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ABSTRACT 

This study addresses the control of chaotic dynamic systems represented by three coupled 

Lorenz systems. In application, Lorenz systems are commonly used to describe the one-

dimensional motion of fluids in a tube when heated below and cooled above. This system, in 

particular, reflects the fluid motion in a coupled triple-loop thermosyphon system. The goal is 

to derive a system of nonlinear differential equations to help us study various flow patterns 

governed by such a high-dimensional nonlinear model numerically.  Once the driving 

parameter (Rayleigh number) values are identified corresponding to the chaotic regime, a 

minimal number of proportional controllers are designed that only depend on the measurable 

states, which serve as perturbations to the system, so that the system trajectories are stabilized 

at its equilibrium point even though the Rayleigh numbers are significantly large.  The stability 

property of the control system is then investigated over a large range of the parameter values 

through simulations. Furthermore, the stability bounds on the controller gains obtained via the 

Lyapunov Stability Theorem are tested for its feasibility in practice. 
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CHAPTER 1 

INTRODUCTION 

 

For as long as mankind has been on this Earth, we have attempted to control our 

surroundings, to make order out of a naturally chaotic world, and mathematics has been a 

cornerstone in this. By assigning mathematical equations to describe a natural 

phenomenon, we can analyze the behavior of the system. Once they are known enough to 

be predictable, we can begin the process of manipulating the system to fit our objectives. 

Lorenz equations are a benchmark mathematical dynamical system widely used in 

studying chaos. The Lorenz system arises in many applications such atmospheric 

convection, laser beams, and one-dimensional flows in a thermosyphon loop when heated 

below and cooled above, to name a few.  Its key characteristics is that the temperature 

difference drives the fluids in motion inside the tube.  The higher the external heat, the 

more chaotic the motion. Thermosyphons are relevant in several fields primarily as 

cooling agents.  In nuclear power plants, the natural convection benefits the removal of 

heat from the system to maintain stability or to depressurize it after a reactor incident.  

Previous work has already been done on controlling single and double-looped 

systems. [1,2,3]. Our goal is to model the flows within three interconnected 

thermosyphon loops, allowing heat and momentum exchanges at the coupling points, and 

then design a positive, proportional state feedback controller to stabilize the flows.  
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CHAPTER 2 

DYNAMICAL SYSTEM SETUP 

Before controlling a system, it is of course essential that you understand from where it 

came. In this system we explore the physical dynamical system and how it comes to be 

represented by a series of ordinary differential equations 

 

2.1 PHYSICAL REPRESENTATION 

We are interested in an interconnected triple-loop thermosyphon system in which 

heat transfer is carried out via fluids in the tubes, see Fig. 2.1. 

 

Figure 2.1: The physical form of a coupled triple-loop thermosyphon system 

 

In this system, each loop is heated at the bottom and cooled at the top. It is also important 

to note the coupling points between the loops, at 0 and 1. While previous 

papers on two-loop systems only had one coupling point between the loops [1,2,3], our 

middle loop has two coupling points. This will affect our differential equations and 

resulting analysis. 
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2.2 REPRESENTATION AS PARTIAL DIFFERENTIAL EQUATIONS 

When dealing with a dynamical system, partial differential equations are not the easiest 

with which to work. Regardless, it is still important to understand where these partial 

differential equations came from before then manipulating them into much more friendly 

ordinary differential equations. Our system is represented by the following partial 

differential equations: 
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 In this, each set of three equations governs the flow dynamics in a corresponding 

loop. The second, fourth, and sixth equations relate to the velocity of each loop. The final 

term(s) in these equations corresponds to the momentum coupling between loops. Since 

our middle loop has two coupling points, it has two momentum coupling terms. The 

third, fifth, and seventh equations relate to each loop’s temperature. Here the final term(s) 

corresponds to the heat coupling between loops. Similarly, the middle loop has two heat 

coupling points. 

(1) 

(2) 

(3) 

(4) 

(5) 

(6) 

(7) 
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2.3 REPRESENTATION AS ORDINARY DIFFERENTIAL EQUATIONS 

Now that we have established a mathematical model for the thermosyphons, as a 

common practice in modeling, we simplify the equations through a set of idealization 

assumptions and nondimensionalization process into a form that is easier to handle. First, 

we introduce a Fourier series for each temperature function Ti in the form:  

,0 , ,
1

( , ) sin( ) cos( )i i i n i n
n

T t T S n C n  

Then using a Galerkin method, we truncate the sum to n=1 and substitute this into 

our equations. We define our TW as simply TH in the upper half of each loop and TC in 

the bottom half. In addition, we define a constant η relating the contact areas to the 

overall wall surface in each loop: 

η =  <<1 

By integrating each of our momentum equations with respect to , knowing that 

the velocity functions are independent of  due to (1), we can match the term 

coefficients for our equations. Finally, we use a known nondimensionalization method to 

make all state variables without units. The final result is the following systems of 

ordinary differential equations: 
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where the x’s represent fluid velocity in each loop, the y’s represent the horizontal 

temperature difference for each loop, and the z’s represent the vertical temperature 

difference for each loop. 
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CHAPTER 3 

SYSTEM MODELING (WITHOUT CONTROLLER) 

Before testing the results of our controller, we first observe the system’s natural behavior. 

As the heating parameters, commonly referred to as Rayleigh numbers, rise, the system’s 

behavior falls into three categories: stable, periodic, and chaotic. 

 

3.1 SINGLE LOOP HEATING 

When our heating parameters are small enough, the system is stable on its own and 

doesn’t require a controller; however, once the heating parameters cross a certain 

threshold, the system begins exhibiting periodic and then chaotic motion. Below are the 

velocities for each loop when loop 1 is heated (Figure 3.1). 

 

Figure 3.1.1: Velocities with Loop 1 Heated 
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Intuitively, it makes sense that the system will behave similarly when loop 3 is 

heated. One might expect a different scenario when only loop 2 is heated; however, the 

result is generally the same with the heated loop being chaotic and the adjacent loops 

having minor disturbances. It is significant to note the differences between heating a 

single loop in a 3-loop system and heating a single loop in a 1-loop system. While in both 

systems, the heated loop behaves chaotically, their patterns are noticeably different. In a 

3-loop system, the other two loops provide interference (Figure 3.1.2). This will affect 

our controller’s response time. 

 

 

Figure 3.1.2: 1-Loop Heated System 
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3.2 DOUBLE LOOP HEATING 

When two loops are heated, the results are similar. The heated loops are chaotic 

and the adjacent loop in only minorly excited. When loops one and three are heated, the 

unheated loop only shows minor disturbances even when the other two loops are heated 

at very high levels. Changing the amount of heating in the outer loops doesn’t seem to 

affect the behavior of the center loop (Figure 3.2). 

 

Figure 3.2: Velocities with Loop 2 Unheated 

 

Instinctively, one might conclude that the reason that the middle loop isn’t highly 

active is because the activities in loops one and three “cancel out.” However, even when 

loop 1 is unheated, it also only shows minor motion. 
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3.3 CHAOTIC MOTION AT A SMALLER AMPLITUDE 

An interested phenomenon to notice is the behavior of loops adjacent to heating. 

Although the motion of an adjacent loop is small, a closer look reviews that its motion is 

still chaotic. The exact nature of its chaos depends on the parameters of all three loops, 

not just those that have high heating parameters. For instance, below are the velocities of 

the middle loop when loops 1 and 3 are heated at Rayleigh numbers 25, 0, and 50 and 25, 

15, and 50 (Figures 3.3). Notice that in the second figure, the velocity of loop two has 

shifted to be centered below the axis. 

 

Figure 3.3.1: Loop 2 Velocity for R2 set to 0 
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Figure 3.3.2: Loop 2 Velocity for R2 set to 15 
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CHAPTER 4 

INTRODUCTION OF THE SYSTEM CONTROLLER 

To make this system non-chaotic, we introduce a positive state feedback controller. This 

is done by simply adding on a controller term to each of our iy  equations in the form of 

i ik y , where ik  is known as the state feedback gain.  The reason for choosing the y-state 

is that it is a state that is proportional to the easily measurable/observable temperature 

state.  This design considers real implementation of the controller design.  The question 

then, is what are the values of the ik s? By applying Lyapunov’s Stability Theorem [4], we 

find that our system is globally stable if the ik s are large enough.  However, large gains 

imply greater cost for building the controllers.  We opt to seek smaller bounds or optimal 

bounds that are sufficient for stabilizing the systems. 

Choose the Lyapunov Candidate: 

2 2 2 2 2 2 2 2 231 2
1 1 1 2 2 2 3 3 3

1

2

RR R
V x y z x y z x y z
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 
= + + + + + + + + 

 
 

Then 

31 2
1 1 1 1 1 1 2 2 2 2 2 2 3 3 3 3 3 3

TRR R
V x x y y z z x x y y z z x x y y z z X AX

  
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where  1 1 1 2 2 2 3 3 3X x y z x y z x y z=  and the symmetric matrix A is: 
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Then it suffices to show that A is positive definite. We do this by setting the 

determinant of each principle minor to be greater than zero. Each principal minor yields 

conditions on 1 2 3, ,k k k  that can be simplified to: 
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CHAPTER 5 

SYSTEM MODELING (WITH CONTROLLER) 

We now introduce the controllers into the system and observe the results. Given various 

Rayleigh numbers and initial starting conditions, is the controller universally effective? 

When solving for our controller bounds, it was required that our Rayleigh numbers are 

similar in magnitude, so for this next chapter, Rayleigh numbers are within 10 units of 

each other. 

 

5.1 STABILIZING THE CHAOTIC SYSTEM 

First we consider a scenario where the starting conditions of each loop are similar and the 

Rayleigh numbers are large enough to result in a chaotic system. At 40 seconds into the 

simulation, the controller in implemented (Figures 5.1).  

 

Figure 5.1.1: Stabilized Chaotic System 
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Figure 5.1.2: Stabilized Loop 2 Velocity 

 

Even with drastically high Rayleigh numbers, our system still stabilizes in under 

one second. This suggests that our controllers are in fact an effective means of stabilizing 

our system. 
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CHAPTER 6 

CLOSING REMARKS 

Stabilizing a three-loop thermosyphon system is perhaps the last hurdle in stabilizing an 

n-loop thermosyphon system. For any number of loops in a row, no loop has any more 

than two coupling points, so we can expect the results for any increase in loops to be 

similar. We also intend to address controlling a system with minor disturbances. Our next 

step after finding the bounds for the ik s is to study a four-loop system. Once this is 

completed, we can begin the process of exploring the general n-loop thermosyphon 

system.  
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