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ABSTRACT 

While excessive cell death inevitably leads to negative effects, the endurance of damaged 
cells in the presence of death signals can be equally detrimental to health. Apoptosis, or 
programmed cell death, is a highly regulated process in which cues from within or from 
outside a cell can trigger an irreversible sequence of signals that carry out cell destruction 
known as the apoptotic cascade. A group of enzymes called caspases play a vital role in 
this cascade with some participating as initiators and others acting as effectors of protein 
cleavage and intracellular breakdown. Although it is normal for the activity of caspases to 
be suppressed during a cell’s lifetime, continued suppression of apoptotic enzymes even in 
the presence of pro-apoptotic signals is one of the hallmarks of cancer cells. There is 
evidence that certain metal ions can bind and inhibit caspases, and fluctuations in 
intracellular Fe3+ concentrations during apoptosis raise the question whether this ion has a 
similar effect. In this study, plasmid DNA encoding caspase-7 was expressed in E. coli, 
and the resulting protein was purified using nickel affinity chromatography. The protein’s 
structure will be analyzed both on its own and in the presence of Fe3+ in order to determine 
whether interactions are present that may lead to caspase-7 inhibition. Structural changes 
will be monitored using circular dichroism spectroscopy. Further understanding of cationic 
interactions with caspases could answer many existing questions about apoptotic resistance 
in cells and perhaps even lead to the development of treatments for such conditions. 
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INTRODUCTION 

 Although disease is often thought of as damage to healthy cells, the lack of death 

in unneeded or unhealthy cells presents a host of complications of its own. The body 

relies on certain self-destructive processes to ensure that defective cells die off in a timely 

manner. These processes are kept in check under normal conditions, but cues from within 

or from outside a cell can trigger a sequence of signals and processes collectively known 

as the apoptotic cascade 

which ultimately brings 

about programmed cell 

death, also known as 

apoptosis. While apoptosis 

is necessary for 

development of tissues 

and for keeping those 

tissues healthy, excessive 

apoptosis can lead to 

degenerative diseases such 

as Alzheimer’s disease, 

Huntington’s disease, and Parkinson’s disease,1 while underactivity of apoptosis can lead 

to unregulated cell growth, which is characteristic of tumors and cancer.  

Apoptosis is a highly regulated process that is mediated by numerous different 

enzymes (Fig. 1), many of which lie dormant until acted upon by components higher up 

in the cascade. A group of cysteine proteases known as caspases play a vital role in this 

Figure 1. Apoptosis occurs in a complex and highly regulated 
cascade of processes in which enzymes called caspases 
(represented in pink) are central mediators.2  
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cascade with some participating 

as initiators and others acting as 

effectors of protein cleavage and 

intracellular breakdown.3 

Procaspases, or caspases in their 

inactive zymogen form, can be 

activated through one of two 

main pathways (Fig. 2). The 

intrinsic pathway is activated by 

internal cellular stress caused by 

factors such as radiation, hypoxia, 

viral infection, or absence of 

necessary growth factors.5 The extrinsic pathway involves signals from outside the cell 

such as the binding of tumor necrosis factor to transmembrane death receptors.5 Once 

activated, caspases can be classified as initiators or executioners based on whether their 

function is to activate other caspases or to cleave and destroy other proteins throughout 

the cell.3 

The focus of this study is executioner caspase-7. In its active form, caspase-7 

exists as a tetramer composed of two identical heterodimers.6 Each dimer is made up of 

two subunits (p10 and p20) with molecular weights of approximately 10 kDa and 20 kDa 

Figure 2. The intrinsic pathway of apoptosis (left) is 
initiated by intracellular stress while the extrinsic pathway 
(right) is elicited by extracellular death signals binding to 
transmembrane receptors.4 
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respectively.6 As shown in Figure 3, the 

complete tetramer’s structure is 

characterized by a central β sheet 

surrounded by ten α helices parallel to 

the β strands.6 This structure is achieved 

by stabilization of individual zymogen 

dimers via cleavage of a linker that 

separates the p10 and p20 chains by 

initiator caspases (Fig. 4).7 

Caspase-7 functions as an 

executioner caspase and is responsible 

for production of reactive oxygen 

species following mitochondrial outer 

membrane permeabilization (MOMP) 

and detachment of apoptotic cells from the extracellular matrix during apoptosis.8 

Caspase-7 also shares several substrates with caspase-3 including PARP, which plays a 

role in DNA repair5,9 as well as 

ROCK I and α-fodrin, both of which 

are responsible for maintaining 

cytoskeleton shape.10-12 Intrinsic 

activation of caspase-7 begins with 

intracellular stress leading to MOMP 

and the release of cytochrome c, 

Figure 3. Above is the ribbon structure of 
tetrameric caspase-7 with its p10 and p20 subunits 
assembled with their symmetric equivalents, p10’ 
and p20’. β sheets are represented as arrows, and α 
helices are shown as curled sections of the ribbon. 
Here the enzyme is bound to an inhibitor 
represented by the ball-and-stick structure.6  

Figure 4. Procaspase-7 is activated by cleavage of 
inter-chain linkers (red arrowheads) by initiator 
caspases, resulting in stabilizing rearrangement of 
the active site (red circles).7 
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which contributes to the activation of caspase-9, an initiator caspase that goes on to 

activate executioners such as caspase-7.8  

There are a few inhibitors of caspase-7 that are already well-known. These 

include proteins of the inhibitor of apoptosis (IAP) family which competitively inhibit 

substrate binding as well as p35 protein, which originates from a virus and inserts itself 

into the caspase’s active site.13 It has been shown that several of the caspases, including 

caspase-7, interact with and are inhibited by transition metal ions such as zinc(II) and 

copper(II).14 Evidence that cancer cells are characterized by heightened dependence on 

intracellular iron15 raises the question of whether iron(III) may be another metal ion that 

inhibits caspase activity by interference with the protein’s structure. 

In order to determine whether caspase-7 interacts with Fe3+ the protein was 

monitored for conformational change via circular dichroism (CD) spectroscopy, which is 

a well-established method for 

determining protein secondary 

structure (Fig. 5).16 In this form 

of spectroscopic analysis, a 

plane of alternating left- and 

right-handed circularly 

polarized light is passed 

through an optically active 

sample such as a protein sample.17 The resulting CD spectrum is a plot of the difference 

in absorbance of left- and right-handed circularly polarized light.16  

Figure 5. Circular dichroism (CD) involves passing a plane 
of alternating left- and right-handed circularly polarized light 
(CPL) through a protein sample and measuring the difference 
in their absorbances. Maxima and minima at specific 
wavelengths in the specrum are characteristic of certain 
secondary structure elements such as β sheets and α helices.17 
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Early attempts to analyze commercially produced caspase-7 resulted in noisy, 

unreliable CD spectra due to the glycerol storage buffer’s absorbance in the wavelength 

region of interest.16 However, dialysis left samples too dilute to obtain adequate CD 

spectra. Due to costliness and miniscule quantity-size of commercial caspase samples, it 

was decided that caspase-7 would be expressed and isolated in-house for this study. 

 

MATERIALS AND METHODS 

Caspase-7 was expressed, isolated, and analyzed using the techniques outlined in 

Figure 6 below. 

 

Figure 6. The flow chart above provides an overview of the experimental methods used 
in this study including isolation of commercial Addgene plasmids from host cells, 
transformation of those plasmids to E. coli DE3 cells, culture and induction of cells, lysis 
by sonication, protein purification by nickel affinity chromatography, protein 
identification via SDS-PAGE, protein quantification via Bradford assay, and finally 
structural analysis via CD spectroscopy.  
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DNA Isolation 

Bacterial stab cultures containing plasmid DNA coding for caspase-7 with a 

histidine tag, specifically pET23b-Casp7-His (Addgene plasmid #11825) 18 were used to 

streak bacteria onto a Luria Broth (LB) Agar plate made with 100 µg/mL ampicillin. 

Single colonies were isolated and used to inoculate a 250 mL overnight culture of liquid 

LB with 100 µg/mL ampicillin, and the culture was allowed to grow at 200 rpm and 37oC 

in a shaking incubator (Fig. 7) until 

an OD600 of 0.7 was reached. The 

culture was then centrifuged at 

5000 rpm for 20 minutes, and the 

supernatant was carefully 

discarded. The remaining bacterial 

pellet was then resuspended in 

minimal volume (about 10 mL) of cold buffer consisting of 25 mM Tris-HCl, 50 mM 

glucose, 10 mM EDTA, pH = 8. Twice the cell suspension’s volume of denaturing 

solution (0.2 N NaOH, 1.0% SDS) was added, and the mixture was slowly inverted 

several times until the contents became clearer and thicker. The sample was then 

incubated on ice for 5 minutes. Next, about 1.5x the original cell suspension volume of 

cold renaturing solution (120 mL 5M potassium acetate, 23 mL glacial acetic acid, 57 mL 

dH2O). The sample was mixed by inverting several times until a white precipitate formed 

containing bacterial proteins and genomic DNA (i.e. unwanted materials). The solution 

was incubated on ice for an additional 5 minutes, then centrifuged at 12,000 rpm for 5 

minutes. The plasmid-containing supernatant was collected and treated with 2-2.5x the 

Figure 7. Shaking incubator holding bacterial cell 
cultures (three rightmost flasks) with visible growth 
characterized by cloudiness in comparison to the clear 
negative control (leftmost flask) 
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original cell suspension volume of cold 100% ethanol. This mixture was incubated at       

-20oC, uncapped, overnight. Upon thawing, the supernatant was discarded, and the pellet 

was allowed to air dry for 30 minutes. Finally, the pellet was resuspended in minimal TE 

buffer (10 mM Tris-HCl, 0.1 mM EDTA, pH = 8). 

 

Protein Expression and Extraction 

 The plasmid DNA obtained with the Miniprep Kit was then transformed into 

BL21(DE3) E. coli cells19 for expression of caspase-7 with a histidine tag. Following a 

protocol published by MilliporeSigma,20 1.00 µL of purified plasma DNA was added to a 

25.0 µL aliquot of DE3 cell suspension. Transformation was initiated by incubation on 

ice for 5 minutes followed by heat shock in a 42oC water bath for 30 seconds. The sample 

was placed back on ice for an additional two minutes. Next, 250.0 µL of room 

temperature Super Optimal broth with Catabolite repression (SOC) medium was added to 

the sample, and the culture was allowed to grow at 37oC while shaking at 250 rpm for 

one hour. The transform was then poured and spread onto an LB agar plate made with 

100 µg/mL ampicillin and incubated overnight at 37oC.  

Next, 1 L of LB with 100 µL/mL ampicillin was inoculated with single colonies 

of DE3 cells containing caspase DNA from the transformation. This culture was allowed 

to grow at 37oC and shaking at 200 rpm until an OD600 of 0.7 was reached. The DE3 

culture was then induced to generate caspase-7 by addition of 0.187 g isopropyl ß-D-1-

thiogalactropyranoside (IPTG) to yield a final IPTG concentration of 0.8 mM. The 

temperature was reduced to 25oC, and the culture was allowed to grow for five hours. 

Cells were collected in pellets by centrifugation at 5000 rpm for twenty minutes. 



 9 

The cells were resuspended in a minimal volume of low imidazole buffer 

consisting of 50 mM NaCl, 50 mM tris base, and 50 mM imidazole at pH = 7.9. The DE3 

cells were lysed to release caspase-7 protein from cellular components by sonication, or 

agitation of the sample using sound waves. During sonication, the vibration of the 

sonicator probe tended to heat the cell suspension, so care was taken to sonicate in short 

pulses while keeping the sample on ice to prevent protein denaturation. The total 

sonication time was 30 minutes excluding rest time. The suspension was centrifuged at 

14,000 rpm for 30 minutes to pellet unwanted cellular materials. The protein-rich 

supernatant was retained for purification.  

 

Protein Purification 

 The cell lysate was applied to a chromatography column charged with nickel ions  

(Fig. 8) that would interact with the protein’s histidine tag for isolation of caspase-7 by 

affinity chromatography. The loading wash was collected for SDS-PAGE analysis, and 

the column was washed with about 5x the resin bed volume of low imidazole buffer until 

absorbance at 280 nm showed that protein was no longer present in the wash. Three 

column washes of 75 mL were collected and retained for SDS-PAGE analysis. Finally, 

the desired caspase-7 protein was eluted from the column with about 2x the bed volume 

of high imidazole buffer consisting of 50 mM NaCl, 50 mM tris base, and 500 mM 

imidazole at pH = 7.9. The eluent was collected in 3 mL fractions, and the absorbance of 
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each was measured at 280 nm using a NanoDrop 

2000c UV-Vis spectrophotometer to monitor the 

presence of protein in the fractions (Fig. 9). A full 

absorbance spectrum in the UV range from 200-400 

nm was also conducted (Fig. 10). 

  Because imidazole and Cl- ions interfere 

with CD spectroscopy signals, the protein-

containing fractions were pooled and dialyzed using 

Spectra/Por® dialysis tubing with a molecular 

weight cutoff of 3.5 kDa. The protein sample was 

dialyzed overnight in a 1:20 volume ratio of sample 

to buffer (50 mM tris base, pH = 7.9), and a protease 

inhibitor, 4-benzenesulfonyl fluoride hydrochloride (AEBSF), was added to yield a final 

concentration of 0.27 mM. 

 

Protein Identification  

 In order to confirm that the protein eluted from the chromatography column was 

in fact caspase-7, an SDS-PAGE gel was run using a low molecular weight ladder from 

Thermo Scientific (Product# 26612).21 Samples from the pooled protein-containing 

chromatography fractions and from the first column wash were treated with a sample 

prep mix consisting of 7.5% 2-mercaptoethanol, 7.5% SDS, 0.05% bromphenol blue, 

25% glycerol and boiled to denature the proteins. A 12.5% polyacrylamide gel was 

submerged in 1x EZ Run buffer, loaded with samples and ladder, and run at 150 V for 

Figure 8. The chromatography 
column is characterized by blue color 
due to nickel(II) ions complexed to 
the resin for interaction with the 
histidine tag on caspase-7 proteins. 
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about 1.5 hours. The gel was stained for one hour with 0.1% Coomassie Brilliant Blue R-

250, 40% methanol, 10% acetic acid, then destained overnight with 40% methanol, 10% 

acetic acid (Fig. 11). The distances traveled by bands in the ladder were measured and 

plotted versus the log of the molecular weights corresponding with each band21 to 

produce a linear regression (Fig. 12) to be used for analysis of sample molecular weights.  

 

Protein Quantification 

 A Bradford protein assay22 was performed in order to quantify the amount of 

caspase-7 obtained during the purification process. Standard solutions of bovine serum 

albumin (BSA) at ten different concentrations from 0.10 to 1.00 mg/mL along with 

samples of the caspase-7 pooled fractions and a 1:2 dilution of the caspase-7 pooled 

fractions were treated with Bradford reagent. Their absorbances were then measured at 

595 nm using a NanoDrop 2000c UV-Vis spectrophotometer. The concentrations of the 

caspase-7 samples were calculated using the linear equation produced by plotting the 

absorbances of the BSA standards at 595 nm versus their corresponding concentrations 

(Fig. 13). These results were averaged to obtain a concentration of the stock caspase-7 

solution (Table 2).  

 

CD Analysis of Caspase-7 

 A sample of dialyzed caspase-7 was diluted with tris buffer, pH = 7.9, to a yield 

final protein concentration of 0.1 mg/mL. This sample was analyzed using a JASCO J-

815 CD Spectrophotometer in order to obtain a baseline scan for the isolated protein’s 

secondary structure (Fig. 14). In order to monitor any changes in the protein’s secondary 



 12 

structure due to interaction with Fe3+ ions, a 3.23 mM stock solution of iron(III) nitrate 

nonahydrate was created such that addition of Fe3+ solution by the microliter would yield 

a 1:1 mole-to-mole ratio of caspase-7 to Fe3+. The caspase-7 sample will next be treated 

with 1.00 µL iron stock and analyzed via CD. This will be repeated three times, taking 

CD scans with each consecutive iron treatment, until a caspase-7 to Fe3+ mole ratio of 1:4 

is reached. 

 

RESULTS 

 
Figure 9. Elution profile of absorbance at 280 nm versus fraction number during elution 
of protein from nickel affinity chromatography column. 
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Figure 10. Full absorbance spectrum in the UV range of 200-400 nm for caspase-7 
pooled fractions.   
 

 
Figure 11. Image of 12.5% polyacrylamide gel from SDS-PAGE performed on column 
wash 1 (lane 2), pooled fractions (lane 4), standard MW ladder (lane 6), and pooled 
fractions diluted 1:2 (lane 8).   
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Figure 12. Standard curve of the logarithm of molecular weight in kilodaltons vs. band 
migration distance in centimeters for the MW ladder in the SDS-PAGE gel shown in 
Figure 5 along with the linear equation of best fit and its corresponding R2 generated by 
Excel.  

 

Table 1. Calculated molecular weights of bands in lane 4 (pooled fractions) from SDS-
PAGE. 

Band 
Band Migration 
Distance (cm) 

log(MW) MW (kDa) 

P.F. Band 1 5.93 1.527 33.6 
P.F. Band 2 
P.F. Band 3 

7.60 
9.35 

1.337 
1.138 

21.7 
13.8 
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Figure 13. Bradford assay standard curve of absorbance at 595 nm versus BSA 
concentration (mg/mL) along with the linear equation of best fit and its corresponding R2 
generated by Excel. 
 
Table 2. Summary of results from Bradford protein assay which determined the 
concentration and total protein content of the caspase-7 stock solution following dialysis.  

Sample Abs595 Concentration (mg/mL) 
Cas-7 (stock) 0.662 1.05 

Cas-7 (1:2 dilution) 0.347 0.514 
 

 
Figure 14. CD spectrum of isolated caspase-7 in tris buffer solution.  
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DISCUSSION 

The method of purification used following protein expression and extraction was 

nickel affinity chromatography. When the column was loaded, the histidine tag on 

caspase-7 interacted with the nickel ions embedded in the resin, and all unwanted 

proteins and bacterial components were washed from the column with low imidazole 

buffer. Since the presence of amino acids with aromatic side chains causes proteins to 

absorb 280 nm light, the presence of protein in the column wash was monitored via UV-

Vis spectroscopy. Once no more protein was detected in the column wash, the supposed 

caspase-7 was eluted from the column by washing with a buffer fairly concentrated with 

imidazole, which effectively displaced the proteins’ histidine tags from the resin and 

allowed caspase-7 to wash from the column. As shown in Figure 9, the absorbance values 

shown in the elution profile are initially negative due to blanking with high imidazole 

buffer and initial rinsing of low imidazole buffer from the column. The peak in 

absorbance that occurs from fraction 10 to fraction 12 reflects the elution of protein from 

the column. 

 Following purification, samples from the eluent obtained were denatured and 

analyzed via SDS-PAGE as shown in Figure 11. This form of gel electrophoresis 

separates protein chains by molecular weight (i.e. smaller chains migrate farther while 

larger chains are more impeded by the gel polymers and migrate shorter distances). After 

the migration distances of each band from its well was measured (Fig. 11), the linear plot 

of log(MW) vs. band migration distance shown in Figure 12 was created. The resulting 

R2 value of 0.998 points to the linear equation’s validity.  
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As shown in Figure 11, lane 2 contains the column wash (i.e. bacterial proteins 

and unwanted material that washed through the column without interacting with the 

nickel ligands) and appears as a smear due to the presence of countless proteins of 

different molecular weights. The sample of interest is pooled fractions containing the 

eluted protein (lane 4). As expected, distinct bands appeared indicating the presence of 

purified polypeptide chains. By inserting measured distances of the pooled fraction bands 

into the linear equation from Figure 12 and solving for MW, the following results were 

obtained: In lane 4, the band that traveled shortest distance (P.F. Band 1) is 33.6 kDa, the 

middle band (P.F. Band 2) is 21.7 kDa, and the band that traveled the farthest (P.F. Band 

3) is 13.8 kDa (Table 1). In lane 8, the single band is 33.0 kDa. Results for Bands 2 and 3 

agree with literature values for the subunit molecular weights stated previously.6 As such, 

one may conclude that these correspond with the two different subunits while Band 3 

corresponds with the intact heterodimer.  

 Following identification of the protein via SDS-PAGE, the amount of caspase-7 

isolated was quantified by the Bradford protein assay. The reagent dye used in this assay 

exists in its deprotonated form when it interacts with protein, and this form of the dye 

absorbs 595 nm light.22 Therefore, absorbance at 595 nm can be directly related to protein 

concentration by creating a standard curve as shown in Figure 13. Caspase-7 

concentration in the pooled fraction was determined by evaluating the standard curve’s 

linear equation for concentration based on observed absorbance values (Table 2). After 

accounting for the twofold dilution factor in the P.F. (diluted) result, the concentrations 

obtained can be averaged to obtain a mean caspase-7 concentration of 1.04 mg/mL. With 

a total volume of 10.9 mL, this means that 11.3 mg of caspase-7 were collected in total.  
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 The baseline CD scan for caspase-7 shown in Figure 14 is promising because it 

contains certain expected elements. Minima at 208 nm and 222 nm are characteristic of 

α-helical structure,16 which caspase-7 is known to contain (Fig. 3).6 This serves as 

additional evidence of the successful expression and purification of caspase-7. However, 

while attempting to analyze caspase-7 treated with Fe3+, the CD spectrophotometer 

malfunctioned, and the issues were not resolved in time for final results to be included in 

this work.  

 

CONCLUSION 

 This study was successful in the expression, purification, and quantification of 

caspase-7. Insight into the protein’s secondary structure through CD spectroscopy was 

also accomplished. However, CD results for caspase-7 treated with Fe3+ are still pending, 

and any protein-ion interactions have yet to be determined. If further analysis via CD 

spectroscopy indicates that caspase-7 does undergo a conformational change in the 

presence of Fe3+, future studies would include activity assays to determine whether any 

observed conformational changes are accompanied by decreased enzyme function. 

Additionally, isothermal titration calorimetry could be performed in order to calculate the 

caspase’s binding affinity for Fe3+, if any. The overarching project, of which this study is 

merely a small part, aims to study a variety of caspases, including initiator caspases-8 and 

-9 as well as executioner caspases-3 and -6, and their interactions with other biologically 

active metal ions such as Fe2+ and Ca2+. Further understanding of caspases and their 

interactions could very well lead to the treatment and/or prevention of conditions 

resulting from dysregulation of apoptosis. 
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