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DISCRETE FOURIER RESTRICTION ASSOCIATED WITH KDV
EQUATIONS

YI HU AND XTAOCHUN LI

ABSTRACT. In this paper, we consider a discrete restriction associated with KdV equations.
Some new Strichartz estimates are obtained. We also establish the local well-posedness for
the periodic generalized Korteweg-de Vries equation with nonlinear term F'(u)9;u provided
F € C® and the initial data ¢ € H® with s > 1/2.

1. INTRODUCTION

The discrete restriction problem associated with KdV equations is a problem asking the
best constant A, n satisfying

N
(1) > [Fon®)[ < apnlisl,
n=—N

where f is a periodic function on T2, fis Fourier transform of f on T2, p > 2 and p’ =
p/(p — 1). It is natural to pose a conjecture asserting that for any ¢ > 0, A, y satisfies

C’Nl_%JrE for p>8
(1.2) Ay <P
' P = Cp for 2<p<8.

It was proved by Bourgain that Ag y < N°. The desired upper bound for Ag nx is not yet
obtained, however, we are able to establish an affirmative answer for large p cases.

Theorem 1.1. Let A, y be defined as in (1.1). If p > 14, then for any € > 0, there exists a
constant C), independent of N such that

(1.3) Apn < CN'TIHE

The periodic Strichartz inequality associated to KdV equations is the inequality seeking
for the best constant K, ny satisfying

N
. 3 .
§ : ane2mtn +27izn

n=—N

(1.4)

N 3
< Ky ( 5 w) |
n=—N

Lg}t(']l'xil‘)

By duality, we see immediately
Kp7N ~ Ap7N ‘
Henceforth, Theorem 1.1 is equivalent to Strichartz estimates,

(1.5) K,y < C’N%_%+€, for p > 14.

It was observed by Bougain that the periodic Strichartz inequalities (1.4) for p = 4,6 are
crucial for obtaining the local well-posedness of periodic KAV (mKdV or gKdV). The local
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(global) well-posedness of periodic KAV for s > 0 was first studied by Bourgain in [2]. Via a
bilinear estimate approach, Kenig, Ponce and Vega in [9] established the local well-posedness
of periodic KdV for s > —1/2. The sharp global well-posedness of the periodic KdV was
proved by Colliander, Keel, Staffilani, Takaoka, and Tao in [5], by utilizing the I-method.

Inspired by Bourgain’s work, we can obtain the following theorem on gKdV. Here the
gKdV is the generalized Korteweg-de Vries (gKdV) equation

(1.6) {w + tgpe + tFuy = 0

u(z,0) = ¢(x), zeT, teR,
where kK € N and k£ > 3.

Theorem 1.2. The Cauchy problem (1.6) is locally well-posed if the initial data ¢ € H for
s>1/2.

Theorem 1.2 is not new. It was proved by Colliander, Keel, Staffilani, Takaoka, and Tao in
[4]. However, our method is different from the method in [4]. Let us point out the difference
here. The method used in [4] is based on a rescaling argument and the bilinear estimates,
proved by Kenig, Ponce and Vega [9]. Our method is more straightforward and does not
need to go through the rescaling argument, the bilinear estimates in [9] or the multilinear
estimates in [4]. This allows us to extend Theorem 1.2 to a very general setting. More
precisely, consider the Cauchy problem for periodic generalized Korteweg-de Vries (gKdV)
equation

(17) {ut + Ugpe + F(u)uy, =0

u(z,0) = ¢(x), zeT, teR.
Here F' is a suitable function. Then the following theorem can be established.

Theorem 1.3. The Cauchy problem (1.7) is locally well-posed provided F is a C° function
and the initial data ¢ € H® for s > 1/2.

For sufficiently smooth F, say F' € C'?, the existence of a local solution of (1.7) for s > 1
and the global well-posedness of (1.7) for small data ¢ € H*® with s > 3/2 were proved by
Bourgain in [3]. The index 1/2 is sharp because the ill-posedness of (1.6) for s < 1/2 is
known (see [4]). In order to make (1.7) well-posed for the initial data ¢ € H® with s > 1/2,
the sharp regularity condition for F perhaps is C*. But the method utilized in this paper,

with a small modification, seems to be only able to reach an affirmative result for F € C2"
and s > 1/2. Moreover, the endpoint s = 1/2 case could be possibly done by combining
the ideas from [4] and this paper. But we would not pursue this endpoint result in this paper.

2. PROOF OF THEOREM 1.1

To prove Theorem 1.1, we need to introduce a level set. Since /A, n ~ K, n, it suffices
to prove the Strichartz estimates (1.4). Let Fiy be a periodic function on T? given by

N
(2‘1) FN(l‘,t) _ Z ane27rimce27rin3t’
n=—N
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where {a,} is a sequence with Y |a,|?> =1 and (z,t) € T2 For any A > 0, set a level set
FE) to be
(2.2) Ey = {(z,t) € T : |Fy(z,t)| > A} .

To obtain the desired estimate for the level set, let us first state a lemma on Weyl’s sums.

Lemma 2.1. Suppose that t € T satisfies |t — a/q| < 1/¢?, where a and q are relatively
prime. Then if ¢ > N2,

N
2 : e27ri(tn3 +bn2+-cn)

n=1

=

(2.3) < CNiteyg

Here b and c are real numbers, and the constant C is independent of b, ¢, t, a, ¢ and N.

The proof of Lemma 2.1 relies on Weyl’s squaring method. See [8] or [10] for detail. Also
we need the following lemma proved in [1].

Lemma 2.2. For any integer Q@ > 1 and any integer n # 0, and any € > 0,

ST Y ST < Cud(n, Q@M.

Q<q<2Q [acPq
Here P, is given by
(2.4) Py={aeN:1<a<gq and (a,q) =1}
and d(n, Q) denotes the number of divisors of n less than Q and C. is a constant independent
of Q,n.

Lemma 2.2 can be proved by observing that the arithmetic function defined by f(q) =

> acP, 2™ is multiplicative, and then utilize the prime factorization for ¢ to conclude the
lemma.

Proposition 2.1. Let Ky be a kernel defined by
N
(25) KN(l‘,t) _ Z 627ritn3+27rixn ]
n=—N
For any given positive number Q with N2 < Q < N3, the kernel Ky can be decomposed into
K1+ Ky such that

(2.6) 1K1 glloe < CINTHQY*.
and

—_— C2N€
(2.7) IFoglloe < =5

Here the constants C1,Cy are independent of QQ and N.

Proof. We can assume that () is an integer, since otherwise we can take the integer part of
Q. For a standard bump function ¢ supported on [1/200,1/100], we set

(2.8) o= 5 S <’51_/7Z§q> .

QR<g<HQ aePy
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Clearly @ is supported on [0, 1]. We can extend ® to other intervals periodically to obtain a
periodic function on T. For this periodic function generated by ®, we still use ® to denote
it. Then it is easy to see that

(2.9) -y v Freld) -y ola
q~Q a€Py q~Q

is a constant independent of (). Here ¢ is Euler phi function, and Fr denotes Fourier
transform of a function on R. Also we have

(2.10) => Z e Fao(k/q?) -

q~Q aGPq
Applying Lemma 2.2 and the fact that Q < N3, we obtain
. N¢
(2.11) ‘(I) k ‘ <

itk # 0.
We now define that
1
KLQ(ﬂS,t) = —Kn(z,t)®(t), and Kog=Kn—Kiq.
®(0)
(2.6) follows immediately from Lemma 2.1 since intervals J,/, = [ + ﬁg, 7t ﬁg]’s are

pairwise disjoint for all @ < ¢ <5@Q and a € P,.
We now prove (2.7). In fact, represent ® as its Fourier series to get

K2,Q($’t) = ( ZEI\) 27r2ktK (JE t)
k0

*@*)

Thus its Fourier coefficient is
K27Q(TL1, = T = Z {77,2 n +k}(k)
k;ﬁo
Here (ny,n9) € Z? and 14 is the indicator function of a measurable set A. This implies that
KQ’Q(nl,nQ) =0if ng = ’I’Li{’, and if n9g 75 ni{’,
I = 3

@(nl,ng) = —%@(ng —ny).

~—

Applying (2.11), we estimate I/{Z\Q(nl,ng) by
CN¢
Q )

since N2 < @ < N3. Henceforth we obtain (2.7). Therefore we complete the proof.

Ky g(ni,ng)| <

Now we can state our theorem on the level set estimates.

Theorem 2.1. For any positive numbers € and Q > N2, the level set defined as in (2.2)
satisfies

CoN°

(2.12) M B\ < OINTHQ1 B + | EX]

for all A > 0. Here C7 and Cy are constants independent of N and Q.
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Proof. Notice that if Q > N3, (2.12) becomes trivial since Ey = (} if A > CN'/2. So we can
assume that N2 < @Q < N3. For the function Fyy and the level set E) given in (2.1) and

(2.2) respectively, we define f to be
FN (l‘, t)
f(z,t) |Fy(z,0)] By (2,1)

Clearly
A E)| S/ Fy(x,t)f(z,t)dxdt .
T2

By the definition of Fy, we get
N

NEA < Y @nf(nn®).

n=—N
Utilizing Cauchy-Schwarz’s inequality, we have

2 2 Y iy 3 2
NIEE < > ||
n=—N

The right hand side can be written as

(2.13) (Kn = f, ).

For any @ with N? < Q < N3, we employ Proposition 2.1 to decompose the kernel K. We
then have

(2.14) NIEAP < [(Kiq* f, )| + [(Kag * f, f)]

From (2.6) and (2.7), we then obtain

CyN®
Q

as desired. Therefore, we finish the proof of Theorem 2.1. O

Corollary 2.1. If A > 2C1N%+5, then

CoN*®

1 1 1 1
N|B\? < CINTFEQT|fIT + IF1I3 < CLNTFQ7|Ex[* +

|E)\|7

CN1+€
210
Here Cy is the constant C1 in Theorem 2.1 and C is a constant independent of N and .

(2.15) N

Proof. Since A > 2C1N%+E, we simply take (Q satisfies 2C1Ni+EQ1/4 = A2, Then Corollary
2.1 follows from Theorem 2.1. O

We now are ready to finish the proof of Theorem 1.1. In fact, let p > 14 and write || F|b
as

201N%+5 2N1/2
(2.16) p/ NPT Ey |dA +p/ . NTUE|dA.
0 20, N8T¢
Observe that Ag y < N€ implies
N&
(2.17) |Ey| < 6

Thus the first term in (2.16) is bounded by

3(p—6)
8

(2.18) CN™5 T < CONz e,
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since p > 14. From (2.15), the second term is majorized by
(2.19) CNE—4te
Putting both estimates together, we complete the proof of Theorem 1.1.

3. A LOWER BOUND OF A, y

In this section we show that N'=8/? is the best upper bound of A, v if p > 8. Hence (1.3)
can not be improved substantially, and it is sharp up to a factor of IV¢.

For b € N, let S(N;b) be defined by
2b

dxdt .

N

2 : 627ritn3+27ri:cn

n=—N

(3.1) S(N:b) = /T 2

Proposition 3.1. Let S(N;b) be defined as in (3.1). Then
(3.2) S(N:b) > C (Nb + N2b—4) .
Here C' is a constant independent of N.

Proof. Clearly S(N;b) is equal to the number of solutions of

n1+...+nb:m1+...+mb
(3:3) 3 3 _ .93 3
with nj,m; € {—N,--- N} for all j € {1,---,b}. For each (my,---,my), we may obtain a
solution of (3.3) by taking (ni,--- ,np) = (m1,--- ,mp). Thus
(3.4) S(N;b) > N°.
To derive a further lower bound for S(N;b), we set Q to be
(3.5) Q=L t) ol < — [t < —

‘ ST T T 60N T T 60N
If (x,t) € Q and |n| < N, then
1
3.6 tn® <.
(3.6) |tn® + an| < 30
Henceforth if (z,t) € Q,
(37) Z e27r2tn +2mizn > [Re Z e27rztn +2mizn > Z cos (27T(tn3 + xn)) >CN.
n=—N n=—N n=—N

Consequently, we have

N 2b
(3.8) S(N;b) > / > e2ritn® +2mizn | qrqr > ON2|Q| > ONZ

Q n=—N
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Proposition 3.2. Let p > 2 be even. Then A, n satisfies
(3.9) Apn > CA+N'"7).
Here C' is a constant independent of N.

Proof. Let p = 2b since p is even. Setting a,, = 1 for all n in the definition of K, n, we get

(3.10) S(N;b) < KD\ (2N)".

By Proposition 3.1, we have

(3.11) Kpn>C(1+N272) .

Consequently, we conclude (3.9) since A, y ~ KI%’ N d

4. AN ESTIMATE OF HuA

The following theorem was proved by Hua in [8] by an arithmetic argument. Here we
utilize our method to provide a different proof.

Theorem 4.1. Let S(N;b) be defined as in (5.1). Then
(4.1) S(N;5) < CNO*e,

By Proposition 3.1, we see that the estimate (4.1) is (almost) sharp. S(N;4) < N4*¢ is
still open. We now prove Theorem 4.1.

Proof. Let G be the level set given by
(4.2) Gr={(z,t) € T? : |[Kn(z,t)| > A} .
Here K is the function defined as in (2.5).

let f =1¢, Kn/|Kn| and we then have

N
(4.3) NG < DT Fnn®) = (v, Kn),
n=—N

where fx is a rectangular Fourier partial sum defined by
(4.4) fN(iE, t) — Z f(nh n2)e27m1:ce27rin2t ]

Ini1|<N
Ina|<N3

Employing Proposition 2.1 for Ky, we estimate the level set G by

(4.5) MGl < [(fn, K1) + (v K2,0)|
for any @ > N2. From (2.6) and (2.7), A|G,| can be bounded further by

1 — o~
(4.6) C| NEEQU i+ Y |Raglni na) fni,na)
[ni|<N
Ina|<N3



8 YI HU AND XIAOCHUN LI

Thus from the fact that L! norm of Dirichlet kernel Dy is comparable to log N, (2.7), and
Cauchy-Schwarz inequality, we have

2+e¢
(4.7) NG| < eNFEQU ey + Y gy,

for all Q > N2. For \ > 2CN%+E, take @) to be a number satisfying 2CN%+€Q1/4 = A and
then we obtain

CN6+€
(48) |G)\| < )\10
Notice that
(4.9) IKn|ls < N2Kg, < N2t¢,
Henceforth, by (4.3), we majorize |G| by
CN3+E
(4.10) |G| < N
We now estimate S(N;5) by
2N 2CNT+e
(411) S(N75) SC/ 5, )\10_1|G)\|d)\+0/ A10_1|G)\|dA
20NTHe 0

From (4.8), the first term in the right hand side of (4.11) can be bounded by CN®*¢. From
(4.10), the second term is clearly bounded by N®+¢. Putting both estimates together,

(4.12) S(N;5) < CNO*,

as desired. Therefore, we complete the proof. O

5. ESTIMATES FOR THE NONLINEAR TERM AND LOCAL WELL-POSEDNESS OF (1.6)

For any measurable function v on T x R, we define the space-time Fourier transform by

(5.1) u(n,\) = / / u(z, t)e e~ N dy dt
RJT

and set
(x) :=14 |z|.

We now introduce the X, ; space, initially used by Bourgain.

Definition 5.1. Let I be an time interval in R and s,b € R. Let X, ;(I) be the space of
functions u on T x I that may be represented as

(5.2) u(z,t) Z/ u(n, \emerd) for (z,t) € Tx I
nez

with the space-time Fourier transform u satisfying

1/2
(5.3) lullx, ,r) = (Z/ 25\ — n3)2[a(n, )\)\zd)\> <.

Here the norm should be understood as a restriction norm.
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We should take the time interval to be [0, 0] for a small positive number §, and abbreviate
lullx, ,(r) as [[ullsp for any function u restricted to T x [0,6]. In this section, we always
restrict the function u to T x [0,0]. Let w be the nonlinear function defined by

(5.4) w = <uk — / ukdx> Uy

We also define

(55) lally, = 1l 5 + (;WS (/1.2 dA)zf

We need the following estimate on the nonlinear function w, in order to establish a con-
traction on the space {u : |lully, < M} for some M > 0.

Proposition 5.1. For s > 1/2, there exists > 0 such that, for the nonlinear function w
given by (5.4),

(5.6) Jeoll, -y + ( (/ ‘w_ng > ) < 08" ull .

Here C is a constant independent of 6 and u.

The proof of Proposition 5.1 will appear in Section 6. We now start to derive the local
well-posedness of (1.6). For this purpose, we only need to consider the well-posedness of the
Cauchy problem:

(5 7) Ut + Ugze + (Uk - f’]l’ ukdx) u; =0
. u(z,0) = ¢(), zeT, teR

This is because if v is a solution of (5.7), then the gauge transform

(5.8) u(z, ) —v<x—/ / (y, 7)dydr, t>

is a solution of (1.6) with the same initial value ¢. Notice that this transform is invertible
and preserves the initial data ¢. The inverse transform is

(5.9) v(z,t) :=u <:17 + /Ot/qruk(y,T)dydT, t> )

It is easy to see that for any solution u of (1.6), this inverse transform of u defines a solution
of (5.7). Hence to establish well-posedness of (1.6), it suffices to obtain the well-posedness
of (5.7). This gauge transform was used in [4].

By Duhamel principle, the corresponding integral equation associated to (5.7) is
t
(5.10) u(z,t) = e_tag(é(a;) — / e_(t_T)agw(a;,T)dT,
0
where w is defined as in (5.4).

Since we are only seeking for the local well-posedness, we may use a bump function to
truncate time variable. Let ¢ be a bump function supported in [—2, 2] with ¢ (t) = 1, [¢| < 1,

and let s be
¥s(t) = ¥(t/0).
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Then it suffices to find a local solution of
t
u(z, t) = Ys(t)e % p(x) — Ps(t) / e~ =Ty (2, 7)dr.
0

Let T be an operator given by

. t .
(5.11) Tu(z,t) = s (t)e P2 p(x) — s (t) / e~ =% (3, 7)dr.
0

We denote the first term (the linear term) in (5.11) by Lu and the second term (the nonlinear
term) by Mu. Henceforth we represent Tw as Lu + Nu.
Lemma 5.1. The linear term L satisfies
(5.12) [Lully, < Cliélas -
Here C is a constant independent of 6.
Proof. Notice that

Lu(n, \) = 6(n)Fats(A —n®) = d(n)6Futh (51 — %)),
Thus from the definition of Y norm,

1
2

I ully, = (Z =04 o)z (30— ) dA)

+ (;W?s < / (a(n)éfw (5(A —ni”))‘CZA)Q)é :

Since 9 is a Schwartz function, its Fourier transform is also a Schwartz function. Using the
fast decay property for the Schwartz function, we have

[Lully, <C <Z<n>2s

n

_2\?
¢<n>1> = CJl¢la-

Lemma 5.2. The nonlinear term N satisfies

) X
613 Wl <C (wS,; . <Z<n>2s =x ) ) ,

where C' is a constant independent of J.

Proof. Represent w as its space-time inverse Fourier transform so that we write

(5.14) Nu(z,t) = —1s(t) /Ot e~ (=)o <Z/1ﬁ(n, )\)ei”zei)”d/\) dr,
which is equal to '
—5(t) Y / @(n,\) /0 " = in)? gina iy
' iA-=n?)t _q

= — T;Z)(S(t) Z /’L/I,;(’I’L, )\)einmeingt 620\73) dM.
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We decompose the nonlinear term Nu into three parts, denoted by N7, Na, N3 respectively.

. znx zn3t 3\k—1
Nu(z,t) = —s(t Z/)\n3|<1wn)\) Zk' —n”)" 7 dA

1008 k>1

n /\) mw At
+ itps(t) Z//\ _ _n3 e d\

1008

7A nx ZTL3
—ihs(t) > (/M o 11(7_1 n?’)dA> ¢

n 1008

=Niu + Nou + N3u.

First we estimate A5. Using Fourier series expansion for 1, we get

t) _ Z C«meimt/cS )

meZ

Here the coefficients C,,,’s satisfy
Cpy < C(1 4+ |m|)~100,

Hence Nou can be represent as

(515) NQU =1 Z Cm Z einfﬂ / 'LU('I’L, >\) Ci()\—l—m/é)td)\

_ N _ .3
A=13]> 1555 A—mn

By a change of variables (A +m/d) — A,
(5.16) Nou = zz Con Z eine / w(n, /\m_ m/j) YN
m n Pmonds s AT F N
Thus we estimate

_ A —n3) |@(n, A —m/8)|?
2 < 50 2s < ’
(5:17) [Naulf} 4 < C’Em:(l + |m|) ;<n> /_ — Py ——T: dX.

1006

Changing variables again, we obtain

)\ m _ 3\ |5 )\ 2
(518)  [INpulZy <C ) (1 +[m) ™" I<n>2s/ - xR n;z?’);g(n Can
2 — ~ A—n3|> L _

1008

Notice that [A — n®| > g implies

(5.19) O+ % —n3) < 200m(\ — n?).
We obtain immediately

(520) Nzl g < Cllull,_y -

On the other hand,

e (/ Nou(n, )\)]d)\>2§ C%} Z </__n3|> Iﬁ(&,j;”r_t/sg‘ldx>z7

1006
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which is clearly bounded by

(5.21) < [0(n, A) W) .

\—n3

Putting (5.20) and (5.21) together, we have

1

622)  |Weuly, <O (ws, ( = ([ )) -

Let A, be defined by

(5.23) A, = / B, \)(A — n®)E-1d).
A= "3|<1005
Then Mju can be written as
(5.24) Mu(z,t) = — —tkw(; ZA ein gin®
k>1

Hence the space-time Fourier transform of Nju satisfies

(5.25) Nautn, )| < 3 22 14nl | Fo@)r — )
E>1

)

where 15(t) = tF45(t). Using the definition of Fourier transform, we have

(fR(zp})(A - n3)( < O3 (5(A — n?)) 3.

Thus
Wl < S Z (014,757 [ (0= )61 — )P
k>1
55 Z )25 A 262 (/5 —n? 3dA>
k>1 n

Z Z 25|An|252k ]
k>1

Clearly A, is bounded by

(5.26) 1A, < O~ /'w d)\

Henceforth, we obtain
1

(5.27) INially, < c( (/ ”“’_ng > )

Similarly, we may obtain
1

(5.28) Waully, < c( (/ ’“’_n3 > )

Therefore we complete the proof.
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Proposition 5.2. Let s > 1/2 and T be the operator defined as in (5.11). Then there exits
a positive number 0 such that

(5.29) ITuly, <€ (Il + &l -
Here C' is a constant independent of 6.

Proof. Since Tu = Lu + Nu, Proposition 5.2 follows from Lemma 5.1, Lemma 5.2 and
Proposition 5.1. ]

Proposition 5.2 yields that for § sufficiently small, 7" maps a ball in Y into itself. Moreover,

we write
<uk — /Tukdzn> Uy — <vk — /Tvkdzn> Vg
- <u’f — /Tukdg;> (u—v)z + <(uk — b)) — /T(uk — Uk)dx> v

which equals to
k—1

(5.30) uf — [ dFdr ) (w—0)s + > (= v)f T — | (u—0)ub T I de ) v,
T T

j=0
For k + 1 terms in (5.30), repeating similar argument as in the proof of Proposition 5.1, one
obtains, for s > 1/2,

— 1— 1
(5.31) ITu — Tolly, < C8° IIUH§Z+ZHUIIYS ol ) e = olly, -

Henceforth, for § > 0 small enough, 7" is a contraction and the local well-posedness follows
from Picard’s fixed-point theorem.

6. PROOF OF PROPOSITION 5.1

From the definition of w in (5.4), we may write w(n, \) as

(6.1) m/ m A= )\1 — )\k) (nl, )\1) (nk, )\k)d)\l s d)\k.

m+n1+ “+nEp=n
ni+--+nE#0

By duality, there exists a sequence {A, )} satisfying

(6.2) Z/ |Apa2dA < 1,

nez
and [Jwl|, 1 is bounded by
(6.3)
> / 5 a (m, A=A —- =) [|@(n1, A1) - - [@(nk, Ak) || ApaldA - - - dARdA.
—n

m4ni+---+ng=n
ni+--+nE#0

Since the X, is a restriction norm, we may assume that u is supported in T x [0, 6].
However, the inverse space-time Fourier transform [u]Y in general may not be a function
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with compact support. The following standard trick allows us to assume |u]" has a compact
support too. In fact, let n be a bump function supported on [—24,26] and with n(¢) = 1 in
|t| < 4. Also 7 is positive. Then v = un and @ = @ 7. Thus |a| < @] *7 = (|a|Vn)". When-
ever we need to make |i|Y to be supported in a small time interval, we replace |a| by (|a|Vn)"
since |u]Vn clearly is supported on T x [—24,2§]. This will help us gain a positive power of §
in our estimates. Moreover, without loss of generality we can assume |nq| > |ng| > -+ > |ng|.

The trouble occurs mainly because of the factor |m| resulted from 9,u. The idea is that

either the factor (A — n3>_% can be used to cancel |m|, or |m| can be distributed to some of
u’s. More precisely, we consider three cases.

(6.4) |m| < 1000k2|ny;
(6.5) 1000%k2|ng| < |m| < 100k|n4|;
(6.6) |m| > 100k|n;| .

6.1. Case (6.4). This is the simplest case. In fact, In this case, it is easy to see that

=

(6.7) (n)*m| < C(m1)*(nz)2 (m)>.

Let

(6.8) Fy(z,t) =) / Mel‘”emdA;
(6.9) G(z,t) = Z / (n) 2 [a(n, A)| e e dA
(6.10) H(x,t) Z / S|a(n, A)|eMe™mdA
(6.11) Ulz,t) :Zn: / [U(n, \)|e e d)

3
—
>
|
3
w
~
=

Then using (6.7), we can estimate (6.3) by

(6.12)

k
c > /Fln)\ (m, A=Ay =+ =\ H (n1, M) G (ng, Ao) [ U (ng, Aj)d -+~ dArdA,
m—+ni—+--+ng=n 7j=3

which clearly equals

C Fy(2,t)G(x, ) H (x, t)U (x, t)* 2 dxdt .
TxR

Apply Holder inequality to majorize it by
CIPNN G H 4T 1§52 -
Since U is supported on T x [—24, 2d], one more use of Holder inequality yields

(6.13) (6.3) < C&° || F1[lallGIENE U IE2 )
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Let us recall some useful local embedding facts on X .

- Lgt, (t local)

(6.14) Xo1 & Loy, Kot 1+
1
4q Z
(6.15) Xa,% C Ly 0<a<2, 2<q< 190 (t local),

1 1
(6.16) X%—a,%—angL;’ 0<Oé<§, 2§q,7‘<a.

The two embedding results in (6.14) are consequences of the discrete restriction estimates on

L* and L® respectively. (6.15) and (6.16) follow by interpolation (see [4] for details). (6.14)
yields

1/2
IR < CllFly < © (Z / |An,A|2dA> <c,

and

[H]la < CllHllg,1 < Cllull; 1 < Cllully, -
(6.15) implies

Gllor < ClGlgs 5 < Cllall,y < Cllully,
Using (6.16), we get
10llsge—2 < CIUN_ 3 < Clull, 3 < Cluly,.

Henceforth, we have, for the case (6.4),

(6.17) (6.3) < CO%|lullyt .

6.2. Case (6.5). In this case, we should further consider two subcases.
(6.18) Im + n1| < 1000k |ns|

(6.19) |m + n1| > 1000k%|ny|

In the subcase (6.18), we use the triangle inequality to get

(6.20) In| =|m+ny +ng+---+ng < Clngl

Hence, we have
(6.21) (n)*|m| < Cna)*(m)? (ny)% .

Thus this subcase can be treated exactly the same as the case (6.4). We omit the details.

For the subcase (6.19), the crucial arithmetic observation is
(6.22)  n*—(m* 40+ +n)=3(m+n)(m+a)(n+a)+ad— 3+ +nd),

where a = ng + - - - + ng. This observation can be easily verified since n = m+nj +--- +ng.
From (6.5) and (6.19), we get

(6.23) ‘n?’ —(m*4nd 4+t n%)| > Ck?(ng)|m||ny| > Cklm|?.
This implies at least one of following statements holds:

(6.24) A —n3| > Cm|?,

(6.25) (A=A == X)) —m3| = C|m|?,

(6.26) Ji € {1,--- ,k} such that |\; —nd| > Cm|?.
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For (6.24), (6.3) can be bounded by
(6.27)

3 /m STam, A — A — - — A1, An)| -+ |80, M) ApaldAs - - dAgdA.

m—+ni—+---+nEg=n

Let F5 be defined by
(6.28) B =Y / ApaleMene dx.

Then we represent (6.27) as

k
(6.29) > /an)\ (M A=A —---—\p)H nl,)\ln (n, Aj)dA1 - - - dARd .

m4ni+---+ng=n

Here H and U are functions defined in (6.10) and (6.11) respectlvely. Clearly (6.29) equals
(6.30) / Fy(a, ) H (z, U (2, £)F dad
TxR

Utilizing Holder inequality, we estimate it further by
(6.31) 122 H |4 U]5, < C8%
This yields the desired estimate for the subcase (6.24).

For the subcase of (6.25), (6.3) is estimated by

)°|An N
3 /"1 ANl (A ) — ) A A — Ap — e — )|
|

m+ni+--+ng=n - ng
Ju(ng, A)| - [u(ng, Ak)|dAy - - - dAgdA

which is equal to

(6.32) / Fi(z,6)G(z, t)H (x, ) U (2, t)dzdt .
TxR

Apply Holder inequality to control (6.32) by

(6.33) Il Glall H ULy < Cllully

This completes the estimate for the subcase (6.25).

For the contribution of (6.26), we only consider |\a —n3| > C|m|? without loss of generality
for i € {2,--- ,k}. This is because the |\; — n3| > C’|m|2 case can be handled similarly as
(6.25). Hence, in this case, (6.3) can be bounded by

Z (n1) !AnA! 301~
Ao —nd)Z|U(m, A — AL — - — \p) |H [T(nj, Aj)|dAg - - - dhgd.

m4+ni+---+ng=n

Now set a function I by

(6.34) I =3 / O\ — nd)3 [i(n, A)|eMem )
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Then we estimate (6.3) by
(6.35) / Fy(z, ) H (2, t) I (z, ) U (2, t)dxdt
TxR

which is majorized by
(6.36) IE 4l H a2l U1E T -

Notice this time we cannot simply use Holder’s inequality to get § as we did before because
there is no way of making any above 4 or 2 even a little bit smaller. But this can be fixed as
follows.

First observe that

lullop < 62 (lull 2 e < O ully, 1

for w is supported in a J-sized interval in time variable. Thus by interpolation, we get
(6.37) lullg,s < €35 lullg,s -

Since U can be assumed to be a function supported in a §-sized time interval, we may put
the same assumption to H. Henceforth, we have

(6.38) |Hlla < CllHIp1 < C567|Hllg s < C56 lully, -
Also note that

(6.39) 12 < flullo,s < llully. -

and

(6.40) 1Ulloo < Cllully,

From (6.38), (6.39) and (6.40), we can estimate (6.3) by 05%_||u\|'§j1 as desired. Therefore
we finish our discussion for the case (6.5).

6.3. Case (6.6). The arithmetic observation (6.22) again plays an important role. In this
case, let us further consider two subcases.

(6.41) |m|? < 1000k2|na|?|n3|
(6.42) |m|? > 1000k2|ng|?|ns|
For the contribution of (6.41), we observe that from (6.41),
m|* < Clna|[nafns]
since |ng| < |ny|. Henceforth we have
(6.43) m| = |3 |m|s < Clml |y 5|ns 5|s s

This implies immediately

(6.44) (n)*[m| < Clm|*™ < (m) 5 (n1) T (no) T (ng) T
Introduce a new function H; defined by
(6.45) i)=Y / (Y i, N M ey

n R

As before, in this case, we bound (6.3) by

(6.46) / Fy(z,t)Hy (2, ) U3 (x, t)dxdt .
TxR
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Then Hélder inequality yields
(6.47) (6.3) < OO Fullall Hallg U 1553 s

|Hill6+ < C|lully, because ! < s for s > 1/2. Hence we obtain the desired estimate for
the subcase (6.41).

We now turn to the contribution of (6.42). Clearly we have

(6.48) [(no 4+ ny)® = (n3 + -+ + n)| < 10k|no|*|ng]

since |ng| > |ng| > -+ > |ng|. From the crucial arithmetic observation (6.22), (6.48), and
(6.42), we have

(6.49) ‘n?’— (m3+ni{’+~~+ng)| > Cklm|*.

This is same as (6.23). Hence again we reduce the problems to (6.24), (6.25), and (6.26),
which are all done in Subsection 6.2. Therefore we finish the case of (6.6).
Putting all cases together, we obation

(6.50) lwl, -1 < COlully .

Finally we need to estimate

(/20

Let {A,} be a sequence {A,} with (3, |4,[?)

=

< 1. By duality, it suffices to estimate

(6.52)
m . .
> A_' L, A = x = = A1 M) -~ [0 M)l [ Anlds - dAd.
m—+ni+---+ng=n
ni+--+ng#0
Again, without loss of generality, we can assume |nq| > --+ > |ng|. We still go through the

cases used previously. Almost all cases are similar and there are only two exceptions. In fact,
we only need to replace F} by F3 in each case where || F}||4 is employed. Here Fj is given by

(6.53) Z/ %$’%mﬁ.

Then all those cases can be done because

1
1 2

6.54 F3lla < C||Fslly1 = AnZ/:—————dA <C.

(6.54) |Fslla < Cl1Fslo, 2 (Z\ ) Ao )

The only exceptions are

(6.55) IA—=n3| > C|ny||m| and |ng| < |m| < C|ny|

(6.56) IAN—=n3 > Cm? and |m|> |n4|

For the case of (6.55), we define

1
S TN
(6.57) }qcut)::jzjjf (M2 L 2w} ineine g
n YR

A —n?|
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A direct calculation gives

(6.58) 1E4ls < Z/ Al 1/2<c
' = Aend|>C(n) |A — n3[2 -

In this case, clearly
(6.59) (n)*|m| < (n) (n1)*(m)7 .

Then (6.52) is dominated by
(6.60) / Fy(x, t)G(z, t)H (x, ) U (2, t)dzdt .
TxR

By a use of Holder inequality and (6.58), one gets

(6.61) (6.52) < C||Ell2| H |4 Glls U150,y < C& a3

12k1

This finishes the proof for the case (6.55).

For the contribution of (6.56), we set

)1, o
(6.62) (2,1) Z/ {‘I; —37?1(}( W2} ine ine gy

Clearly

\A ’2 v
. F E —————dA\ <C.
(6.63) 155112 < /)\ n3|>C(n \)\ - ”3\2 =¢

In this case, we have |\ — n3| > C(n)? since |n| ~ |m|, henceforth, by the observation of

(n)*m| < C(m)*(n),
we estimate (6.52) by

(6.64) /]TXR Fs(z,t)H (2, ) U* (x, t)dxdt .

Using Hélder inequality and (6.63), we have
(6.65) (6.52) < C|[Fs 2| H[l4l|lU]13; < C8°lully"

as desired. Hence

(6.60) ( ( / |w_n3 ) ) < O ullyH.

Therefore we complete the proof of Proposition 5.1 by combining (6.50) and (6.66).

19
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7. PROOF OF THEOREM 1.3

The argument is similar to those in Section 5. By using a gauge transform as in (5.8) with
v* replaced by F(v), the well-posedness of (1.7) is equivalent to the well-posedness of the
following equation:

(7.1) {Ut + Upzx + (F(u) — [ F(u)dz) up =0

u(z,0) = ¢(x), zeT, teR.

Now the nonlinear function w is defined by

(7.2) w = Dy <F(u) _ /T F(u)dm) .

Let Tr be an operator given by

t
(7.3) Tru(z, t) == s(t)e %% p(z) — s (t) / e~ (=% (2, 7)dr.
0
As in Section 5, the local well-posedness relies on the following proposition.

Proposition 7.1. Let s > 1/2. There exists > 0 such that, for the nonlinear function w
given by (7.2) and any u satisfying ||u|ly, < Col|®| g+,

a N}
() ol s+ <Z<n>2s r=x ) < (0l F) Jull,

provided F € C5. Here Cy is a suitably large constant, and C(||@||gs, F) is a constant
independent of 6 and u, but may depend on ||¢||gs and F.

The constant C(||®| g, F") will be specified in the proof of Proposition 7.1. We postpone
the proof of Proposition 7.1 to Section 8, and return to the proof of Theorem 1.3. Proposition
7.1 implies that for ¢ sufficiently small, Tp maps a ball {u € Ys : ||ully, < Col|¢||m=} into itself.
Moreover, using Lemma 5.2 and repeating similar argument as in the proof of Proposition
7.1, one obtains, for s > 1/2 and F € C%,

(7.5) | Tru — Trolly, < 6°C(|6||m=, F)llu — vlly, -

for all w,v in the ball {u € Yy : ||uly, < Col|®||z=}. Therefore, for 6 > 0 small enough, Tp is
a contraction on the ball and the local well-posedness again follows from Picard’s fixed-point
theorem. This completes the proof of Theorem 1.3.

8. PROOF OF PROPOSITION 7.1

First we introduce a decomposition of F'(u), which was used by Bourgain. Let K be a
dyadic number, and define a Fourier multiplier operator Px by setting

(8.1) Preu(e,t) = / e (y)ule — y, £)dy

Here the Fourier transform of ¢ is a standard bump function supported on [—2K,2K] and
Vi (x) =1 for x € [-K, K|. Let ug denote the Littlewood-Paley Fourier multiplier, that is,

(8.2) ug = Pxu — Pgjau.
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Then we may decompose F'(u) by

Fu) = Y (F(Piu) — F(Pgjpu))
K

= Z Fl(PKu,PK/gu)uK + Ry,
K

where R is a function independent of the space variable x. Repeating this procedure for Fy,
we obtain

Flu) = Y F(Puqu, -, Py, uu)ug i, + Y Roug, + Ry
KIZKZ Kl

= Z F3(Parcyu, - 7PK3/8u)uK1uK2uK3

K1>2K>K3
+ Z Rsug, ug, + ZRguKl + Ry
Ki1>K> K1
where Ry, Ro, Rg are functions independent of the space variable.
Set
(83) GKS(JE,t) = F3(P4K3’LL,"' 7PK3/8u)'
Hence we represent w defined in (7.2) as

w = E Oz UK, (uKluKQUKSGKS —/uKluKQUKSGK3d1E>
Ko,K1>K2>K3 T

+ Z Oz UK, <uK1uK2 —/uKluK2dx> R3
T

Ko, K12 K>

+ Z Oz UK, (uKl _/TUK1d33> Ry .

Ko,K1
The main contribution of w is from the first term. The remaining terms can be handled by
the method presented in Section 6 because R, R3 are functions independent of the space
variable x (actually they only depend on the conserved quantity fT udz). Hence in what
follows we will only focus on estimating the first term—the most difficult one. Denote the
first term by wy, i.e.,

(8.4) w1 = E 8quo <uK1uK2uK3GK3 —/uKluK2uK3GK3dx> .
Ko,K1>K>>K3 T

We should prove
1/2
< wy(n, A 2
85 lwill, s + <Z<n>2 ([ rsla) ) < C(|se, F) el

In order to specify the constant C'(||¢||gs, F'), we define 9 by setting
(8.6)
M = sup {|D*F3(uq,--- ,ue)| : u; satisfies ||ujlly, < Col|¢||gs forall j=1,---,6; a}.

Here D = 091 - -- 029 and « is taken over all tuples (a1, -+ ,a6) € (NU{0})% with 0 < o < 2
for all j € {1,---,6}. 9 is a real number. This is because, for s > 1/2, ||ully, < 2||¢| =
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yields that u is bounded by C||¢| s, and the previous claim follows from F3 € C2.

In order to bound |w]|, L by duality, it suffices to bound

(n)Yng .
> / Py (o, A — At — A2 — Az — 1)

—n3)
Ko, K1>K2>Ks n
no+ni+n2+nz+m=n
(8.7) n1 +n2+n3+msﬁ0

HuK nj, )Gy (m, p)dy - - dhadAdy

where A,, ) satisfies

Z/ |Apa2d\ = 1.

The trouble maker is G, since there is no way to find a suitable upper bound for its X,
norm. Because of this, the method in Section 6 is no more valid, and we have to treat m
and p differently from n and A respectively. A delicate analysis must be done for overcoming
the difficulty caused by Gi,. For simplicity, we assume that § = 1. One can modify the
argument to gain a decay of 6/ by using the technical treatment from Section 6.

For a dyadic number M, define the Littlewood-Paley Fourier multiplier by
(8.8) 9ks,M = PuGry — PprpGry = (Grs)m
Let v be defined by

(8.9) v(z,t) Z / eI
— ns

To estimate (8.7), it suffices to estimate

E /agvK(n, A)aquo(no, A— A1 — Ay — A3 — u)
K,Ko,K1>K2>K3,M
no+ni+nz2+nz+m=n
(8.10) n1+n2+n3+m7ﬁ0

l\)l»—l

HuKJ Mgy Aj) i, 01 (M, ) dAs - - dAadAdp.

Here K is a dyadic number.
As we did in Section 6, we consider three cases:

(8.11) Ko < 290K, ;
(8.12) 210K, < Ko < 20K ;
(8.13) Ko > 29K, .

The rest part of the paper is devoted to a proof of these three cases. In what follows, we will
only provide the details for the estimates of [lw1ll, 1 with 1/2 < s < 1 (the case s > 1 is

easier). For the desired estimate of

(o (/ Beta))
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simply replace v by

nAAn ;
(8.14) V(z,t) Z / AR Gid gin gy

X — n3)

and then the desired estimate follows similarly. Here C), » € C satisfies sup, |Cp, x| < 1 and
{A,} satisfies Y, |4,]> < 1.

9. PROOF OF CASE (8.11)
In this case, we should consider further two subcases:
(9.1) M <20k, .
(9.2) M > 20K, .

For the contribution of (9.1), noticing K < C' K in this subcase, we then estimate (8.10)
by

(9.3) Z /TR Z ava Z amu](o UK UK, UK (P210K1GK3) dxdt
X

Ki1>K2>K3 K<CK; Ko<CK>
which is bounded by
(9.4) ZHUKgHooHGKg,Hoo/ oY Kuiur, D> Y Kouje|uk,|dadt
Kl K<CK; Ko Kog<CK>

where f* stands for the Hardy-Littlewood maximal function of f. By the Schiir test, (9.4)
can be estimated by

251
S b f (i) (st
K3 K K1

D=

M)
M)

S Koluie, 2| [ Kolur,|? | dadt.

Since s > 1/2, we then obtain, by a use of Holder inequality, that (9.4) is majorized by

1
2
CM|lully, <Z IU%IQ) > Kk,
K 4 K1 A
(96) 1 1

> Koluj,|? > Kolu,|?
Ko

2
4 4

1
2

Observe that

1 1
2 2
(9.7) (Z |v;<|2> <Z |vK|2> < Clolla < Cllollys <€
K K

4
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Here the first inequality is obtained by using Fefferman-Stein’s vector-valued inequality on
the maximal function, and the second one is a consequence of classical Littlewood-Paley
theorem. Similarly,

1 1
2 2
(9.8) > Koluje, < | D Koluk|? < C)|0y*ulls < Cllully 1+ < Cllully,
4 0 4
and
1
2
(9.9) > Kilug, |? < Cllozulla < Cllull, 1 < Cllully, -
4

Hence from (9.7), (9.8) and (9.9), we have
(9.10) (8.10) < CM|uly, -

For the contribution of (9.2), since in this subcase K < CM, we estimate (8.10) by

(9.11) Zuumum / S el S Kouidaenl S Y Koulg, Juse,|dad,

TXR g <Ky M K<CM Ky Ko<CK>

which is bounded by

1/2 1/2

ZKl IUHK/ > !uK3!<Z\v?<!2> (ZMZS\%,MP>
TXR g <Ky K M

(9.12) 1/2 1/2

ZKO‘U*KOP ZK2’UK2’2 dxdt .

By a use of Cauchy-Schwarz inequality, (9.12) is estimated by

1/2 1/2 1/2
Sa i [ (Swi) (Shonik) (S
TxR K Ko Ky
(9.13) 12 12
> K3 fu,|? > Z K |gK3,M| ddt
K3 K3<Ki M
Using Holder inequality, we then bound it further by
1/2 1/2 1/2
A (i) | (S ) | | Soodor
K A Ky ] Koy ]
(9.14) 12 12
ZK§S|UK3|2 Z Z 28 |9K3,M| )
K3 4 K3s<Ky M 6




DISCRETE FOURIER RESTRICTION ASSOCIATED WITH KDV EQUATIONS

which is majorized by

1/2
_ 2s5—1
DK T ully, > Ky <ZM2S|9K3,M|2>
K

K3<K; M

6
251 e ins
< DK Tl >0 KT 10:G o -
K KSSKI
From the definition of Gk, , we have
(9.15) Oz Gy (2, 1) = O (MK3) [|ully, = O (MK3) 9] a5 -
Hence, for s < 1,
(9.16) 10;Gresllo0 < CMEZ|P| 5 -
Since s > 1/2, we then have
—2rlte 14 4

(9.17) (9.14) < CM|$ ]| = Y K, [ully, < CIM|o[|ars [lully, -

K4

This completes our discussion on Case (8.11).

10. PrROOF OF CASE (8.12)

In this case, it suffices to consider the following subcases:

(10.1) K < 29K, ;

(10.2) K <200,

(10.3) K > 2°(Ky+ M) and K3 > K2/?;

(10.4) K >2(Ky+ M), Ky <K)/? and M >2" 10K}/

10.5 K> 2Ky + M), K3 <K and M < 2-10K>/3
0 0

25

(10.1) and (10.2) can be proved exactly the same as the case (9.1) and the case (9.2)

respectively. We omit the details.

For the case of (10.3), observe that (8.12) and (10.3) imply

(10.6) K < CK,
and

1/2 1/2 7-1/2
(10.7) K < KPR,

Hence (8.10) is bounded by

w08)  [X N K| S Kujehus s | Gy lcdodt.

K1 K<CK; Ko>K2> K3
Ko<K?

Applying Holder inequality, we estimate (10.8) by

1
2
(10.9) csm/ <Z|v}|2> S KB uge,[?
K K

1
2

D=

ZK}+€|qu|2 dxdt .
K
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One more use of Holder inequality yields that (10.8) is bounded by

o ()

Hence we obtain
(10.10) (10.8) < CM||uly, -
This finishes the proof of (10.3).

1
2

(NI

1
2

D Kl |l T | 2285 s
K, K,

j=0,2,3
4 4 6

For the case of (10.4), we estimate (8.10) by

w1y Y [ Y Kevidun | 3 Koluiglucllur Y lgw,uldedt,

K3,K3” Ki K<CK; Ko M>CK2/?

which is dominated by
1/2

1/2
C Z /(ZWF{F) E:K128|UK1|2 [, || |
10.12 Kok A K K1
(10.12) s o
ZK0|U’;{O|2 <ZM3/2|9K3,M|2> dxdt .
Ko M

By Holder inequality with L* norms for the first two functions in the integrand, L5t for the
next three functions, and LP norm (very large p) for the last one, (10.12) is dominated by

1/2

(10.13) Cllully, > llurllot lursllor || | D Koluk, 1034 G eyl oo -
Ko

K2,K3
64

Applying (9.16), we estimate (10.12) by

3
3/8
CMY . ull, TT S &% lux, llo+

=2 K
- /
3/8
< OMYllz. s, TT D K s, llos 2
=2 K,
< OM|gllz, |lully, ,

as desired. This completes the discussion of (10.4).

We now turn to the case (10.5). In this case, we have
(10.14) Ing 4+ n1| +2Ko + M > |n| > K/2 > 28(Ky + M),
which implies

(10.15) Ing +n1| > 2°(Ko 4+ M).
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Notice that
(10.16)
(no +n1 +no+nz+m)®> —nd —nd —nd —nd —m3 =

3 3 3

3(n0+n1)(no+n2+n3+m)(n1+n2+n3+m)+(n2+n3+m)3—n2—n3—m .

From (10.15), (10.16) and (10.5), we obtain

(10.17) In® —nd —nf —n3 —ni —m?| > C(K, + M)KoK, > CKoK; > CK§ .
Henceforth one of the following four statements must be true:
(10.18) |A—n?| > K3,
(10.19) |(A = A1 = Xo— A3 — ) —ng| > K2,
(10.20) Ji € {1,2,3} such that |\; —n3| > K2,
(10.21) lu| > K2 .
For the case of (10.18), we set
(10.22) iz, t) = (61M_n3|2,<3>v(x,t).

We then estimate (8.10) by

(10.23) S e oot oo IGicy oo 3 / Ot 33" KT e, |dudt.

K2,K3 Ko Ky K<CK;

This is clearly bounded by
1/2

1/2
(10.24) C’imHuH%/s Z/K0|u*KO| (Z |{;’;{|2> ZK125|”K1|2 dxdt .
Ko K K1

Using Cauchy-Schwarz inequality, we bound (10.24) by

N
S

1
2
(1025)  CMul, / S kel (SRSl | (S K | dedt
Ko Ko K K;

By Hélder inequality, (10.25) is majorized by

2

CMull3, ||| D Koluk,|” S OKGTEY ol > K lu, |? ,
Ko Ko K Ky

4 2 4

|
Ll

which is controlled by
1/2

—e||~ —€/2
(10.26) CMYfully, |F5ulla | S KZEN013 | < CMuld, 195ulls D Ky < Cmully,

Ko KO

This finishes the proof of the case (10.18).

For the case of (10.19), let @ be defined by
(10.27) U= (Ul ps>x2)"

27
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Then (8.10) can be estimated by

(10.28) S s otz oo |G s oo 3 / 0t 3 S K e, |dudt.

K2,K3 Ko K, K<CK,

By Schiir test and Holder inequality, we control (10.28) by

(10.29)
1/2 1/2
D s ool oo G lloo > 102t |l2 <Z IvKI2> > KPlug,|? ;
Ko,K3 Ko K A K .

which is bounded by

(10.30) CMfuly, Y fur, llo, s < CMully, -
Ko

This completes the proof of the case (10.19).

For the case of (10.20), if j = 1, then we dominate (8.10) by
103) 3 Juslloclu el Gy o 3 [ 1000|337 Kviclig ot
K3,K3 Ko K1 K<CK,
As we did in the case (10.19), we bound (10.31) by

1/2
(10.32) CMullf, D 0wurcllallolla || { D K7 lar, |
K() Kl

2

This can be futher controlled by
1 1
(10.33)  CMul}, > EH%UKO\MHU\M < CMulff, Y EHUKOHL% < CMully, .
K() KO

as desired.

We now consider j = 2 or j = 3. Without loss of generality, assume j = 2. In this case,
we estimate (8.10) by

1030 3 i G e 3 [ 00| S Y Koviclusa] 3 ot
K3 Ko Ky K<CK; Ko<CKy
which is bounded by
1/2
CMYully, Y N0surolloe Y N, l2llvlla|[[ D K ux, |?
K4

Ko K2<Ky
4



DISCRETE FOURIER RESTRICTION ASSOCIATED WITH KDV EQUATIONS 29

Notice that

i 1
D losurlo Y Nir,l2 < CZfH@muKollooHullys
Ko K><Ko Ko Y
< Y [fat Ny,
< Cllulf, -
Henceforth (10.34) is dominated by
(10.35) (10.34) < CM|ully, -

This completes the case of (10.20).

We now turn to the most difficult case (10.21) in Case (8.12). We should decompose G,
with respect to the t-variable, into Littlewood-Paley multipliers in the same spirit as before.
More precisely, for any dyadic number L, let Q1 be

(10.36) Qru(x,t) = /Q/JL(T)u(a;,t —T1)dT.

Here the Fourier transform of 41, is a bump function supported on [—2L,2L] and zﬂ(az) =1
if x € [-L,L]. Let

(10.37) Hpu=Qru—Qrpu.

Then I u gives a Littlewood-Paley multiplier with respect to the time variable ¢. Using this
multiplier, we represent

(10.38) UK = ) UKL
L

Here ug , = I (uk). We decompose G, as
(10.39)

Gry =C+ Z (F3(QrParcsu, -+, QrPrysu) — F3(QroPircst, - -+, QrjoPre,/su))
L

=C+ E Hgyn ujks L,
j=42,1,3,3.1

L

where Hp, 1, is given by

1
(10.40) Hysp = Fy <QZLP4K3U7 w0 QurPreyjgus £ =1, §> :

Let 9t; be defined by
(10.41)
My =sup {|DFy(u1,--- ,ui2)| : u; satisfies ||ujlly, < Col||¢||gs forall j=1,---,12; a}.
Here D% = 0210212 and « is taken over all tuples (o, ,a12) € (NU {0})'? with

x12

0<a;<1forall je{l,---,12}. M, is a real number because Fy € Ct.
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In order to finish the proof, we need to consider further three subcases:

(10.42) L <2VK3,
(10.43) 20K3 < L <27°K3,
(10.44) L>275K2.
For the contribution of (10.42), we set
— v
(10.45) hio,jks,L = (HKg,Lqua,Ll\u\ZKg) :
Here j =4,2,1, %, %, %. From the definition of H, 1, we get
L
(10.46) 1rco,jrcs,Llly < Cmt1||¢”Hng”qus,LH4-

Then (8.10) is bounded by

S sl 3 / Koujy S luscllo
Ko Ko

1/2

(10.47) Ks<CKo
D hkegrsnl Y D Kviluk,|dadt,

L<CK$ K1 K<CKq

which is majorized by

Sl YKo S fusslle / W,
Ky

Ko ga<okl/?

(10.48) 1/2

1/2
Z \hkco, ks, L (Z‘U}P) ZK%S‘UIQP dxdt .
K K1

L<CK$

Using Holder inequality with L* norms for four functions in the integrand, we estimate
(10.48) by

L
CM @l asllully, Y Kollurolla D lursllo D 702 i,y
K Ky< Ky L<cky O
10.49
Q049 < omm el S 268 ol
Ko

< O 613 llully, -
This finishes the case of (10.42).

For the contribution of (10.43), we bound (8.10) by

S lurcalloo 3l / Sl S [hesrer
Ko K3 Ko

210 K3 <L<2-10K2
: g E Kévy|ug, |dxdt ,
K1 K<CK;

(10.50)
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which is dominated by

Ol 3l 3 / Mol 30 s

A<2710 210K§<L
1/2

1/2
. <Z‘v}-‘2> ZK%S’U,KIP dxdt ,
K K,

By Cauchy-Schwarz inequality, we estimate (10.51) further by

(10.51)

(10.52)

|0z, |

Ol e 35 A7 / D
A<2™ 10
A dyadic

1/2
1/2 1/2
> Ly il (Z\v}\z) STEEuk, P dadt,
20 K3<L K K
S K3<L<AK?

Applying Holder inequality with L norm for the first function in the integrand, L? norm
for the second one, and L* norms for the last two functions, we then majorize (10.52) by
(10.53)

1/2
Op UK
CHUHYSZHUKgHooZ sz” 0”°° S Ll
A<2~ 210K3<L
Adyadlc %K3<L§AK3
2

Notice that if L ~ AKZ, then

(10.54) 1hkco,jics,Lll2 < CMN| @l s Allujrcs,Lll2-
Thus we have
1/2
Z L’hKoJK&LF
20 K3«
SK2<L<AK? ,
1/2
(10.55)
< CMy || = A > Lkl
210K3<L
S K3<L<AKE

< O |0l] s Allujrcs llo 2
< CMy || ¢l A
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From (10.55), (10.53) is bounded by

|0z u, ||
(10.56) CM [ l1Zs [[ully, Y Nurslloe Y Al/zz%,
Ks A<2-10 Ko 0
A dyadic

which is clearly majorized by
(10.57) O |61 s lully, -
This finishes the case of (10.43).

For the contribution of (10.44), we estimate (8.10) by

S s oo 3 sy oo / S surl S hrosror
Ko Ks Ko

L>2-5K}?

(10.58)
: Z Z KPvi|ug, |dxdt ,
K, K<CK,
which is bounded by
1/2 1/2
|0t |? 2
D lurslloo D s llso ZT D Lk, ks il
K> K3 Ko 0 L>2-5K2

(10.59) s

1/2
- (z |v;<|2) S K
K K

Applying Holder inequality, we estimate (10.59) further by
1/2
[0z tk lloo
(10.60) CM a3, D lurcslloo Y — > Llujks ol
K3 Ko 0 L>2-5K2 )
This is clearly majorized by
(10.61) CMy ||| a1, -

Hence we complete the case of (10.44).

11. PrROOF OF CASE (8.13)

In this case, it suffices to consider the following subcases:

(11.1) M > 2_10K§/3;

(11.2) M < 270K2® and K2K3 > 2 10KZ;

(11.3) M < 270K and K2M > 2" 10K2;

(11.4) M < 270K K2Ky < 2719K2 and K2M < 2710K2.

For the case of (11.1), notice that, in this case, we have

(11.5) K <CM3?.
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Henceforth we estimate (8.10) by

(11.6) / S sl S Kvi S Koullgkuldudt,

K1>K2>Ks M K<CM3/2 Ko<CM3/?
which is bounded by
(11.7)
1/2
3
[ sl s DM ool N Ko | SR | dsa
Ki1>K2>K3 K<CM?3/2
since 1/2 < s < 1. Applying Schiir test, we estimate (11.7) by
1/2
/ Z s, [[wre [[urs| (Z Mg‘gK‘s,M‘Z)
K1>K2>K3
(11.8) 12 1/2
(Z \v}{\Q) S KPP | dadt.
K Ko
By Hélder inequality and s > 1/2, (11.8) is majorized by
(11.9)
5 1/2 1/2
¢ ¥ oot Tl ) |(Stoxt?) | (5 st
K1>Ks>K3 j=1 K 4 Ko

<Cm(lollms + el luly, Y K3 HIIUK lo-+

K1>K3>K3

1/2
< oMol + 10l ful, [ 3" o, o
j=1 K;

<CM(|¢ll = + 19l ully, -
This finishes the case of (11.1).

For the case of (11.2), observe that, in this case,

(11.10) Ko < CKIPK)*KY?
We estimate (8.10) by

iy [ el Y K Y Ko |G, ledsdr,

K1>K>Ks K<CKo Ko<C(K1K2K3)1/2

which is bounded by

1/2
(11.12) e [ (Z |v>;<|2> S K8 uj,
K Ko

1/

2
3
HZ 1/2|qu|d:EaHE.
j=1 K;
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Using Holder inequality with L* norms for first two functions and L% norms for the last three
functions in the integrand, we obtain

3
1/2
(11.13) cmlully, [T 11D K, || < comlulld, .
j=1|| K; 6
This completes the case of (11.2).

For the case of (11.3), we have, in this case,
(11.14) Ko < CKIPEy* M2
Hence we dominate (8.10) by
1115) [ 3 e Slowal ¥ Kk N Koujgdedt,
K1>K2>Ks3s K<CKj KOSC(KlKQM)l/Q
which is bounded by
12 1/2
> (Z |v;;|2) SRl 2] e
Ks K Ko

(11.16) e

: <Z M‘QK?”MP) HZK;/zquj\da:dt,
M

j=1 K;

Using Hélder inequality with L* norms for first two functions, L% norms for the third one,
LP norm with p very large for the fourth one, and LT for the last two functions in the
integrand, we obtain

(11.17) ouunySH ZK”2|uK| D s 611032 Gy lloo

Clearly (11.17) is dominated by

(11.18) CM gl ulld, S K3 umylls < CMY || 3, -
K3

Hence the case of (11.3) is done.

For the case of (11.4), we observe that, in this case,
(11.19) M?*K, <270K2.
In fact, if (11.19) does not hold, then from (11.4),

M?Ky >27K3 > KiM.
Thus M > K, which yields immediately
M? > M?Ky > 27 K¢,

contradicting to M < 2_10K§/3. Hence (11.19) must be true. From (11.19), K2K3+ KM <
2_9K8, we get
(11.20) |(n2—|—n3+m)3—n§’—n3 3‘ <27°KE.
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Since ny+ng+ng+m # 0, from (8.13), (11.4) and (11.20), the crucial arithmetic observation
(10.16) then yields
(11.21) I —nd —nd —n3 —nd —m3| >2KZ.

Henceforth one of the following four statements must be true:

(11.22) |A—n?| > K3,
(11.23) |(A =1 = Xo— A3 — ) —ng| > K2,
(11.24) Ji € {1,2,3} such that |\; —n3| > K2,
(11.25) Il > K2
For the case of (11.22), we estimate (8.10) by
2) 3 fu el ellallol Gl 3 [ Koluic )| 3= 20| ot
K1,K2,K3 K<CKy
Then Cauchy-Schwarz inequality yields
2y 1/2 1/2
CMullf, ||| D_K>| > dhox > Kl
Ko K<CKy Ko
(11.27) 2 2
1/2
<OMully, | KT > 1050kl < CMully, -
Ko K<CKo

This finishes the proof of the case (11.22).
For the case of (11.23), (8.10) can be estimated by

2 3 s G 3 [ Kol 3 Kevicdoit.

K1,K2,K3 K<CKy
By Schiir test and Hélder inequality, we control (11.28) by
1/2

1/2
(11.29) CMm|ul3, (Z \v}\z) DK :
K K

2 2
which is clearly bounded by
1/2
(11.30) CMulld, | DK lurolgs | < CMully,
2
Ko

This completes the proof of the case (11.23).

For the case of (11.24), without loss of generality, assume j = 1. We then dominate (8.10)
by

1130 Y el o Grclle S5 [ Kolu | S Keviedade.
K2,K3 K1 Ko K<CKj
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By Hélder inequality, we bound (11.31) by

D llurslloollursllooIGrs oo DD Y Ko Kollur, lallis, 12 llvk lla

Ko, K- K1 Ko K<CK
(1132) 2 3 1 0 0
<> ||UK2||oo||UK3||oo||GK3HooZHUK1||01Z > K*|uklallvilla -
K2,K3 Ko K<CKjy

By Schiir test, we dominate (11.32) by

1/2 1/2
CM[ull, Y [ llo, 2 > K lukolli (Z IIUKIIi)
K4 Ko K
(11.33) 1/2 1/2
<CM|ul3, ZKOQSHUKOHS% (ZHWH&;)
Ko K

< CMfully, -
Hence the case of (11.24) is done.

In order to finish the proof, as before we need to consider further three subcases:

(11.34) L <2VK3,
(11.35) 20K3 < L <27°KE,
(11.36) L>27°KE.

For the contribution of (11.34), notice that

L
(11.37) |hrco,jrcs,Llle < CMyl|@| s —

KgHqus,L||6-

Here hg, jK,, 1 is defined as in (10.45). In this particular case we also have K3 < Kg/ % from
K3Kj3; <2710K2. Then (8.10) is bounded by

ass) | Mo, o K 3 fusslllll 3 ikl o
K<CKy K1>K>>K3 L<CK3}
K3<KZ/®

Write (11.38) as

(11.39) Y /ZKO@(OZ Kvie > Juglumllus | D [hi .| dadt .

A dyadic Ko K<CKpyp Ki1>Ks>Ks3 LSCKg’
A<l AR j2< Ka<AKE

Observe that if AK§/3/2 < K3 < AKg/?’, then we have

(11.40) Ko < ASPKIPRIPRY?
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Henceforth, (11.39) is bounded by

Clluly, Y S k* Y KPS a2 N K2

Ko KSKO Kl,KQ ASI K3NAKS/3
(11.41)

/ wiegviclur i) S hico sy pldadt
L<CK}

Applying Holder inequality with L? norms for first two functions and L° for the last three
functions, and then using (11.37), we get

Cmfellmlully, Yo ST K ST KPEYPY AN Ky

L) Ko K<Ko  Ki,K» A<1 KsnAK2
) L
lurcollallvic lalluge lslluse,lls > ﬁHWKS,Lllﬁ’
L<cki O

which is bounded by

Cm1|’¢HHS”uHYsZ Z KSZA_g/z Z Kig

Ko K<Ko A<l L<CA3K?

1/2 1/2 1/2
luscolalloielle Y- Ky llumallog,s D Ko lurcallor 3 D Ky i zllos s
K Ko K3

(11.43) < OMolipllully, DAY > K¥lurgllaflox|la
A<1 Ko K<CKj
1/2

1/2
<OM bl ul¥, | D KOQSHUKOHS,% (Z Hvxlla%)
K

Ko
< CMy |97 lully, -

This completes the case (11.34).

For the contribution of (11.35), (8.10) is bounded by

ZuumumzuuKQuooZnuKsnw / SY KouiKoug,

(11.44) Ko K<CKo

§ ’hKo,jK:s,L’dxdtv
20K3< L2 KE

which is dominated by

L) Clulf, Yl 3 3 3 K [ Ko Y Mg ldeds.

A<2™ 5 Ko K<CKjy 210K3<L
A dyadic AKO<L§AK2
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Using Cauchy-Schwarz inequality, we estimate (11.45) further by

ouu||yé§juuz<3uoo T Aty Y ke / Wi, U

A<275 Ko K<CKy
A dyadic
1/2
(11.46)
2
Z Lihr,jrs,Ll dzdi .
20 K3«

S K3<L<AKE

Employing Holder inequality with L? norms for the first two functions and L? for the last
one, we bound (11.46) by

CHUHYSZH%Hm SooATY > Kflulalloclla

A<275 Ko K<CKo
A dyadic
1/2
(11.47)
Z L|hK07jK37L|2
210K3<L
SK3<L<AK2

From (10.55), (11.47) is majorized by

CM|¢lI% | IUHKZH%II@O SooarY > Kflullalloxclla

A<275 Ko K<CKjy
A dyadic
(11.48) 1/2 1/2
<CM 2 3 K2S 2 2
< CM| (9|17 [[ully, 0° llurcolly 1 loxcllg 2
Ko K

< O |l fully, -
This finishes the proof for the case (11.35).

For the contribution of (11.36), we estimate (8.10) by

(11.49)
3 |ruK1HoouuK2uooZHumum / ZKouKO hicosicorl S Kovjedadt.
Ki,K» L>2— oK2 K<CKy

By Cauchy-Schwarz inequality, (11.49) is bounded by

(11.50)
1/2

> HuKlHoonzHooZngllooz > KS/UKUKO Llhky jrcarl® | dadt.

K1,K2 Ko K<CKyp L>2— 10K2
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Employing Hélder inequality with L* norms for the first two functions and L? norm for the
last one, we dominate (11.50) by

1/2
Cmlulf, Y Nuralloo Y D~ K llurollalloxlla > Llujgarl
K3 Ko K<CKj L>2-5K2
(11.51) , 2
<CMlully, D Juralloe D Do Kollurollo s vl 2 lull, s
KB K() KSCKO

<CM 6] = [lully, -
Hence we complete the case of (11.36).
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