* *

C* AND *

C* *

C* WI IS CHI-SQUARE DISTRBUTION WITH NI-1 DEGREES OF *

C* FREEDOM *

C* *

C* WC IS CHI-SQUARE DISTRBUTION WITH NC-1 DEGREES OF *

C* FREEDOM *

C*---------------------------------------------------*

C*

IF ((TI.EQ.1).OR.(TI.EQ.2)) THEN

W=ONE/NI+ONE/NC

W=W/(NI+NC-TWO)

W=W/(TP+ONE/NC)

W=W*(LAMBDA*LAMBDA*WI+WC)

TSIM=TSIM/DSQRT(W)

ENDIF

C*

IF ((TI.EQ.3).OR.(TI.EQ.4)) THEN

W=(TP/(TP+ONE/NC))*WI/(NI-ONE)

W=W+(ONE/NC/(TP+ONE/NC))*WC/(NC-ONE)

TSIM=TSIM/DSQRT(W)

ENDIF

C*

C*---------------------------------------------------*
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C* ESTIMATE LAMBDA BY L, WHERE *

C* *

C* (NC-1)(NC-4)WI *

C* L^2 = ---------------- *

C* (NI-1)^2*WC *

C*---------------------------------------------------*

C*

IF (TI.EQ.1) T=DTIN(ONE-ALPHA0/TWO,NI+NC-TWO)

IF ((TI.EQ.2).OR.(TI.EQ.3)) THEN

IF (TI.EQ.2) TII=1

IF (TI.EQ.3) TII=2

LHAT=(NC-ONE)*(NC-4.0D0)/((NI-ONE)*(NI-ONE))

LHAT=LHAT*WI/WC

LHAT=LHAT*LAMBDA*LAMBDA

LHAT=DSQRT(LHAT)

DF=NI-1.0D0

IF (NI.GT.NC) DF=NC-1.0D0

TA=ZERO

TB=DTIN(1.0D0-ALPHA0/10.0D0,DF)

1 CK=0

T=(TA+TB)/2.0D0

ALPHA=1.0D0-DFTCDF(T,ZERO,LHAT,NI,NC,TII)

& +DFTCDF(-T,ZERO,LHAT,NI,NC,TII)

IF (DABS(ALPHA0-ALPHA).GT.0.00001D0) THEN

IF (ALPHA.LT.ALPHA0) TB=T

IF (ALPHA.GT.ALPHA0) TA=T

CK=1
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ENDIF

IF (CK.EQ.1) GOTO 1

ENDIF

C*

C*---------------------------------------------------*

C* WELSH(1938) SUGGESTED THAT USING T_2 FOR THE *

C* VARIANCE UNKNOWN CASE, AND THE DEGREES OF FREEDOM *

C* IS ESTIMATED BY *

C* (NC-1)*WI 1 *

C* (LAMBDA^2-------------+----)^2 *

C* NI(NI-1)*WC NC *

C* V = --------------------------------------------- *

C* (NC-1)*WI 1 *

C* (LAMBDA^2-------------)^2/(NI-1)+------------ *

C* NI(NI-1)*WC NC^2(NC-1) *

C* *

C*---------------------------------------------------*

C*

IF (TI.EQ.4) THEN

TII=2

TP=LAMBDA*LAMBDA*WI/(NI-ONE)

TP=TP/(WC/(NC-ONE))

VHAT=TP/NI+ONE/NC

VHAT=VHAT*VHAT

TP=(TP/NI)*(TP/NI)/(NI-ONE)

TP=TP+(ONE/NC)*(ONE/NC)/(NC-ONE)

VHAT=VHAT/TP
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T=DTIN(ONE-ALPHA0/TWO,VHAT)

ENDIF

C*

IF (DABS(TSIM).GE.T) P=P+ONE

C*

2 CONTINUE

C*

P=P/NSIM

C*

WRITE(*,61) ’ DELTAC =’,DELTAC

WRITE(*,61) ’ LAMBDA =’,LAMBDA

WRITE(*,62) ’ NI =’,NI

WRITE(*,62) ’ NC =’,NC

IF (DELTAC.EQ.ZERO)

& WRITE(*,61) ’ ESTIMATED ALPHA =’,P

IF (DELTAC.NE.ZERO)

& WRITE(*,61) ’ POWER =’,P

61 FORMAT(A10,F9.5)

62 FORMAT(A10,I3)

C*

STOP

END


	Methods for Comparing Two Means with Application in Adaptive Clinical Trials
	Recommended Citation

	tmp.1375238374.pdf.PUn4d

