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Evolution and development of staminodes in Paronychia (Caryophyllaceae) 

An Honors Thesis submitted in partial fulfillment of the requirements for Honors in 

Biology. 

By Andrea D. Appleton 

Under the mentorship of John J. Schenk 

 

ABSTRACT 

Staminodes are infertile stamens that have evolved numerous times in flowering plants and 

exhibit a vast array of forms and functions. Variation in staminodes suggests that numerous 

evolutionary processes underlie their origins, but to understand their how and why they 

evolved, comparative studies are needed in groups of closely related species. Identifying 

structures as staminodes is not always straightforward and sometimes requires 

corroborating phylogenetic and developmental evidence. Staminodial structures in 

Paronychia (Caryophyllaceae), for example, vary in shape and size and have been referred 

to as both petals and staminodes, rendering their homology uncertain. The development of 

staminodes was compared across species of Paronychia. We tested the hypotheses that 

structures were either petals or staminodes and by evaluating floral development of 

fourteen species with scanning electron and light microscopy and conducted ancestral state 

estimations across phylogenies to infer when staminodes evolved. Staminodes developed 

between the stamen whorl and carpel, indicating a true staminodial origin. Staminodes 

evolved prior to the origin of Paronychia and were lost at least three times. Staminodes in 

Paronychia began as vestigial stamens following the loss of anthers and were either highly 

reduced, remained vestigial, or coopted, which we term the vestigial intermediate 

hypothesis. Our results illustrate a dynamic history of staminodial evolution in Paronychia 

and that selection on the function of staminodes can differ across closely related species. 

 

 

Thesis Mentor: _____________________ 

Dr. John J. Schenk 

 

Honors Director: _____________________ 

Dr. Steven Engel 

 

 

 

April 2021 

Department of Biology 

University Honors Program 

Georgia Southern University 

Acknowledgments 



2 
 

This project was funded by the Marie Mellinger Field Botany Research Grant through the 

Georgia Botanical Society; the Student Research Grant through the Society of Herbarium 

Curators; the Georgia Southern University Honors Program; the Chandler Scholarship 

provided by the Chandler family and the Georgia Southern University Department of 

Biology; and travel awards through the American Society of Plant Taxonomists and the 

Georgia Southern University Office of Research and Student Government Association. I 

thank Drs. Andrew Diamanduros, Christopher Cutler, and Vinoth Sittaramane for their 

assistance with microscopy, Clinton Morse (University of Connecticut) for providing 

living material of Pollichia, the Honors College and the Department of Biology for 

supporting this work, and Maria von Balthazar, Louis P. Ronse De Craene, and an 

anonymous reviewer with the International Journal of Plant Sciences for constructive 

comments that greatly improved an earlier version of this thesis.   



3 
 

Introduction 

The evolution of flowers was a key innovation that has led to a remarkable amount of 

diversity in species and floral forms (Weberling 1989; Chanderbali et al. 2016). Not only 

does variation exist in the four floral organs (sepals, petals, stamens, and carpels), but an 

array of non-reproductive novelty has also evolved in flowers, such as nectaries, spurs, 

and staminodes (Endress 1994; Kramer and Hodges 2010). Among the aforementioned 

novel floral structures, staminodes —which are infertile stamens— are particularly 

striking in the sheer amount of innovation and forms that have mostly evolved in 

response to selection for either alternative functions or stamen reduction (Walker-Larsen 

and Harder 2000; Ronse De Craene and Smets 2001; Botnaru and Schenk 2019). 

Staminodes have evolved repeatedly within groups as disparate as monocots, Magnoliids, 

rosids, and asterids (Walker-Larsen and Harder 2000). Botnaru and Schenk (2019) 

classified staminodes into three broad categories based on their function and evolutionary 

history: (1) vestigial staminodes, in which structures are rudimentary and do not produce 

pollen; (2) fodder staminodes, in which structures produce inviable pollen to encourage 

palynivore visitation without sacrificing viable pollen, such as in Commelina L. 

(Commelinaceae; Walker-Larsen and Harder 2000); and (3) functionally coopted 

staminodes, in which structures have evolved a novel function, such as in Penstemon 

Schmidel (Plantaginaceae; Walker-Larsen and Harder 2000). Walker-Larsen and Harder 

(2000) and Ronse De Craene and Smets (2001) expounded compelling arguments that 

staminode evolution has been dynamic across angiosperms when examined broadly, but 

recent work by Pischtschan et al. (2010), Rodríguez-Riaño et al. (2015), and Botnaru and 

Schenk (2019) have demonstrated that staminode evolution could also be dynamic in 
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clades of recently evolved, close relatives. Studying the dynamic nature of staminodes 

among groups that evolved staminodes relatively long ago can be limited because 

extinction events and additional morphological changes have the potential to obscure 

patterns of evolution. Studying staminode evolution in a clade of close relatives, 

conversely, has the potential to illuminate the causes of staminode evolution 

unconvoluted by other evolutionary processes.  

  Paronychia Mill. (Caryophyllaceae) is a genus of 110 species, among which the 

majority, but not all, species are described as containing staminodial structures (Hartman 

et al. 1997). The genus in the broad sense originated at least 24.87–39.71 mybp, but the 

New World colonization began diversifying at least 4.50–8.63 mybp (Schenk et al. 2018). 

Flowers of Paronychia are relatively small (< 3 mm in length) and (mostly) bisexual, 

containing five white, green, yellow, or brown sepals; two to five stamens; five 

staminodial structures (if present); and two to three carpels (Ronse De Craene 2020). 

Staminodial structures are filamentous and positioned alternate of the sepals, situated 

where petals would be anticipated to occur in complete flowers. The homology of 

staminodial structures, consequently, are not completely clear. In a monograph of 

Paronychia, for example, Chaudhri (1968) described these structures as reduced petals. 

The nature of petaloid and staminodial structures in Caryophyllaceae has since been 

challenged (Ronse De Craene and Smets 2001; Brockington et al. 2013; Wei and Ronse 

De Craene 2019). Greenberg and Donoghue (2011) determined that flowers of 

Caryophyllaceae were ancestrally apetalous with five stamens based on phylogenetic 

results, but Wei and Ronse De Craene (2019) concluded that flowers of Caryophyllaceae 

were ancestrally petalous and had ten stamens based on phylogenetic and developmental 
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results, but some species have since lost petals and five of the ancestral stamens. 

Although petals are hypothesized to have evolved from stamens more broadly in 

Caryophyllaceae (Ronse De Craene 2007), and hence could be referred to as staminodes 

in their own right (but see Wei and Ronse De Craene 2019), a distinction can be made 

between petals and staminodes by assessing the homology of the structures. To avoid 

confusion of terms, we will refer to infertile structures derived from stamens as 

“staminodes” and, following Wei and Ronse De Craene (2019), “petals” as “petaloids.” 

We will refer to the structures in alternisepalous positions as "staminodial structures" 

until their homology is assessed. 

 The homology of staminodes is often, but not always, straightforward to interpret 

(Ronse De Craene and Smets 2001), but homology assessment is essential if we are to 

understand staminode evolution (Hufford 2003). In fodder staminodes, for example, 

assessing homology is straightforward because they are positioned in an androecial whorl 

and form what are clearly a filament and anther that produces sterile pollen. In other 

species, the staminodes arise by splitting of the stamen primordia (Ronse De Craene and 

Smets 2001), making a clear association of staminodes being derived from the androecial 

whorl. The homology of staminodes, however, can also be less obvious. In some flowers, 

staminodes have been structurally and positionally modified to the degree that their 

homology is difficult to assess (Ronse De Craene and Smets 2001). Flowers in several 

genera of the Hamamelidaceae, for example, have multiple sets of sterile floral organs 

(phyllomes, nectaries, and staminodes) which are difficult to distinguish from one 

another and are not likely derived from the same structures (Mione and Bogle 1990; 

Ronse De Craene and Smets 2001). Homology of staminodes in other groups, such as 
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Paronychia, are obscured because the fully developed staminodes appear to be positioned 

alternate of the sepals, where petaloids are expected to develop.  

 Homology can be assessed with three criteria: phylogenetic homology, structural 

homology, and positional homology (Hufford 2003). Phylogenetic homology refers to 

similarity due to a single evolutionary origin, where the structures in all of its forms are 

inherited from a common ancestor (Albert et al. 1998; Ronse De Craene and Smets 2001; 

Hufford 2003). Structural homology is inferred through similarity of forms and their 

development (Albert et al. 1998; Hufford 2003), but is agnostic to the evolutionary 

history of the structures. Finally, positional homology is assessed through similarity of 

the position of structures and where they develop (Albert et al. 1998). Among the three 

homology criteria, assessing the phylogenetic homology of structures is key to making 

informed comparisons (Ochoterena et al. 2019). Phylogenetic homology is best assessed 

by estimating character state transitions across an independent phylogeny (Hufford 

2003). Comparative and evolutionary-developmental (Evo-Devo) approaches are 

essential to assess structural and positional homology of organs at multiple stages of 

development (Ronse De Craene and Smets 2001). Evo-Devo studies can uncover the 

relationship between individual development and evolutionary morphological plasticity 

both at molecular and organismal levels (Müller 2007), allowing us to visualize how and 

when floral organs develop and infer their evolutionary origins. 

 We studied the evolution of staminodes among close relatives in a North 

American clade of Paronychia. We hypothesized that staminodial structures in 

Paronychia are staminodes as opposed to petaloids by applying a comparative Evo-Devo 

approach to assess the phylogenetic, structural, and positional homology of the structures. 
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To test the above hypothesis and to determine the modes of staminode evolution, we 

analyzed phylogenetic data with developmental series taken from scanning electron and 

light microscopy. 

 

Materials and Methods 

Sampling 

Fourteen species of Paronychia were sampled for developmental analyses (Appendix 1). 

Only staminate flowers of the dioecious and sexually dimorphic P. chartacea Fernald 

ssp. chartacea (Anderson 1991) were included in this study, as the female flowers rarely 

have staminodes (personal observation) and sampling male flowers allowed for important 

comparisons of staminodes to stamens. Outgroup taxa included Pollichia campestris Ait. 

and Stipulicida setacea Michx. (Appendix 1). Both Pollichia and Stipulicida were 

traditionally recognized as part of the same subfamily as Paronychia, the Paronychioidea, 

but recent work suggested Pollichia is more closely related to Paronychia, being placed 

in the tribe Paronychieae. The former taxa are both more distantly related to Stipulicida, 

which is placed in the tribe Polycarpeae (Harbaugh et al. 2010). Multiple individuals 

were haphazardly sampled from natural populations by maximizing the distance between 

collected individuals. Herbarium vouchers were collected and deposited in the Georgia 

Southern University Herbarium (GAS), and plant tissues were immediately fixed in 

Formaldehyde-Acetic acid-Alcohol (FAA), or 70% vodka for samples collected in Texas, 

U.S.A. Samples remained in FAA or vodka for at least one week and were then 

transferred to 70% ethanol and stored.  
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Light Microscopy 

Samples were prepared for light microscopy with modifications made to methods 

outlined in Ruzin (1999, pages 57–119). Flowers were removed and transferred through a 

stepwise ethanol dehydration series (70%, 80%, 90%, 95%, 100%, and 100% for 60 

minutes each) and then transferred to a 1:1 solution of 100% EtOH and Tertiary Butyl 

Alcohol (TBA) for 24 hours. Samples were transferred to a solution of 25:75 EtOH:TBA 

and 0.1% Safranin O and incubated at 58°C for one hour. Samples were then transferred 

through a 25:75 solution of EtOH:TBA, 100% TBA, and 100% TBA, each for one hour 

and incubated at 58°C. Samples were then transferred to 85 x 85 x 24 mm weighing boats 

and covered with 100% TBA. Paraplast Plus (Leica Biosystems St. Louis, LLC, Buffalo 

Grove, Illinois, USA) tissue embedding medium was added to fill the weighing boats, 

and samples were incubated at 58°C until all TBA evaporated. Samples were periodically 

checked to make sure they remained submerged in TBA and/or paraffin. After all TBA 

was evaporated, samples were cooled to room temperature to solidify and were mounted 

onto cassettes for sectioning on a Leica RM2235 Rotary Microtome at 10 m. Ribbons 

were expanded on an adhesive-coated slide by floating them on dH2O warmed to 42°C. 

Slides were kept at 42°C for at least 24 hours to allow the sections to adhere to the slide 

as the dH2O evaporated.  

 Mounted slides were transferred through a xylene-ethanol series to remove 

paraffin, by transferring the slides at five minutes each through 100% xylene, 100% 

xylene, 1:1 xylene:EtOH, 100% EtOH, 100% EtOH, 95% EtOH, and 70% EtOH. Slides 

were then transferred to a Safranin O staining solution (Ruzin 1999) for one to two hours. 

Excess stain was rinsed in dH2O using a wash bottle, and slides were transferred to a 
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solution of 95% EtOH with the addition of 0.5% picric acid for ten seconds to 

differentiate the stain. The picric acid reaction was halted by transferring the slides to a 

solution of 100 mL 95% EtOH with an additional four drops of ammonium hydroxide, 

then moved to 100% EtOH for ten seconds and counterstained with Fast Green staining 

solution (Ruzin 1999) for 15 seconds. Excess stain was rinsed with a used clearing 

solution and then a second clearing solution for ten seconds each. Slides were then 

moved to a solution of xylene and two drops of 100% EtOH for ten seconds, rinsed with 

xylene for ten seconds, and transferred to xylene to soak until a coverslip was applied 

with Permount (Electron Microscopy Sciences, Hartfield, Pennsylvania, USA) mounting 

medium. Mounted slides were left to dry on a slide warmer at 42°C for at least 24 hours 

and imaged with Eclipse LV100ND compound scope with Nikon Digital Sight DS-Fi2 

(Nikon Corporation, Tokyo, Japan). 

 

Scanning Electron Microscopy 

Flowers were removed and transferred through a stepwise ethanol dehydration series as 

above. Specimens were critical-point dried with a LADD Research Industries Critical 

Point Dryer (Model 28000) using liquid carbon dioxide as the transitional fluid according 

to the manufacture's protocol. Dried material was mounted onto carbon-tabbed stubs and 

further dissected as needed. Stubs were sputter coated using a Denton Vacuum Desk II 

Sputter Coater with a gold or gold-palladium target for 60 seconds at 35 milliamps. 

Flowers were examined and imaged with a JEOL JSM-6610LV Scanning Electron 

Microscope. Images were edited only to optimize contrast and remove backgrounds in 

Photoshop (Adobe Inc., San Jose, California). 
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Ancestral Character Estimations 

Ancestral character estimations were conducted on chronograms from Schenk et al. 

(2018) using the Ape (Paradis et al. 2004) and Phytools (Revell 2012) packages in the 

statistical program R (R Development Core Team 2005) to determine the evolutionary 

transitions of staminodes in Paronychia. Staminode presence or absence were included in 

the analysis based on personal observation, Flora of North America (Hartman et al. 

2005), and a monograph of Paronychiinae (Appendix S1; Chaudhri 1968). Four transition 

models were fit onto the data. The first model, the equal rates model, parameterized a 

single transition rate for both transitions to and from staminodes (Harmon et al. 2008). 

The second model, the all rates different model, allowed for a different transition rate 

from staminode to stamen than from stamen to staminode (Harmon et al. 2008). The last 

two models were special cases of the all rates different model in which one rate was set 

equal to zero.  By setting one of the two rates to zero, the two irreversible models allowed 

only for a transition from no staminodes to staminodes, or the reverse, respectively. 

Model fit was assessed with AIC values (Akaike 1974), where we preferred the more 

complex model only if it was greater than two AIC values compared to models with 

fewer parameters. The models were evaluated and ancestral characters were inferred with 

maximum likelihood (Felsenstein 1981) in the APE package, the latter of which was also 

estimated with the Bayesian approach of stochastic character mapping (Huelsenbeck et 

al. 2003) in the Phytools package. Stochastic character mapping was conducted with 

1000 simulated histories across the 95% HPD chronogram estimated from Schenk et al. 

(2018). Stochastic character mapping analyses were repeated across 500 trees randomly 
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sampled from the post-burn-in portion of the posterior distribution of trees from Schenk 

et al. (2018). Analyses were conducted with 10 simulated histories on each phylogeny for 

a total of 5000 analyses. 

 

Results 

Floral descriptions 

 Paronychia–Flowers were usually pentamerous with five sepals, five 

antesepalous stamens, and five alternisepalous staminodes when present (Figs. 1–2, S1–

S4). The merosity of P. canadensis Wood and P. fastigiata (Raf.) Fernald were two 

exceptions, with flowers that contained 2–3 stamens (Figs. 2, S5), as well as P. chartacea 

ssp. chartacea, in which flowers usually contained four stamens (Fig. 2). Flowers 

developed centripetally after the prophylls initiated, starting with the calyx. The first 

anther to develop (termed anther 1) arose opposite of the first sepal to develop (sepal 1), 

followed by the remaining four anthers corresponding to the other four sepals and 

gynoecium. Stamen filaments developed only after the anther formed and elongation 

initiated simultaneously with staminodial structures (Figs. 1–2, S2–S4), which were 

positioned as part of the androecial whorl or just inward from the stamens (Figs. 3, S1). 

In Figure 1B, for example, anthers have initiated, but in Figure 1C when anthers are more 

developed, filaments and staminodes concurrently initiate. Staminodial structures were 

present in all species in at least some flowers or developmental stage, and they varied in 

length and shape across species. In P. erecta (Chapm.) Shinners, P. rugelii Shuttlew. ex 

Chapm., P. americana Fenzl ex Walp., P. drummondii Torr. & A. Gray, P. baldwinii 

(Torr & A. Gray) Fenzl, P. lindheimeri Engelm. ex A. Gray, P. jamesii Torr. & A. Gray, 
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and P. sessiliflora Nutt., staminodial structures developed at similar times and were 

subulate to filiform, being similar in size and shape to mature filaments in fertile stamens 

of the same flower (Figs. 1, S2–S4). In P. patula Shinners and P. herniarioides Michx., 

staminodial structures developed at similar times but were broader and more subulate at 

maturity compared to filaments of the same flower (Figs. 1, S2, S3, S4). Staminodial 

structures in flowers of P. argyrocoma (Michx.) Nutt. initiated, but soon terminated 

development, and often, only three or four staminodial structures formed (Fig. S3). 

Staminodial structures and filaments in staminate flowers of P. chartacea ssp. chartacea 

also initiated but quickly terminated development, resulting in shorter stamens compared 

to P. argyrocoma. Often, only four stamens developed in P. chartacea ssp. chartacea, 

and occasionally, only one to four staminodial structures formed (Figs. 2, S2, S4). Only 

some flowers of P. canadensis and P. fastigiata produced staminodial structures, and 

when present, they were highly reduced compared to the filaments of the stamens (Figs. 

2, S3, S4). In contrast to flowers of other species, staminodial structures in P. canadensis 

and P. fastigiata did not initiate at the same time as stamen filaments, but rather were 

delayed to various later stages of overall floral development after the filaments elongated, 

but before elongation was complete (Figs. 2, S3, S4). 

 Pollichia–Flowers are composed of five sepals and five staminodial structures 

that developed centripetally (Fig. 4). Staminodial structures were broad compared to 

filaments, dorsiventrally flattened, laterally lobed with an obtuse apex, and were born on 

an androecial ring (Fig. 4). Stamen numbers varied from 0–2 (Fig. 4) and developed 

opposite of sepals 4 and 5. Due to a limited amount of material, we were neither able to 

determine whether staminodial structures or stamens developed first nor whether stamens 
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were positionally born on the androecial ring because it was unclear if the imaged 

samples were pistillate or hermaphroditic with uninitiated stamens. The androecial ring 

developed after staminode initiation. 

 Stipulicida–Flowers were mostly pentamerous with five sepals, five petaloids, 

two to three stamens, and no staminodes (Fig. 5). Stamens developed opposite the sepals, 

and petaloids formed alternate of the sepals and abaxially to the stamens (Fig. 5). Anthers 

developed rapidly after their initiation, while petaloids elongated and expanded more 

slowly until the stamen were fully formed, in which case the petaloids rapidly expanded 

just prior to anthesis (Fig. 5). 

 

Ancestral Character Estimations 

The model-fitting approach identified the all rates different model as the best-fit model 

for the data (Table 1). The next best-fitting model was the equal rates model, which 

differed by 2.399 AIC units, followed by the loss only model that differed by 3.240 AIC 

units. The gain only model was the worst-fit model, differing from the all rates different 

model by 7.588 AIC units (Table 1). Given that the all rates different model fit the data 

best, we applied it in all subsequent ancestral state analyses. Maximum likelihood 

analyses based on the top two best-fitting models both inferred three independent losses 

of staminodes in Paronychia (Fig. S6). Maximum likelihood analyses with the all rates 

different model inferred equivocal states at the root node (Fig. S6A), but a higher 

likelihood of staminodes present at the root was inferred with the equal rates model (Fig. 

S6B). Stochastic character mapping inferred staminodes being present as the highest 

proportion at the root, followed by three losses of staminodes (Fig. 6).  
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Discussion 

Studying the morphological evolution of staminodes in recently evolved, closely related 

groups such as Paronychia has the advantage of revealing complex patterns before they 

are obscured by subsequent evolutionary transformations through time. We identified 

staminode evolution in Paronychia to be markedly more dynamic than previously 

understood. Staminodial structures in Paronychia have been hypothesized to be 

staminodes or petaloids (Chaudhri 1968; Ronse De Craene and Smets 2001). Our results 

support those of Ronse De Craene and Smets (2001) and Wei and Ronse De Craene 

(2019) by providing evidence that staminodial structures in Paronychia are staminodes 

based on their structural and positional homology, development, and morphological 

similarity to stamen filaments. 

Evidence was not identified supporting the hypothesis that staminodial structures 

in Paronychia are homologous with petaloids. When examining the location of the 

staminodial structure initiation during development, they are not positionally consistent 

with where we would expect to locate the corolla: the structures develop nearly alongside 

the stamens or between the stamens and gynoecium (Figs. 3, S1), as opposed to between 

the stamens and sepals as would be expected if they were homologous to petaloids. SEM 

micrographs also do not show that the structures arise by splitting of the stamen 

primordia, as has been found in the petaloids of other Caryophyllaceae genera (Ronse De 

Craene 2018), but rather they arise independently after the formation of the anthers (Figs. 

1–2, S2–S4).  
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 Images from both SEM and light microscopy suggest that the alternisepalous 

structures are staminodes. The structures originate at or inside of the antesepalous whorl 

of stamens (Figs. 3, S1) at approximately the same time filaments initiate (Figs. 1–2, S1–

S4). The staminodes retain the developmental timing of the filaments, and both structures 

elongate and simultaneously complete their development. In mature flowers of most 

staminodial species, staminodes are morphologically similar to filaments in size and 

shape and never exceed filaments in length (Figs. 1, 2, S2–S4 column 6). Given the 

location of where staminodes develop, their form, and their developmental timing, we 

conclude that the staminodes are homologous to filaments in which anthers fail to initiate. 

In species in which staminodes are lost (e.g., P. fastigiata), further reduction is achieved 

through heterochronic termination of development shortly following initiation. 

Flowers of Caryophyllaceae are hypothesized to be ancestrally petalous with ten 

stamens, but some species have since become apetalous and contain five stamens (Wei 

and Ronse De Craene 2019). Flowers of Paronychia, however, exhibit the latter state. All 

staminodes in Paronychia are apparently homologous with one another and likely 

evolved prior to its origin (Fig. 6). Staminodes in Paronychia have been referred to as 

vestigial (Ronse De Craene and Smets 2001). Botnaru and Schenk (2019) defined 

vestigial staminodes as those that have lost their reproductive function and neither 

produce pollen nor have been coopted for a secondary function. Although we made 

attempts to determine the staminode function through video recordings to document 

whether pollinators interact with these structures, observations were inconclusive due to 

the small size of the flowers and infrequent pollinator visitations. If staminodes in 

Paronychia are vestigial, they would not have a secondary function, but we also 
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predicted that they would be diminutive to adjacent filaments and have a loss of vascular 

tissue, a feature common in vestigial organs that is observed in other rudimentary 

staminodes (Arber 1933). These predictions were largely supported by our results (Figs. 

1–3, S2–S4). In most species, staminodes were diminutive compared to adjacent 

filaments (Figs. 1–2, S2–S4), and in all species observed with light microscopy, a 

vascular strand was absent (Fig. 3).  

Staminodes in P. americana, P. baldwinii, P. drummondii, P. erecta, P. jamesii, 

P. lindheimeri, P. rugelii, and P. sessiliflora were the same size or very slightly reduced 

compared to adjacent filaments (Figs. 1, S2–S4), supporting the interpretation of them 

being vestigial. Although determining the evolutionary forces that selected for the loss of 

reproductive function is beyond the scope of this study, the staminodes in the species 

above might be in evolutionary stasis, in which selection is not acting positively or 

negatively on them following the initial selection for reduction of floral size. The above 

species, alternatively, might also be experiencing stabilizing selection, where the 

staminodes are performing a function that we have yet to determine. Differentiating 

between the two hypotheses above is central to understanding the evolution and 

persistence of staminodes in Paronychia.  

In species reported to lack staminodes (P. canadensis, P. chartacea ssp. 

chartacea, and P. fastigiata) and in P. argyrocoma, staminodes begin to develop 

concomitantly with filaments but are terminated shortly after they initiate, resulting in 

rudimentary structures compared to adjacent filaments (Figs. 2, S2–S4). In mature 

flowers, those terminated staminodes are difficult or impossible to observe, even with the 

aid of a hand lens because they are so diminutive. We hypothesize that reduction of 
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staminodes in those species cooccurs with an overall floral reduction (see below for 

further discussion). The selective forces that promote further floral reductions are not 

understood well in Paronychia.  

In contrast to staminodes that retain the shape of stamen filaments and those 

which are reduced, staminodes in P. herniarioides and P. patula appear much wider at 

the base than adjacent filaments and have putatively undergone morphological evolution, 

supporting the hypothesis that staminodes in some species of Paronychia have been 

coopted for a currently unknown function. If staminodes are indeed coopted in the above 

species, we hypothesize that they are performing one of the following three functions. 

We first hypothesize that staminodes in Paronychia function as pollinator nectar guides. 

Staminodes acting as nectar guides and more broadly as visual displays has been 

observed in the Zingiberales (Specht et al. 2012) and Linaceae (Walker-Larsen and 

Harder 2000), but those in Paronychia are not conspicuous and not likely to aid in 

attracting pollinators (Figs. 1–2, S2–S4). Our second hypothesis is that staminodes are 

coopted to function as pollinator landing platforms. In Herrania purpurea (Pittier) R.E. 

Shult. (Malvaceae), for example, staminodes function as landing platforms during the 

female phase of the flowers (Young 1984; Walker-Larsen and Harder 2000). Our third 

hypothesis is that staminodes have been coopted to force pollinators to enter the flower 

from above, rather than from the side. As such, the staminodes could function to either 

protect the flower from nectar thieves or facilitate pollination by assuring that pollinators 

come into contact with both anthers and stigmas.  

The complex pattern of vestigial and coopted staminodes in Paronychia is 

consistent with what we term the vestigial intermediate hypothesis, which we define as 
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the evolution of vestigial staminodes prior to being coopted for a secondary function. 

Walker-Larsen and Harder (2000) observed this pattern of reduction, loss, and functional 

cooption in the Lamiales and proposed that stamens that first lost their function could 

more easily be coopted for alternative functions without further disrupting stabilizing 

selection of reproductive output in the fertile androecial whorl. In Paronychia, we argue 

that staminodes began as vestigial structures following the loss of the anther and 

subsequently had three fates: they either remained similar to filaments, were lost, or were 

coopted for a secondary, but unknown, function. Such a process explains why the 

staminodes of P. herniarioides have undergone morphological evolution compared to its 

filaments but still lack vascular tissue (Fig. 3). A fourth outcome of the vestigial 

intermediate hypothesis, which was not observed in our data, is an evolutionary reversal 

to regain a reproductive function. Staminodial ancestors have given rise to descendent 

lineages that contain fertile stamen in the same position on the basis of phylogenetic 

comparative analyses and positional homology (Botnaru and Schenk 2019). At least one 

species of Paronychia, P. sanchez-vegae (Montesinos-Tubee et al. 2018), has been 

observed to contain ten stamens. We were unable to sample specimens of P. sanchez-

vegae in this study, but the presence of ten stamens could represent a reversal where the 

five staminodes regained their reproductive function. The vestigial-intermediate pattern is 

unlikely to be an explanation for staminode evolution across all groups. In Mentzelia 

section Bartonia (Loasaceae), for example, Botnaru and Schenk (2019) hypothesized that 

staminodes coopted for visual display evolved as selection favored broader filaments, and 

therefore staminodes could evolve directly from stamen without first experiencing a 

vestigial stage.  
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Combining developmental and phylogenetic data illuminated the complexities of 

the evolutionary history of staminodes in Paronychia. Each of the three observed 

staminode morphologies have evolved multiple times independently across the 

phylogeny (Figs. 6, S4). Filamentous staminodes, which we refer to as vestigial, appear 

ancestral in our study and have been retained in the majority of descendants (Figs. 6, S4). 

Vestigial staminodes likely evolved prior to Paronychia (Fig. 6). For example, Ronse De 

Craene and Smets (2001) and Wei and Ronse De Craene (2019) documented 

Gymnocarpos decandrus Forssk. (= Paronychia decandra (Forssk.) Rohweder & Urmi-

König) as having a similar developmental pathway as what we observe in Paronychia in 

this study, with staminodes resembling vestigial stamen filaments at maturity and do not 

contain vascular tissues. Species in which staminodes are lost or greatly reduced occur in 

separate clades, except for P. canadensis and P. fastigiata, which are sister to one another 

(Figs. 6, S6). Species with elaborated staminodes, such as P. herniarioides and P. patula, 

also occur in distinct clades (Figs. 6, S6). These repeated reductions and elaborations 

demonstrate a complex history of selection and morphological evolution within a group 

of close relatives. 

 An unexpected pattern observed in our developmental results is a correlation of 

staminode loss with overall floral reduction. Contrary to previous works that suggested P. 

canadensis, P. chartacea ssp. chartacea, and P. fastigiata lack staminodes (Hartman et 

al. 2005), we determined all species to have staminodes initiate and develop to various 

extents in at least some flowers (Figs. 2, S2–S4). Whereas the ancestor of Paronychia has 

pentamerous flowers (Greenberg and Donoghue 2011; Wei and Ronse De Craene 2019), 

three of the species in which we observe a reduction or loss of staminodes also contain 
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fewer stamens. In P. chartacea ssp. chartacea, we observe a near-loss of staminodes, and 

stamens are typically reduced to four (Figs. 2, S2, S4). In P. canadensis and P. fastigiata, 

which also have a near-loss of staminodes, stamens are reduced to two to three (Figs. 2, 

S3, S4). Given their sister relationship, stamen loss likely occurred in their most recent 

common ancestor (Fig. 6), and we find that stamens that develop in position 4 and 5 

(occasionally also 3) are the ones that were lost (Fig. S5). In flowers with reduced stamen 

numbers, it is interesting to compare the partial loss of stamen whorls to the staminodial 

whorl.  

 In Paronychia, staminodes are typically present in a whole whorl or lost in a 

whole whorl; we never observed the reduction or loss of staminodes partially within a 

whorl. Stamens in the antesepalous whorl, however, can be partially lost. In all cases in 

which one to four stamens were lost, we do not observe staminodes in their place (Figs. 

2, S2–S4). Such a pattern begs the question, why do staminodes remain on whole whorls, 

but no vestigial structures remain on partial whorls of stamens? Is there an unrealized 

function for the staminodes we classified as vestigial, or is the developmental program of 

the staminodial whorl so canalized that the structures are not lost? Given the association 

of reduced stamens and staminodes and the relatively small flower sizes, we hypothesize 

that the reduction of androecial structures is a consequence of selection for smaller 

flowers as stamens endure mechanical pressure from the sepals and gynoecium (Wei and 

Ronse De Craene 2020). The repeated independent loss of staminodes suggests that at 

least in some species, staminodes might be lost due to disuse, but when considering the 

harsh sandhill environments in which Paronychia grow (Schenk et al. 2018), we 

hypothesize that staminodes in Paronychia have evolved in large part to selection for a 
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reduction in overall flower size associated with nutrient poor habitats (Galen 1999; 

Guerrant 1990).  

In contrast to the correlation of reduced stamen number associated with the loss of 

staminodes and reduced flower size in Paronychia, Pollichia campestris was observed 

having 1–2 stamens but all five staminodes (Fig. 4). Unlike what we observed in 

Paronychia with a partial loss of later developing stamens in the fertile androecial whorl 

(Fig. S5), stamens that developed in positions 1–3 (occasionally 4) were lost in Pollichia 

(Fig. 4), but similarly, there are no rudimentary structures or other evidence indicating 

where stamens were once positioned. Stamen loss was also observed in Stipulicida 

setacea, which has two to three stamens, though staminodes are not present in this 

species (Fig. 5). Five petaloids are present in the alternisepalous positions of the 

relatively large flowers of Stipulicida compared to Paronychia (Fig. 5). Floral reduction 

in Paronychia, Pollichia, and Stipulicida has likely evolved independently, as has also 

been shown in Gymnocarpos (Wei and Ronse De Craene 2019). 

 In conclusion, we propose the vestigial intermediate hypothesis as one mechanism 

by which staminodes evolve, but how widespread this evolutionary phenomenon is and 

the factors that are important in this evolutionary pathway requires further investigations. 

Conducting multifaceted approaches that combines morphological variation, 

development, and phylogenetic comparative methods among recently evolved, closely 

related species, such as Paronychia, provides valuable insight to the intricacies of 

evolution that might be unobservable when examining only broad patterns across 

families. Although our results identified that staminode evolution in Paronychia was 

quite dynamic, additional studies that measure the microevolutionary processes that have 
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selected for staminodial traits, including the filamentous, coopted, and reduced forms, are 

needed to better understand the selective forces that promoted staminode evolution 

throughout Paronychia. 
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 Appendix 1. Collection and voucher information for plant material used for scanning 

electron and light microscopy. All material was collected in the United States. Herbarium 

codes are consistent with the Index Herbariorum (Thiers 2015).  

Outgroup–Pollichia campestris Aiton, University of Connecticut Greenhouse, Taylor 

668 (CONN) 200100492; Stipulicida setacea Michaux, Georgia, Irwin County, A. 

Appleton 6 and J. Schenk (GAS). 

Ingroup–Paronychia americana Fenzl ex Walp., Georgia, Ben Hill County, A. Appleton 

9 and J. Schenk (GAS); P. americana Fenzl ex Walp., Florida, Highlands, J. Schenk 

2543 (GAS); P. argyrocoma (Michx.) Nutt., Georgia, Lumpkin County, A. Appleton 66 

and J. Schenk (GAS); P. baldwinii (Torr. & A. Gray) Fenzl, Georgia, Bryan County, A. 

Appleton 1 and J. Schenk (GAS); P. canadensis Wood, Ohio, Athens County, J. Schenk 

2601 (BHO); P. chartacea Fernald ssp. chartacea, Florida, Polk County, A. Appleton 58 

and J. Schenk (GAS); P. drummondii Torr. & A. Gray, Texas, Bastrop, J. Schenk 2552 

(GAS); P. erecta (Chapm.) Shinners, Florida, Wakulla, J. Schenk 2535 (GAS); P. 

fastigiata (Raf.) Fernald, Ohio, Jefferson County, J. Schenk 2603 (BHO); P. 

herniarioides Michx., Georgia, Bulloch, J. Schenk 2440 (GAS); P. jamesii Torr. & A. 

Gray, Texas, Brewster, J. Schenk 2558 (GAS); P. lindheimeri Engelm. ex A. Gray, 

Texas, Llano, J. Schenk 2551 (GAS); P. patula Shinners, Florida, Citrus County, A. 

Appleton 60 and J. Schenk (GAS); P. rugelii Shuttlew. ex Chapm., Florida, Citrus 

County, A. Appleton 59 and J. Schenk (GAS); P. sessiliflora Nutt., Texas, Hartley, J. 

Schenk 2566 (GAS). 
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Table 1. Likelihood, AIC, and AIC values from ancestral character reconstruction 

model fitting in which the equal rates model allowed for transitions to occur at equal 

rates; the all rates different (ARD) model allows for transitions to be separate parameters; 

the gain only model allows only for the gain of staminodes; and the loss only model 

allows only for the loss of staminodes. 

_______________________________________________ 

   Model  Likelihood AIC AIC 

_______________________________________________ 

 Equal rates -13.02621 28.05242  2.399 

 ARD -10.82648 25.65296 0  

 Gain only -15.62070 33.24140 7.588 

 Loss only -13.44666 28.89333 3.240 

_______________________________________________ 
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Figure 1. Scanning electron micrographs of Paronychia floral development. (A) P. 

baldwinii sepal initiation. (B) P. baldwinii anther initiation. (C) P. baldwinii initiation of 

staminodes and filaments and anther enlargement. (D) P. baldwinii elongation of 

staminodes and filaments. (E) P. baldwinii base of anthers surpassing the tops of ovaries. 

(F) P. baldwinii mature flower. (G) P. herniarioides sepal initiation. (H) P. herniarioides 

anther initiation. (I) P. herniarioides initiation of staminodes and filaments and anther 

enlargement. (J) P. herniarioides elongation of staminodes and filaments. (K) P. 

herniarioides base of anthers surpassing the tops of ovaries. (L) P. herniarioides mature 

flower. A = anther, G = gynoecium, K = sepal, and S = staminode. 
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Figure 2. Scanning electron micrographs of Paronychia floral development. (A) P. 

chartacea ssp. chartacea sepal initiation. (B) P. chartacea ssp. chartacea anther 

initiation. (C) P. chartacea ssp. chartacea initiation of staminodes and filaments and 

anther enlargement. (D) P. chartacea ssp. chartacea elongation of staminodes and 

filaments. (E) P. chartacea ssp. chartacea base of anthers surpassing the tops of ovaries. 

(F) P. chartacea ssp. chartacea mature flower. (G) P. fastigiata sepal initiation. (H) P. 

fastigiata anther initiation. (I) P. fastigiata initiation of staminodes and filaments and 

anther enlargement. (J) P. fastigiata elongation of staminodes and filaments. (K) P. 

fastigiata base of anthers surpassing the tops of ovaries. (L) P. fastigiata mature flower. 

A = anther, G = gynoecium, K = sepal, and S = staminode. 
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Figure 3. Longitudinal sections of Paronychia herniarioides. (A) Flower in early 

development. (B) Flower mid-development. (C) Mature flower. A = anther, C = carpel, K 

= sepal, O = ovule, S = staminode, and vs = vascular strand. 
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Figure 4. Scanning electron micrographs of Pollichia campestris floral development. (A) 

Early sepal development. (B) Initiation of staminodes. (C) Developing gynoecium and 

staminodes alternate the sepals. (D) Young stamens opposite the sepals. (E) Developing 

stamen. (F) Mature flower. A = anther, G = gynoecium, K = sepal, and S = staminode.  
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Figure 5. Scanning electron micrographs of Stipulicida setacea floral development. (A) 

Development of the calyx. (B) Initiation of petaloids alternate the sepals. (C) Anther 

primordia centrifugal to the petaloids. (D) Anthers quickly surpassing the size of 

petaloids. (E) More developed flower with petaloids laterally expanding. (F) Mature 

flower. A = anther, G = gynoecium, K = sepal, and P = petaloid. 
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Figure 6. Ancestral state estimates of staminodes (gray = present, black = absent) across 

the Paronychia phylogeny optimized with stochastic character mapping of 1000 

simulations. Pie charts at nodes represent the relative posterior probabilities of each state 

inferred at the node. Paronychia is abbreviated as P. and Paronychia chartacea is 

abbreviated as P. c.  
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Appendix S1. Staminode matrix, indicating the presence (1) or absence (0) of staminodes 

in Paronychia (Caryophyllaceae) and close relatives. 

______________________________________ 

 

  Species Staminode 

______________________________________ 

Paronychia erecta 1 

Paronychia rugelii 1 

Paronychia patula 1 

Paronychia discoveryi 1 

Paronychia americana 1 

Paronychia drummondii 1 

Paronychia chartacea ssp. minima 0 

Paronychia chartacea ssp. chartacea 0 

Paronychia canadensis 0 

Paronychia fastigiata 0 

Paronychia baldwinii 1 

Paronychia argyrocoma 1 

Paronychia lindheimeri 1 

Paronychia jamesii 1 

Paronychia depressa 1 

Paronychia sessiliflora 1 

Paronychia herniarioides 1 

Paronychia echinulata 1 

Paronychia canariensis 1 

Paronychia camphorosmioides 1 

Paronychia communis 1 

Paronychia franciscana 0 

Paronychia pulvinata 1 

Gymnocarpos przewalskii 1 

Gymnocarpos decandrus 1 

Pollichia campestris 1 

Herniaria glabra 1 

Paronychia kapela 1 

______________________________________ 

  



37 
 

 

Figure S1. Scanning electron micrographs showing androecial position when staminodes 

first initiate in Paronychia. (A) P. herniarioides flower. (B) P. chartacea ssp. chartacea 

flower. A = anther, G = gynoecium, K = sepal, and S = staminode. 
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Figure S2. Scanning electron micrographs of Paronychia floral development (the first 

seven of fourteen species from the phylogeny in Figure S1). Each row is comprised of a 

species, and each column represents a different stage of development. Column 1 is sepal 

initiation. Column 2 is anther initiation. Column 3 is initiation of staminodes and 

filaments and anther enlargement. Column 4 is elongation of staminodes and filaments. 

Column 5 is the base of anthers surpassing the tops of ovaries. Column 6 is mature 

flowers. A = anther, B = stipular bract, G = gynoecium, K = sepal, and S = staminode.  
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Figure S3. Scanning electron micrographs of Paronychia floral development. Each row is 

comprised of a species, and each column represents a different stage of development. 

Column 1 is sepal initiation. Column 2 is anther initiation. Column 3 is initiation of 

staminodes and filaments and anther enlargement. Column 4 is elongation of staminodes 

and filaments. Column 5 is the base of anthers surpassing the tops of ovaries. Column 6 is 

mature flowers. A = anther, B = stipular bract, G = gynoecium, K = sepal, and S = 

staminode. 
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Figure S4. Phylogeny of developmental series of sampled Paronychia that combines 

Figures S1 and S2. 
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Figure S5. Scanning electron micrograph of a young Paronychia canadensis flower 

(enlargedfrom Figure S3 B2). The order of developing organs is indicated numerically. A 

= anther, G =gynoecium, K = sepal. 
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Figure S6.  Ancestral character estimations with the (A) all-rates-different and (B) equal-

rates model.  Pie charts represent proportion of the likelihood estimate for staminodes 

being present (gray) or absent (black). Paronychia is abbreviated as P. and Paronychia 

chartacea is abbreviated as P. c.   
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