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DISCRETE FOURIER RESTRICTION ASSOCIATED WITH KDV

EQUATIONS

YI HU AND XIAOCHUN LI

Abstract. In this paper, we consider a discrete restriction associated with KdV equations.
Some new Strichartz estimates are obtained. We also establish the local well-posedness for
the periodic generalized Korteweg-de Vries equation with nonlinear term F (u)∂xu provided
F ∈ C5 and the initial data φ ∈ Hs with s > 1/2.

1. Introduction

The discrete restriction problem associated with KdV equations is a problem asking the
best constant Ap,N satisfying

(1.1)

N∑

n=−N

∣∣∣f̂(n, n3)
∣∣∣
2
≤ Ap,N‖f‖2p′ ,

where f is a periodic function on T2, f̂ is Fourier transform of f on T2, p ≥ 2 and p′ =
p/(p − 1). It is natural to pose a conjecture asserting that for any ε > 0, Ap,N satisfies

(1.2) Ap,N ≤

{
CpN

1− 8
p
+ε

for p ≥ 8

Cp for 2 ≤ p < 8 .

It was proved by Bourgain that A6,N ≤ N ε. The desired upper bound for A8,N is not yet
obtained, however, we are able to establish an affirmative answer for large p cases.

Theorem 1.1. Let Ap,N be defined as in (1.1). If p ≥ 14, then for any ε > 0, there exists a
constant Cp independent of N such that

(1.3) Ap,N ≤ CpN
1− 8

p
+ε
.

The periodic Strichartz inequality associated to KdV equations is the inequality seeking
for the best constant Kp,N satisfying

(1.4)

∥∥∥∥∥
N∑

n=−N

ane
2πitn3+2πixn

∥∥∥∥∥
Lp
x,t(T×T)

≤ Kp,N

(
N∑

n=−N

|an|
2

) 1
2

.

By duality, we see immediately
Kp,N ∼

√
Ap,N .

Henceforth, Theorem 1.1 is equivalent to Strichartz estimates,

(1.5) Kp,N ≤ CN
1
2
− 4

p
+ε
, for p ≥ 14 .

It was observed by Bougain that the periodic Strichartz inequalities (1.4) for p = 4, 6 are
crucial for obtaining the local well-posedness of periodic KdV (mKdV or gKdV). The local
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2 YI HU AND XIAOCHUN LI

(global) well-posedness of periodic KdV for s ≥ 0 was first studied by Bourgain in [2]. Via a
bilinear estimate approach, Kenig, Ponce and Vega in [9] established the local well-posedness
of periodic KdV for s > −1/2. The sharp global well-posedness of the periodic KdV was
proved by Colliander, Keel, Staffilani, Takaoka, and Tao in [5], by utilizing the I-method.

Inspired by Bourgain’s work, we can obtain the following theorem on gKdV. Here the
gKdV is the generalized Korteweg-de Vries (gKdV) equation

(1.6)

{
ut + uxxx + ukux = 0

u(x, 0) = φ(x), x ∈ T, t ∈ R ,

where k ∈ N and k ≥ 3.

Theorem 1.2. The Cauchy problem (1.6) is locally well-posed if the initial data φ ∈ Hs for
s > 1/2.

Theorem 1.2 is not new. It was proved by Colliander, Keel, Staffilani, Takaoka, and Tao in
[4]. However, our method is different from the method in [4]. Let us point out the difference
here. The method used in [4] is based on a rescaling argument and the bilinear estimates,
proved by Kenig, Ponce and Vega [9]. Our method is more straightforward and does not
need to go through the rescaling argument, the bilinear estimates in [9] or the multilinear
estimates in [4]. This allows us to extend Theorem 1.2 to a very general setting. More
precisely, consider the Cauchy problem for periodic generalized Korteweg-de Vries (gKdV)
equation

(1.7)

{
ut + uxxx + F (u)ux = 0

u(x, 0) = φ(x), x ∈ T, t ∈ R .

Here F is a suitable function. Then the following theorem can be established.

Theorem 1.3. The Cauchy problem (1.7) is locally well-posed provided F is a C5 function
and the initial data φ ∈ Hs for s > 1/2.

For sufficiently smooth F , say F ∈ C15, the existence of a local solution of (1.7) for s ≥ 1
and the global well-posedness of (1.7) for small data φ ∈ Hs with s > 3/2 were proved by
Bourgain in [3]. The index 1/2 is sharp because the ill-posedness of (1.6) for s < 1/2 is
known (see [4]). In order to make (1.7) well-posed for the initial data φ ∈ Hs with s > 1/2,
the sharp regularity condition for F perhaps is C4. But the method utilized in this paper,

with a small modification, seems to be only able to reach an affirmative result for F ∈ C
9
2
+

and s > 1/2. Moreover, the endpoint s = 1/2 case could be possibly done by combining
the ideas from [4] and this paper. But we would not pursue this endpoint result in this paper.

2. Proof of Theorem 1.1

To prove Theorem 1.1, we need to introduce a level set. Since
√
Ap,N ∼ Kp,N , it suffices

to prove the Strichartz estimates (1.4). Let FN be a periodic function on T2 given by

(2.1) FN (x, t) =
N∑

n=−N

ane
2πinxe2πin

3t ,
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where {an} is a sequence with
∑

n |an|
2 = 1 and (x, t) ∈ T2. For any λ > 0, set a level set

Eλ to be

(2.2) Eλ =
{
(x, t) ∈ T2 : |FN (x, t)| > λ

}
.

To obtain the desired estimate for the level set, let us first state a lemma on Weyl’s sums.

Lemma 2.1. Suppose that t ∈ T satisfies |t − a/q| ≤ 1/q2, where a and q are relatively
prime. Then if q ≥ N2,

(2.3)

∣∣∣∣∣
N∑

n=1

e2πi(tn
3+bn2+cn)

∣∣∣∣∣ ≤ CN
1
4
+εq

1
4 .

Here b and c are real numbers, and the constant C is independent of b, c, t, a, q and N .

The proof of Lemma 2.1 relies on Weyl’s squaring method. See [8] or [10] for detail. Also
we need the following lemma proved in [1].

Lemma 2.2. For any integer Q ≥ 1 and any integer n 6= 0, and any ε > 0,

∑

Q≤q<2Q

∣∣∣∣∣∣
∑

a∈Pq

e
2πia

q
n

∣∣∣∣∣∣
≤ Cεd(n,Q)Q1+ε .

Here Pq is given by

(2.4) Pq = {a ∈ N : 1 ≤ a ≤ q and (a, q) = 1}

and d(n,Q) denotes the number of divisors of n less than Q and Cε is a constant independent
of Q,n.

Lemma 2.2 can be proved by observing that the arithmetic function defined by f(q) =∑
a∈Pq

e
2πia

q
n
is multiplicative, and then utilize the prime factorization for q to conclude the

lemma.

Proposition 2.1. Let KN be a kernel defined by

(2.5) KN (x, t) =

N∑

n=−N

e2πitn
3+2πixn .

For any given positive number Q with N2 ≤ Q ≤ N3, the kernel KN can be decomposed into
K1,Q +K2,Q such that

(2.6) ‖K1,Q‖∞ ≤ C1N
1
4
+εQ1/4 .

and

(2.7) ‖K̂2,Q‖∞ ≤
C2N

ε

Q
.

Here the constants C1, C2 are independent of Q and N .

Proof. We can assume that Q is an integer, since otherwise we can take the integer part of
Q. For a standard bump function ϕ supported on [1/200, 1/100], we set

(2.8) Φ(t) =
∑

Q≤q≤5Q

∑

a∈Pq

ϕ

(
t− a/q

1/q2

)
.
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Clearly Φ is supported on [0, 1]. We can extend Φ to other intervals periodically to obtain a
periodic function on T. For this periodic function generated by Φ, we still use Φ to denote
it. Then it is easy to see that

(2.9) Φ̂(0) =
∑

q∼Q

∑

a∈Pq

FRϕ(0)

q2
=
∑

q∼Q

φ(q)

q2
FRϕ(0)

is a constant independent of Q. Here φ is Euler phi function, and FR denotes Fourier
transform of a function on R. Also we have

(2.10) Φ̂(k) =
∑

q∼Q

∑

a∈Pq

1

q2
e
−2πia

q
kFRϕ(k/q

2) .

Applying Lemma 2.2 and the fact that Q ≤ N3, we obtain

(2.11)
∣∣∣Φ̂(k)

∣∣∣ ≤ N ε

Q
,

if k 6= 0.
We now define that

K1,Q(x, t) =
1

Φ̂(0)
KN (x, t)Φ(t), and K2,Q = KN −K1,Q .

(2.6) follows immediately from Lemma 2.1 since intervals Ja/q = [aq +
1

100q2
, aq +

1
50q2

]’s are

pairwise disjoint for all Q ≤ q ≤ 5Q and a ∈ Pq.
We now prove (2.7). In fact, represent Φ as its Fourier series to get

K2,Q(x, t) = −
1

Φ̂(0)

∑

k 6=0

Φ̂(k)e2πiktKN (x, t) .

Thus its Fourier coefficient is

K̂2,Q(n1, n2) = −
1

Φ̂(0)

∑

k 6=0

Φ̂(k)1{n2=n3
1+k}(k) .

Here (n1, n2) ∈ Z2 and 1A is the indicator function of a measurable set A. This implies that

K̂2,Q(n1, n2) = 0 if n2 = n31, and if n2 6= n31,

K̂2,Q(n1, n2) = −
1

Φ̂(0)
Φ̂(n2 − n31) .

Applying (2.11), we estimate K̂2,Q(n1, n2) by
∣∣∣K̂2,Q(n1, n2)

∣∣∣ ≤ CN ε

Q
,

since N2 ≤ Q ≤ N3. Henceforth we obtain (2.7). Therefore we complete the proof.
�

Now we can state our theorem on the level set estimates.

Theorem 2.1. For any positive numbers ε and Q ≥ N2, the level set defined as in (2.2)
satisfies

(2.12) λ2 |Eλ|
2 ≤ C1N

1
4
+εQ

1
4 |Eλ|

2 +
C2N

ε

Q
|Eλ|

for all λ > 0. Here C1 and C2 are constants independent of N and Q.
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Proof. Notice that if Q ≥ N3, (2.12) becomes trivial since Eλ = ∅ if λ ≥ CN1/2. So we can
assume that N2 ≤ Q ≤ N3. For the function FN and the level set Eλ given in (2.1) and
(2.2) respectively, we define f to be

f(x, t) =
FN (x, t)

|FN (x, t)|
1Eλ

(x, t) .

Clearly

λ|Eλ| ≤

∫

T2

FN (x, t)f(x, t)dxdt .

By the definition of FN , we get

λ|Eλ| ≤
N∑

n=−N

anf̂(n, n
3) .

Utilizing Cauchy-Schwarz’s inequality, we have

λ2|Eλ|
2 ≤

N∑

n=−N

∣∣∣f̂(n, n3)
∣∣∣
2
.

The right hand side can be written as

(2.13) 〈KN ∗ f, f〉 .

For any Q with N2 ≤ Q ≤ N3, we employ Proposition 2.1 to decompose the kernel KN . We
then have

(2.14) λ2|Eλ|
2 ≤ |〈K1,Q ∗ f, f〉|+ |〈K2,Q ∗ f, f〉|

From (2.6) and (2.7), we then obtain

λ2|Eλ|
2 ≤ C1N

1
4
+εQ

1
4 ‖f‖21 +

C2N
ε

Q
‖f‖22 ≤ C1N

1
4
+εQ

1
4 |Eλ|

2 +
C2N

ε

Q
|Eλ| ,

as desired. Therefore, we finish the proof of Theorem 2.1. �

Corollary 2.1. If λ ≥ 2C1N
3
8
+ε, then

(2.15) |Eλ| ≤
CN1+ε

λ10
.

Here C1 is the constant C1 in Theorem 2.1 and C is a constant independent of N and λ.

Proof. Since λ ≥ 2C1N
3
8
+ε, we simply take Q satisfies 2C1N

1
4
+εQ1/4 = λ2. Then Corollary

2.1 follows from Theorem 2.1. �

We now are ready to finish the proof of Theorem 1.1. In fact, let p ≥ 14 and write ‖F‖pp
as

(2.16) p

∫ 2C1N
3
8+ε

0
λp−1|Eλ|dλ+ p

∫ 2N1/2

2C1N
3
8+ε

λp−1|Eλ|dλ .

Observe that A6,N ≤ N ε implies

(2.17) |Eλ| ≤
N ε

λ6
.

Thus the first term in (2.16) is bounded by

(2.18) CN
3(p−6)

8
+ε ≤ CN

p
2
−4+ε ,
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since p ≥ 14. From (2.15), the second term is majorized by

(2.19) CN
p
2
−4+ε .

Putting both estimates together, we complete the proof of Theorem 1.1.

3. A Lower bound of Ap,N

In this section we show that N1−8/p is the best upper bound of Ap,N if p ≥ 8. Hence (1.3)
can not be improved substantially, and it is sharp up to a factor of N ε.

For b ∈ N, let S(N ; b) be defined by

(3.1) S(N ; b) =

∫

T2

∣∣∣∣∣
N∑

n=−N

e2πitn
3+2πixn

∣∣∣∣∣

2b

dxdt .

Proposition 3.1. Let S(N ; b) be defined as in (3.1). Then

(3.2) S(N ; b) ≥ C
(
N b +N2b−4

)
.

Here C is a constant independent of N .

Proof. Clearly S(N ; b) is equal to the number of solutions of

(3.3)

{
n1 + · · ·+ nb = m1 + · · ·+mb

n31 + · · ·+ n3b = m3
1 + · · ·+m3

b

with nj,mj ∈ {−N, · · · , N} for all j ∈ {1, · · · , b}. For each (m1, · · · ,mb), we may obtain a
solution of (3.3) by taking (n1, · · · , nb) = (m1, · · · ,mb). Thus

(3.4) S(N ; b) ≥ N b .

To derive a further lower bound for S(N ; b), we set Ω to be

(3.5) Ω =

{
(x, t) : |x| ≤

1

60N
, |t| ≤

1

60N3

}
.

If (x, t) ∈ Ω and |n| ≤ N , then

(3.6)
∣∣tn3 + xn

∣∣ ≤ 1

30
.

Henceforth if (x, t) ∈ Ω,

(3.7)

∣∣∣∣∣
N∑

n=−N

e2πitn
3+2πixn

∣∣∣∣∣ ≥
∣∣∣∣∣Re

N∑

n=−N

e2πitn
3+2πixn

∣∣∣∣∣ ≥
N∑

n=−N

cos
(
2π(tn3 + xn)

)
≥ CN .

Consequently, we have

(3.8) S(N ; b) ≥

∫

Ω

∣∣∣∣∣
N∑

n=−N

e2πitn
3+2πixn

∣∣∣∣∣

2b

dxdt ≥ CN2b|Ω| ≥ CN2b−4 .

�
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Proposition 3.2. Let p ≥ 2 be even. Then Ap,N satisfies

(3.9) Ap,N ≥ C(1 +N
1− 8

p ) .

Here C is a constant independent of N .

Proof. Let p = 2b since p is even. Setting an = 1 for all n in the definition of Kp,N , we get

(3.10) S(N ; b) ≤ Kp
p,N(2N)b .

By Proposition 3.1, we have

(3.11) Kp,N ≥ C
(
1 +N

1
2
− 4

p

)
.

Consequently, we conclude (3.9) since Ap,N ∼ K2
p,N . �

4. An estimate of Hua

The following theorem was proved by Hua in [8] by an arithmetic argument. Here we
utilize our method to provide a different proof.

Theorem 4.1. Let S(N ; b) be defined as in (3.1). Then

(4.1) S(N ; 5) ≤ CN6+ε .

By Proposition 3.1, we see that the estimate (4.1) is (almost) sharp. S(N ; 4) ≤ N4+ε is
still open. We now prove Theorem 4.1.

Proof. Let Gλ be the level set given by

(4.2) Gλ =
{
(x, t) ∈ T2 : |KN (x, t)| ≥ λ

}
.

Here KN is the function defined as in (2.5).

let f = 1Gλ
KN/|KN | and we then have

(4.3) λ|Gλ| ≤
N∑

n=−N

f̂(n, n3) = 〈fN ,KN 〉 ,

where fN is a rectangular Fourier partial sum defined by

(4.4) fN(x, t) =
∑

|n1|≤N
|n2|≤N3

f̂(n1, n2)e
2πn1xe2πin2t .

Employing Proposition 2.1 for KN , we estimate the level set Gλ by

(4.5) λ|Gλ| ≤ |〈fN ,K1,Q〉|+ |〈fN ,K2,Q〉|

for any Q ≥ N2. From (2.6) and (2.7), λ|Gλ| can be bounded further by

(4.6) C


N

1
4
+εQ1/4‖fN‖1 +

∑

|n1|≤N
|n2|≤N3

∣∣∣K̂2,Q(n1, n2)f̂(n1, n2)
∣∣∣


 .
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Thus from the fact that L1 norm of Dirichlet kernel DN is comparable to logN , (2.7), and
Cauchy-Schwarz inequality, we have

(4.7) λ|Gλ| ≤ CN
1
4
+εQ1/4|Gλ|+

CN2+ε

Q
|Gλ|

1/2 ,

for all Q ≥ N2. For λ ≥ 2CN
3
4
+ε, take Q to be a number satisfying 2CN

1
4
+εQ1/4 = λ and

then we obtain

(4.8) |Gλ| ≤
CN6+ε

λ10
.

Notice that

(4.9) ‖KN‖6 ≤ N
1
2K6,p ≤ N

1
2
+ε .

Henceforth, by (4.3), we majorize |Gλ| by

(4.10) |Gλ| ≤
CN3+ε

λ6
.

We now estimate S(N ; 5) by

(4.11) S(N ; 5) ≤ C

∫ 2N

2CN
3
4+ε

λ10−1|Gλ|dλ+ C

∫ 2CN
3
4+ε

0
λ10−1|Gλ|dλ .

From (4.8), the first term in the right hand side of (4.11) can be bounded by CN6+ε. From
(4.10), the second term is clearly bounded by N6+ε. Putting both estimates together,

(4.12) S(N ; 5) ≤ CN6+ε ,

as desired. Therefore, we complete the proof. �

5. Estimates for the nonlinear term and Local well-posedness of (1.6)

For any measurable function u on T× R, we define the space-time Fourier transform by

(5.1) û(n, λ) =

∫

R

∫

T

u(x, t)e−inxe−iλtdx dt

and set

〈x〉 := 1 + |x| .

We now introduce the Xs,b space, initially used by Bourgain.

Definition 5.1. Let I be an time interval in R and s, b ∈ R. Let Xs,b(I) be the space of
functions u on T× I that may be represented as

(5.2) u(x, t) =
∑

n∈Z

∫

R

û(n, λ)einxeiλtdλ for (x, t) ∈ T× I

with the space-time Fourier transform û satisfying

(5.3) ‖u‖Xs,b(I) =

(∑

n

∫
〈n〉2s〈λ− n3〉2b|û(n, λ)|2dλ

)1/2

<∞ .

Here the norm should be understood as a restriction norm.
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We should take the time interval to be [0, δ] for a small positive number δ, and abbreviate
‖u‖Xs,b(I) as ‖u‖s,b for any function u restricted to T × [0, δ]. In this section, we always

restrict the function u to T× [0, δ]. Let w be the nonlinear function defined by

(5.4) w =

(
uk −

∫
ukdx

)
ux .

We also define

(5.5) ‖u‖Ys := ‖u‖s, 1
2
+

(∑

n

〈n〉2s
(∫

|û(n, λ)| dλ

)2
) 1

2

.

We need the following estimate on the nonlinear function w, in order to establish a con-
traction on the space {u : ‖u‖Ys ≤M} for some M > 0.

Proposition 5.1. For s > 1/2, there exists θ > 0 such that, for the nonlinear function w
given by (5.4),

(5.6) ‖w‖s,− 1
2
+

(∑

n

〈n〉2s
(∫

|ŵ(n, λ)|

〈λ− n3〉
dλ

)2
) 1

2

≤ Cδθ‖u‖k+1
Ys

.

Here C is a constant independent of δ and u.

The proof of Proposition 5.1 will appear in Section 6. We now start to derive the local
well-posedness of (1.6). For this purpose, we only need to consider the well-posedness of the
Cauchy problem:

(5.7)

{
ut + uxxx +

(
uk −

∫
T
ukdx

)
ux = 0

u(x, 0) = φ(x), x ∈ T, t ∈ R
.

This is because if v is a solution of (5.7), then the gauge transform

(5.8) u(x, t) := v

(
x−

∫ t

0

∫

T

vk(y, τ)dydτ, t

)
.

is a solution of (1.6) with the same initial value φ. Notice that this transform is invertible
and preserves the initial data φ. The inverse transform is

(5.9) v(x, t) := u

(
x+

∫ t

0

∫

T

uk(y, τ)dydτ, t

)
.

It is easy to see that for any solution u of (1.6), this inverse transform of u defines a solution
of (5.7). Hence to establish well-posedness of (1.6), it suffices to obtain the well-posedness
of (5.7). This gauge transform was used in [4].

By Duhamel principle, the corresponding integral equation associated to (5.7) is

(5.10) u(x, t) = e−t∂3
xφ(x)−

∫ t

0
e−(t−τ)∂3

xw(x, τ)dτ,

where w is defined as in (5.4).

Since we are only seeking for the local well-posedness, we may use a bump function to
truncate time variable. Let ψ be a bump function supported in [−2, 2] with ψ(t) = 1, |t| ≤ 1,
and let ψδ be

ψδ(t) = ψ(t/δ) .
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Then it suffices to find a local solution of

u(x, t) = ψδ(t)e
−t∂3

xφ(x) − ψδ(t)

∫ t

0
e−(t−τ)∂3

xw(x, τ)dτ.

Let T be an operator given by

(5.11) Tu(x, t) := ψδ(t)e
−t∂3

xφ(x)− ψδ(t)

∫ t

0
e−(t−τ)∂3

xw(x, τ)dτ.

We denote the first term (the linear term) in (5.11) by Lu and the second term (the nonlinear
term) by Nu. Henceforth we represent Tu as Lu+Nu.

Lemma 5.1. The linear term L satisfies

(5.12) ‖Lu‖Ys ≤ C‖φ‖Hs .

Here C is a constant independent of δ.

Proof. Notice that

L̂u(n, λ) = φ̂(n)FRψδ(λ− n3) = φ̂(n)δFRψ
(
δ(λ− n3)

)
,

Thus from the definition of Ys norm,

‖Lu‖Ys =

(∑

n

∫
〈n〉2s〈λ− n3〉

∣∣∣φ̂(n)δFRψ
(
δ(λ− n3)

)∣∣∣
2
dλ

) 1
2

+

(∑

n

〈n〉2s
(∫ ∣∣∣φ̂(n)δFRψ

(
δ(λ− n3)

)∣∣∣ dλ
)2
) 1

2

.

Since ψ is a Schwartz function, its Fourier transform is also a Schwartz function. Using the
fast decay property for the Schwartz function, we have

‖Lu‖Ys ≤ C

(∑

n

〈n〉2s
∣∣∣φ̂(n)

∣∣∣
2
) 1

2

= C‖φ‖Hs .

�

Lemma 5.2. The nonlinear term N satisfies

(5.13) ‖Nu‖Ys ≤ C


‖w‖s,− 1

2
+

(∑

n

〈n〉2s
(∫

|ŵ(n, λ)|

〈λ− n3〉
dλ

)2
) 1

2


 ,

where C is a constant independent of δ.

Proof. Represent w as its space-time inverse Fourier transform so that we write

(5.14) Nu(x, t) = −ψδ(t)

∫ t

0
e−(t−τ)∂3

x

(∑

n

∫
ŵ(n, λ)einxeiλτdλ

)
dτ ,

which is equal to

− ψδ(t)
∑

n

∫
ŵ(n, λ)

∫ t

0
e−(t−τ)(in)3einxeiλτdτdλ

=− ψδ(t)
∑

n

∫
ŵ(n, λ)einxein

3t e
i(λ−n3)t − 1

i(λ− n3)
dλ .



DISCRETE FOURIER RESTRICTION ASSOCIATED WITH KDV EQUATIONS 11

We decompose the nonlinear term Nu into three parts, denoted by N1,N2,N3 respectively.

Nu(x, t) =− ψδ(t)
∑

n

∫

|λ−n3|≤ 1
100δ

ŵ(n, λ)einxein
3t
∑

k≥1

(it)k

k!
(λ− n3)k−1dλ

+ iψδ(t)
∑

n

∫

|λ−n3|> 1
100δ

ŵ(n, λ)

λ− n3
einxeiλtdλ

− iψδ(t)
∑

n

(∫

|λ−n3|> 1
100δ

ŵ(n, λ)

λ− n3
dλ

)
einxein

3t

:=N1u+N2u+N3u.

First we estimate N2. Using Fourier series expansion for ψ, we get

ψδ(t) =
∑

m∈Z

Cme
imt/δ .

Here the coefficients Cm’s satisfy

Cm ≤ C(1 + |m|)−100 .

Hence N2u can be represent as

(5.15) N2u = i
∑

m

Cm

∑

n

einx
∫

|λ−n3|> 1
100δ

ŵ(n, λ)

λ− n3
ei(λ+m/δ)tdλ

By a change of variables (λ+m/δ) 7→ λ,

(5.16) N2u = i
∑

m

Cm

∑

n

einx
∫

|λ−m
δ
−n3|> 1

100δ

ŵ(n, λ−m/δ)

λ− m
δ − n3

eiλtdλ

Thus we estimate

(5.17) ‖N2u‖
2
s, 1

2
≤ C

∑

m

(1 + |m|)−50
∑

n

〈n〉2s
∫

|λ−m
δ
−n3|> 1

100δ

〈λ− n3〉 |ŵ(n, λ−m/δ)|2

|λ− m
δ − n3|2

dλ .

Changing variables again, we obtain

(5.18) ‖N2u‖
2
s, 1

2
≤ C

∑

m

(1 + |m|)−50
∑

n

〈n〉2s
∫

|λ−n3|> 1
100δ

〈λ+ m
δ − n3〉 |ŵ(n, λ)|2

〈λ− n3〉2
dλ .

Notice that |λ− n3| > 1
100δ implies

(5.19) 〈λ+
m

δ
− n3〉 ≤ 200m〈λ− n3〉 .

We obtain immediately

(5.20) ‖N2u‖s, 1
2
≤ C‖w‖s,− 1

2
.

On the other hand,

∑

n

〈n〉2s
(∫

|N̂2u(n, λ)|dλ

)2

≤ C
∑

m

〈m〉−5
∑

n

〈n〉2s

(∫

|λ−m
δ
−n3|> 1

100δ

|ŵ(n, λ−m/δ)|dλ

|λ− m
δ − n3|

)2

,
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which is clearly bounded by

(5.21)
∑

n

〈n〉2s
(∫

|ŵ(n, λ)|dλ

〈λ− n3〉

)2

.

Putting (5.20) and (5.21) together, we have

(5.22) ‖N2u‖Ys ≤ C


‖w‖s,− 1

2
+

(∑

n

〈n〉2s
(∫

|ŵ(n, λ)|

〈λ− n3〉
dλ

)2
) 1

2


 .

Let An be defined by

(5.23) An =

∫

|λ−n3|≤ 1
100δ

ŵ(n, λ)(λ − n3)k−1dλ .

Then N1u can be written as

(5.24) N1u(x, t) = −
∑

k≥1

ik

k!
tkψδ(t)

∑

n

Ane
inxein

3t .

Hence the space-time Fourier transform of N1u satisfies

(5.25)
∣∣∣N̂1u(n, λ)

∣∣∣ ≤
∑

k≥1

1

k!
|An|

∣∣∣FR(ψ̃δ)(λ− n3)
∣∣∣ ,

where ψ̃δ(t) = tkψδ(t). Using the definition of Fourier transform, we have∣∣∣FR(ψ̃δ)(λ− n3)
∣∣∣ ≤ Cδk+1k3〈δ(λ− n3)〉−3 .

Thus

‖N1u‖
2
Ys

≤
∑

k≥1

C

k5

∑

n

〈n〉2s|An|
2δ2k

∫
δ2〈λ− n3〉〈δ(λ − n3)〉−6dλ

+
∑

k≥1

C

k5

∑

n

〈n〉2s|An|
2δ2k

(∫
δ〈δ(λ − n3)〉−3dλ

)2

≤
∑

k≥1

C

k5

∑

n

〈n〉2s|An|
2δ2k .

Clearly An is bounded by

(5.26) |An| ≤ Cδ−k

∫
|ŵ(n, λ)|

〈λ− n3〉
dλ .

Henceforth, we obtain

(5.27) ‖N1u‖Ys ≤ C

(∑

n

〈n〉2s
(∫

|ŵ(n, λ)|

〈λ− n3〉
dλ

)2
) 1

2

.

Similarly, we may obtain

(5.28) ‖N3u‖Ys ≤ C

(∑

n

〈n〉2s
(∫

|ŵ(n, λ)|

〈λ− n3〉
dλ

)2
) 1

2

.

Therefore we complete the proof.
�
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Proposition 5.2. Let s > 1/2 and T be the operator defined as in (5.11). Then there exits
a positive number θ such that

(5.29) ‖Tu‖Ys ≤ C
(
‖φ‖Hs + δθ‖u‖k+1

Ys

)
.

Here C is a constant independent of δ.

Proof. Since Tu = Lu + Nu, Proposition 5.2 follows from Lemma 5.1, Lemma 5.2 and
Proposition 5.1. �

Proposition 5.2 yields that for δ sufficiently small, T maps a ball in Ys into itself. Moreover,
we write (

uk −

∫

T

ukdx

)
ux −

(
vk −

∫

T

vkdx

)
vx

=

(
uk −

∫

T

ukdx

)
(u− v)x +

(
(uk − vk)−

∫

T

(uk − vk)dx

)
vx

which equals to

(5.30)

(
uk −

∫

T

ukdx

)
(u− v)x +

k−1∑

j=0

(
(u− v)uk−1−jvj −

∫

T

(u− v)uk−1−jvjdx

)
vx .

For k+ 1 terms in (5.30), repeating similar argument as in the proof of Proposition 5.1, one
obtains, for s > 1/2,

(5.31) ‖Tu− Tv‖Ys ≤ Cδθ


‖u‖kYs

+

k−1∑

j=1

‖u‖k−1−j
Ys

‖v‖j+1
Ys


 ‖u− v‖Ys .

Henceforth, for δ > 0 small enough, T is a contraction and the local well-posedness follows
from Picard’s fixed-point theorem.

6. Proof of Proposition 5.1

From the definition of w in (5.4), we may write ŵ(n, λ) as

(6.1)
∑

m+n1+···+nk=n
n1+···+nk 6=0

m

∫
û(m,λ− λ1 − · · · − λk)û(n1, λ1) · · · û(nk, λk)dλ1 · · · dλk.

By duality, there exists a sequence {An,λ} satisfying

(6.2)
∑

n∈Z

∫

R

|An,λ|
2dλ ≤ 1 ,

and ‖w‖s,− 1
2
is bounded by

(6.3)
∑

m+n1+···+nk=n
n1+···+nk 6=0

∫
〈n〉s|m|

〈λ− n3〉
1
2

|û(m,λ−λ1−· · ·−λk)|·|û(n1, λ1)| · · · |û(nk, λk)||An,λ|dλ1 · · · dλkdλ.

Since the Xs,b is a restriction norm, we may assume that u is supported in T × [0, δ].
However, the inverse space-time Fourier transform |û|∨ in general may not be a function
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with compact support. The following standard trick allows us to assume |û|∨ has a compact
support too. In fact, let η be a bump function supported on [−2δ, 2δ] and with η(t) = 1 in
|t| ≤ δ. Also η̂ is positive. Then u = uη and û = û ∗ η̂. Thus |û| ≤ |û| ∗ η̂ = (|û|∨η)∧. When-
ever we need to make |û|∨ to be supported in a small time interval, we replace |û| by (|û|∨η)∧

since |û|∨η clearly is supported on T× [−2δ, 2δ]. This will help us gain a positive power of δ
in our estimates. Moreover, without loss of generality we can assume |n1| ≥ |n2| ≥ · · · ≥ |nk|.

The trouble occurs mainly because of the factor |m| resulted from ∂xu. The idea is that

either the factor 〈λ− n3〉−
1
2 can be used to cancel |m|, or |m| can be distributed to some of

û’s. More precisely, we consider three cases.

|m| < 1000k2|n2| ;(6.4)

1000k2|n2| ≤ |m| ≤ 100k|n1| ;(6.5)

|m| > 100k|n1| .(6.6)

6.1. Case (6.4). This is the simplest case. In fact, In this case, it is easy to see that

(6.7) 〈n〉s|m| ≤ C〈n1〉
s〈n2〉

1
2 〈m〉

1
2 .

Let

F1(x, t) =
∑

n

∫
|An,λ|

〈λ− n3〉
1
2

eiλteinxdλ ;(6.8)

G(x, t) =
∑

n

∫
〈n〉

1
2 |û(n, λ)|eiλteinxdλ(6.9)

H(x, t) =
∑

n

∫
〈n〉s|û(n, λ)|eiλteinxdλ(6.10)

U(x, t) =
∑

n

∫
|û(n, λ)|eiλteinxdλ(6.11)

Then using (6.7), we can estimate (6.3) by
(6.12)

C
∑

m+n1+···+nk=n

∫
F̂1(n, λ)Ĝ(m,λ−λ1−· · ·−λk)Ĥ(n1, λ1)Ĝ(n2, λ2)

k∏

j=3

Û(nj , λj)dλ1 · · · dλkdλ ,

which clearly equals

C

∫

T×R

F1(x, t)G(x, t)
2H(x, t)U(x, t)k−2dxdt .

Apply Hölder inequality to majorize it by

C‖F1‖4‖G‖
2
6+‖H‖4‖U‖k−2

6(k−2)− .

Since U is supported on T× [−2δ, 2δ], one more use of Hölder inequality yields

(6.13) (6.3) ≤ Cδθ‖F1‖4‖G‖
2
6+‖H‖4‖U‖k−2

6(k−2) .
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Let us recall some useful local embedding facts on Xs,b.

X0, 1
3
⊆ L4

x,t , X0+, 1
2
+ ⊆ L6

x,t , (t local)(6.14)

Xα, 1
2
⊆ Lq

x,t, 0 < α <
1

2
, 2 ≤ q <

6

1− 2α
(t local),(6.15)

X 1
2
−α, 1

2
−α ⊆ Lq

tL
r
x, 0 < α <

1

2
, 2 ≤ q, r <

1

α
.(6.16)

The two embedding results in (6.14) are consequences of the discrete restriction estimates on
L4 and L6 respectively. (6.15) and (6.16) follow by interpolation (see [4] for details). (6.14)
yields

‖F1‖4 ≤ C‖F1‖0, 1
3
≤ C

(∑

n

∫
|An,λ|

2dλ

)1/2

≤ C ,

and

‖H‖4 ≤ C‖H‖0, 1
3
≤ C‖u‖s, 1

2
≤ C‖u‖Ys .

(6.15) implies

‖G‖6+ ≤ C‖G‖0+, 1
2
≤ C‖u‖s, 1

2
≤ C‖u‖Ys .

Using (6.16), we get

‖U‖6(k−2) ≤ C‖U‖ 1
2
−, 1

2
− ≤ C‖u‖s, 1

2
≤ C‖u‖Ys .

Henceforth, we have, for the case (6.4),

(6.17) (6.3) ≤ Cδθ‖u‖k+1
Ys

.

6.2. Case (6.5). In this case, we should further consider two subcases.

|m+ n1| ≤ 1000k2|n2|(6.18)

|m+ n1| > 1000k2|n2|(6.19)

In the subcase (6.18), we use the triangle inequality to get

(6.20) |n| = |m+ n1 + n2 + · · ·+ nk| ≤ C|n2|

Hence, we have

(6.21) 〈n〉s|m| ≤ C〈n2〉
s〈m〉

1
2 〈n1〉

1
2 .

Thus this subcase can be treated exactly the same as the case (6.4). We omit the details.

For the subcase (6.19), the crucial arithmetic observation is

(6.22) n3 − (m3 + n31 + · · ·+ n3k) = 3(m+ n1)(m+ a)(n1 + a) + a3 − (n32 + · · ·+ n3k) ,

where a = n2 + · · ·+ nk. This observation can be easily verified since n = m+ n1 + · · ·+ nk.
From (6.5) and (6.19), we get

(6.23)
∣∣n3 − (m3 + n31 + · · ·+ n3k)

∣∣ ≥ Ck2〈n2〉|m||n1| ≥ Ck|m|2 .

This implies at least one of following statements holds:
∣∣λ− n3

∣∣ ≥ C|m|2 ,(6.24) ∣∣(λ− λ1 − · · · − λk)−m3
∣∣ ≥ C|m|2 ,(6.25)

∃i ∈ {1, · · · , k} such that |λi − n3i | ≥ C|m|2 .(6.26)
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For (6.24), (6.3) can be bounded by
(6.27) ∑

m+n1+···+nk=n

∫
〈n1〉

s|û(m,λ− λ1 − · · · − λk)||û(n1, λ1)| · · · |û(nk, λk)||An,λ|dλ1 · · · dλkdλ.

Let F2 be defined by

(6.28) F2(x, t) =
∑

n

∫
|An,λ|e

iλteinxdλ .

Then we represent (6.27) as

(6.29)
∑

m+n1+···+nk=n

∫
F̂2(n, λ)Û (m,λ−λ1−· · ·−λk)Ĥ(n1, λ1)

k∏

j=2

Û(nj, λj)dλ1 · · · dλkdλ .

Here H and U are functions defined in (6.10) and (6.11) respectively. Clearly (6.29) equals

(6.30)

∫

T×R

F2(x, t)H(x, t)U(x, t)kdxdt .

Utilizing Hölder inequality, we estimate it further by

(6.31) ‖F2‖2‖H‖4‖U‖k4k ≤ Cδθ‖u‖k+1
Ys

.

This yields the desired estimate for the subcase (6.24).

For the subcase of (6.25), (6.3) is estimated by

∑

m+n1+···+nk=n

∫
〈n1〉

s|An,λ|

〈λ− n3〉
1
2

〈(λ− λ1 − · · · − λk)−m3〉
1
2 |û(m,λ− λ1 − · · · − λk)|

·|û(n1, λ1)| · · · |û(nk, λk)|dλ1 · · · dλkdλ ,

which is equal to

(6.32)

∫

T×R

F1(x, t)G(x, t)H(x, t)Uk−1(x, t)dxdt .

Apply Hölder inequality to control (6.32) by

(6.33) ‖F1‖4‖G‖4‖H‖4‖U‖k−1
4(k−1) ≤ Cδθ‖u‖k+1

Ys
.

This completes the estimate for the subcase (6.25).

For the contribution of (6.26), we only consider |λ2−n
3
2| ≥ C|m|2 without loss of generality

for i ∈ {2, · · · , k}. This is because the |λ1 − n31| ≥ C|m|2 case can be handled similarly as
(6.25). Hence, in this case, (6.3) can be bounded by

∑

m+n1+···+nk=n

∫
〈n1〉

s|An,λ|

〈λ− n3〉
1
2

〈λ2 − n32〉
1
2 |û(m,λ− λ1 − · · · − λk)|

k∏

j=1

|û(nj, λj)|dλ1 · · · dλkdλ.

Now set a function I by

(6.34) I(x, t) =
∑

n

∫
〈λ− n3〉

1
2 |û(n, λ)|eiλteinxdλ .
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Then we estimate (6.3) by

(6.35)

∫

T×R

F1(x, t)H(x, t)I(x, t)Uk−1(x, t)dxdt ,

which is majorized by

(6.36) ‖F1‖4‖H‖4‖I‖2‖U‖k−1
∞ .

Notice this time we cannot simply use Hölder’s inequality to get δ as we did before because
there is no way of making any above 4 or 2 even a little bit smaller. But this can be fixed as
follows.

First observe that
‖u‖0,0 ≤ δ1/2‖u‖L2

xL
∞

t
≤ Cδ1/2‖u‖0, 1

2
+ ,

for u is supported in a δ-sized interval in time variable. Thus by interpolation, we get

(6.37) ‖u‖0, 1
3
≤ Cδ

1
6
−‖u‖0, 1

2
.

Since U can be assumed to be a function supported in a δ-sized time interval, we may put
the same assumption to H. Henceforth, we have

(6.38) ‖H‖4 ≤ C‖H‖0, 1
3
≤ Cδ

1
6
−‖H‖0, 1

2
≤ Cδ

1
6
−‖u‖Ys .

Also note that

(6.39) ‖I‖2 ≤ ‖u‖0, 1
2
≤ ‖u‖Ys .

and

(6.40) ‖U‖∞ ≤ C‖u‖Ys .

From (6.38), (6.39) and (6.40), we can estimate (6.3) by Cδ
1
6
−‖u‖k+1

Ys
as desired. Therefore

we finish our discussion for the case (6.5).

6.3. Case (6.6). The arithmetic observation (6.22) again plays an important role. In this
case, let us further consider two subcases.

|m|2 ≤ 1000k2|n2|
2|n3|(6.41)

|m|2 > 1000k2|n2|
2|n3|(6.42)

For the contribution of (6.41), we observe that from (6.41),

|m|2 ≤ C|n1||n2||n3| ,

since |n2| ≤ |n1|. Henceforth we have

(6.43) |m| = |m|
1
3 |m|

2
3 ≤ C|m|

1
3 |n1|

1
3 |n2|

1
3 |n3|

1
3 .

This implies immediately

(6.44) 〈n〉s|m| ≤ C|m|s+1 ≤ 〈m〉
s+1
3 〈n1〉

s+1
3 〈n2〉

s+1
3 〈n3〉

s+1
3 .

Introduce a new function H1 defined by

(6.45) H1(x, t) =
∑

n

∫

R

〈n〉
s+1
3 |û(n, λ)|eiλteinxdλ .

As before, in this case, we bound (6.3) by

(6.46)

∫

T×R

F1(x, t)H
4
1 (x, t)U

k−3(x, t)dxdt .
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Then Hölder inequality yields

(6.47) (6.3) ≤ Cδθ‖F1‖4‖H1‖
4
6+‖U‖k−3

12(k−3) .

‖H1‖6+ ≤ C‖u‖Ys because s+1
3 < s for s > 1/2. Hence we obtain the desired estimate for

the subcase (6.41).

We now turn to the contribution of (6.42). Clearly we have

(6.48) |(n2 + · · ·+ nk)
3 − (n32 + · · ·+ n3k)| ≤ 10k|n2|

2|n3| ,

since |n2| ≥ |n3| ≥ · · · ≥ |nk|. From the crucial arithmetic observation (6.22), (6.48), and
(6.42), we have

(6.49)
∣∣n3 −

(
m3 + n31 + · · ·+ n3k

)∣∣ ≥ Ck|m|2 .

This is same as (6.23). Hence again we reduce the problems to (6.24), (6.25), and (6.26),
which are all done in Subsection 6.2. Therefore we finish the case of (6.6).

Putting all cases together, we obation

(6.50) ‖w‖s,− 1
2
≤ Cδθ‖u‖k+1

Ys
.

Finally we need to estimate

(6.51)

(∑

n

〈n〉2s
(∫

|ŵ(n, λ)|

〈λ− n3〉
dλ

)2
) 1

2

.

Let {An} be a sequence {An} with
(∑

n |An|
2
) 1

2 ≤ 1. By duality, it suffices to estimate
(6.52)

∑

m+n1+···+nk=n
n1+···+nk 6=0

∫
〈n〉s|m|

〈λ− n3〉
|û(m,λ− λ1 − · · · − λk)||û(n1, λ1)| · · · |û(nk, λk)||An|dλ1 · · · dλkdλ .

Again, without loss of generality, we can assume |n1| ≥ · · · ≥ |nk|. We still go through the
cases used previously. Almost all cases are similar and there are only two exceptions. In fact,
we only need to replace F1 by F3 in each case where ‖F1‖4 is employed. Here F3 is given by

(6.53)
∑

n

∫

R

|An|

〈λ− n3〉
eiλteinxdλ .

Then all those cases can be done because

(6.54) ‖F3‖4 ≤ C‖F3‖0, 1
3
=

(∑

n

|An|
2

∫
1

〈λ− n3〉
4
3

dλ

) 1
2

≤ C .

The only exceptions are

|λ− n3| ≥ C|n1||m| and |n2| ≪ |m| ≤ C|n1|(6.55)

|λ− n3| ≥ Cm2 and |m| ≫ |n1|(6.56)

For the case of (6.55), we define

(6.57) F4(x, t) =
∑

n

∫

R

〈n〉
1
21{|λ−n3|≥C〈n〉}

|λ− n3|
eiλteinxdλ
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A direct calculation gives

(6.58) ‖F4‖2 ≤

(∑

n

∫

|λ−n3|≥C〈n〉

〈n〉|An|
2

|λ− n3|2
dλ

)1/2

≤ C .

In this case, clearly

(6.59) 〈n〉s|m| ≤ 〈n〉
1
2 〈n1〉

s〈m〉
1
2 .

Then (6.52) is dominated by

(6.60)

∫

T×R

F4(x, t)G(x, t)H(x, t)Uk−1(x, t)dxdt .

By a use of Hölder inequality and (6.58), one gets

(6.61) (6.52) ≤ C‖F4‖2‖H‖4‖G‖6‖U‖k−1
12(k−1) ≤ Cδθ‖u‖k+1

Ys
.

This finishes the proof for the case (6.55).

For the contribution of (6.56), we set

(6.62) F5(x, t) =
∑

n

∫

R

〈n〉1{|λ−n3|≥C〈n〉2}

|λ− n3|
eiλteinxdλ .

Clearly

(6.63) ‖F5‖2 ≤

(∑

n

∫

|λ−n3|≥C〈n〉2

〈n〉2|An|
2

|λ− n3|2
dλ

)1/2

≤ C .

In this case, we have |λ− n3| ≥ C〈n〉2 since |n| ∼ |m|, henceforth, by the observation of

〈n〉s|m| ≤ C〈m〉s〈n〉 ,

we estimate (6.52) by

(6.64)

∫

T×R

F5(x, t)H(x, t)Uk(x, t)dxdt .

Using Hölder inequality and (6.63), we have

(6.65) (6.52) ≤ C‖F5‖2‖H‖4‖U‖4k4k ≤ Cδθ‖u‖k+1
Ys

,

as desired. Hence

(6.66)

(∑

n

〈n〉2s
(∫

|ŵ(n, λ)|

〈λ− n3〉
dλ

)2
) 1

2

≤ Cδθ‖u‖k+1
Ys

.

Therefore we complete the proof of Proposition 5.1 by combining (6.50) and (6.66).
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7. Proof of Theorem 1.3

The argument is similar to those in Section 5. By using a gauge transform as in (5.8) with
vk replaced by F (v), the well-posedness of (1.7) is equivalent to the well-posedness of the
following equation:

(7.1)

{
ut + uxxx +

(
F (u)−

∫
T
F (u)dx

)
ux = 0

u(x, 0) = φ(x), x ∈ T, t ∈ R .

Now the nonlinear function w is defined by

(7.2) w = ∂xu

(
F (u)−

∫

T

F (u)dx

)
.

Let TF be an operator given by

(7.3) TFu(x, t) := ψδ(t)e
−t∂3

xφ(x)− ψδ(t)

∫ t

0
e−(t−τ)∂3

xw(x, τ)dτ.

As in Section 5, the local well-posedness relies on the following proposition.

Proposition 7.1. Let s > 1/2. There exists θ > 0 such that, for the nonlinear function w
given by (7.2) and any u satisfying ‖u‖Ys ≤ C0‖φ‖Hs ,

(7.4) ‖w‖s,− 1
2
+

(∑

n

〈n〉2s
(∫

|ŵ(n, λ)|

〈λ− n3〉
dλ

)2
) 1

2

≤ C(‖φ‖Hs , F )δθ‖u‖4Ys
,

provided F ∈ C5. Here C0 is a suitably large constant, and C(‖φ‖Hs , F ) is a constant
independent of δ and u, but may depend on ‖φ‖Hs and F .

The constant C(‖Φ‖Hs , F ) will be specified in the proof of Proposition 7.1. We postpone
the proof of Proposition 7.1 to Section 8, and return to the proof of Theorem 1.3. Proposition
7.1 implies that for δ sufficiently small, TF maps a ball {u ∈ Ys : ‖u‖Ys ≤ C0‖φ‖Hs} into itself.
Moreover, using Lemma 5.2 and repeating similar argument as in the proof of Proposition
7.1, one obtains, for s > 1/2 and F ∈ C5,

(7.5) ‖TFu− TF v‖Ys ≤ δθC(‖φ‖Hs , F )‖u − v‖Ys .

for all u, v in the ball {u ∈ Ys : ‖u‖Ys ≤ C0‖φ‖Hs}. Therefore, for δ > 0 small enough, TF is
a contraction on the ball and the local well-posedness again follows from Picard’s fixed-point
theorem. This completes the proof of Theorem 1.3.

8. Proof of Proposition 7.1

First we introduce a decomposition of F (u), which was used by Bourgain. Let K be a
dyadic number, and define a Fourier multiplier operator PK by setting

(8.1) PKu(x, t) =

∫
ψK(y)u(x− y, t)dy .

Here the Fourier transform of ψK is a standard bump function supported on [−2K, 2K] and

ψ̂K(x) = 1 for x ∈ [−K,K]. Let uK denote the Littlewood-Paley Fourier multiplier, that is,

(8.2) uK = PKu− PK/2u .
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Then we may decompose F (u) by

F (u) =
∑

K

(
F (PKu)− F (PK/2u)

)

=
∑

K

F1(PKu, PK/2u)uK +R1 ,

where R1 is a function independent of the space variable x. Repeating this procedure for F1,
we obtain

F (u) =
∑

K1≥K2

F2(P2K2u, · · · , PK2/4u)uK1uK2 +
∑

K1

R2uK1 +R1

=
∑

K1≥K2≥K3

F3(P4K3u, · · · , PK3/8u)uK1uK2uK3

+
∑

K1≥K2

R3uK1uK2 +
∑

K1

R2uK1 +R1

where R1, R2, R3 are functions independent of the space variable.
Set

(8.3) GK3(x, t) = F3(P4K3u, · · · , PK3/8u) .

Hence we represent w defined in (7.2) as

w =
∑

K0,K1≥K2≥K3

∂xuK0

(
uK1uK2uK3GK3 −

∫

T

uK1uK2uK3GK3dx

)

+
∑

K0,K1≥K2

∂xuK0

(
uK1uK2 −

∫

T

uK1uK2dx

)
R3

+
∑

K0,K1

∂xuK0

(
uK1 −

∫

T

uK1dx

)
R2 .

The main contribution of w is from the first term. The remaining terms can be handled by
the method presented in Section 6 because R2, R3 are functions independent of the space
variable x (actually they only depend on the conserved quantity

∫
T
udx). Hence in what

follows we will only focus on estimating the first term–the most difficult one. Denote the
first term by w1, i.e.,

(8.4) w1 =
∑

K0,K1≥K2≥K3

∂xuK0

(
uK1uK2uK3GK3 −

∫

T

uK1uK2uK3GK3dx

)
.

We should prove

(8.5) ‖w1‖s,− 1
2
+

(∑

n

〈n〉2s
(∫

|ŵ1(n, λ)|

〈λ− n3〉
dλ

)2
)1/2

≤ δθC(‖φ‖Hs , F )‖u‖4Ys
.

In order to specify the constant C(‖φ‖Hs , F ), we define M by setting
(8.6)
M = sup {|DαF3(u1, · · · , u6)| : uj satisfies ‖uj‖Ys ≤ C0‖φ‖Hs for all j = 1, · · · , 6; α} .

Here Dα = ∂α1
x1

· · · ∂α6
x6

and α is taken over all tuples (α1, · · · , α6) ∈ (N∪{0})6 with 0 ≤ αj ≤ 2
for all j ∈ {1, · · · , 6}. M is a real number. This is because, for s > 1/2, ‖u‖Ys ≤ 2‖φ‖Hs
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yields that u is bounded by C‖φ‖Hs , and the previous claim follows from F3 ∈ C2.

In order to bound ‖w1‖s,− 1
2
, by duality, it suffices to bound

(8.7)

∑

K0,K1≥K2≥K3
n0+n1+n2+n3+m=n

n1+n2+n3+m6=0

∫
An,λ〈n〉

sn0

〈λ− n3〉
1
2

ûK0(n0, λ− λ1 − λ2 − λ3 − µ)

·
3∏

j=1

ûKj(nj, λj)ĜK3(m,µ)dλ1 · · · dλ4dλdµ ,

where An,λ satisfies
∑

n

∫
|An,λ|

2dλ = 1 .

The trouble maker is GK3 since there is no way to find a suitable upper bound for its Xs,b

norm. Because of this, the method in Section 6 is no more valid, and we have to treat m
and µ differently from n and λ respectively. A delicate analysis must be done for overcoming
the difficulty caused by GK3 . For simplicity, we assume that δ = 1. One can modify the
argument to gain a decay of δθ by using the technical treatment from Section 6.

For a dyadic number M , define the Littlewood-Paley Fourier multiplier by

(8.8) gK3,M = PMGK3 − PM/2GK3 = (GK3)M .

Let v be defined by

(8.9) v(x, t) =
∑

n

∫
An,λ

〈λ− n3〉
1
2

eiλteinxdλ .

To estimate (8.7), it suffices to estimate

(8.10)

∑

K,K0,K1≥K2≥K3,M
n0+n1+n2+n3+m=n

n1+n2+n3+m6=0

∫
∂̂sxvK(n, λ)∂̂xuK0(n0, λ− λ1 − λ2 − λ3 − µ)

3∏

j=1

ûKj(nj, λj)ĝK3,M (m,µ)dλ1 · · · dλ4dλdµ .

Here K is a dyadic number.
As we did in Section 6, we consider three cases:

K0 < 2100K2 ;(8.11)

2100K2 ≤ K0 ≤ 210K1 ;(8.12)

K0 > 210K1 .(8.13)

The rest part of the paper is devoted to a proof of these three cases. In what follows, we will
only provide the details for the estimates of ‖w1‖s,− 1

2
with 1/2 < s < 1 (the case s ≥ 1 is

easier). For the desired estimate of
(∑

n

〈n〉2s
(∫

|ŵ1(n, λ)|

〈λ− n3〉
dλ

)2
)1/2

,
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simply replace v by

(8.14) v1(x, t) =
∑

n

∫
Cn,λAn

〈λ− n3〉
eiλteinxdλ ,

and then the desired estimate follows similarly. Here Cn,λ ∈ C satisfies supλ |Cn,λ| ≤ 1 and
{An} satisfies

∑
n |An|

2 ≤ 1.

9. Proof of Case (8.11)

In this case, we should consider further two subcases:

M ≤ 210K1 .(9.1)

M > 210K1 .(9.2)

For the contribution of (9.1), noticing K ≤ CK1 in this subcase, we then estimate (8.10)
by

(9.3)
∑

K1≥K2≥K3

∫

T×R

∣∣∣∣∣∣


 ∑

K≤CK1

∂sxvK




 ∑

K0≤CK2

∂xuK0


uK1uK2uK3

(
P210K1

GK3

)
∣∣∣∣∣∣
dxdt ,

which is bounded by

(9.4)
∑

K3

‖uK3‖∞‖GK3‖∞

∫

T×R

∑

K1

∑

K≤CK1

Ksv∗K |uK1 |
∑

K2

∑

K0≤CK2

K0u
∗
K0

|uK2 |dxdt ,

where f∗ stands for the Hardy-Littlewood maximal function of f . By the Schür test, (9.4)
can be estimated by

(9.5)

∑

K3

K
− 2s−1

2
3 ‖u‖YsM

∫ (∑

K

|v∗K |2

) 1
2


∑

K1

K2s
1 |uK1 |

2




1
2

·


∑

K0

K0|u
∗
K0

|2




1
2

∑

K2

K2|uK2 |
2




1
2

dxdt .

Since s > 1/2, we then obtain, by a use of Hölder inequality, that (9.4) is majorized by

(9.6)

CM‖u‖Ys

∥∥∥∥∥∥

(∑

K

|v∗K |2

) 1
2

∥∥∥∥∥∥
4

∥∥∥∥∥∥∥


∑

K1

K2s
1 |uK1 |

2




1
2

∥∥∥∥∥∥∥
4∥∥∥∥∥∥∥


∑

K0

K0|u
∗
K0

|2




1
2

∥∥∥∥∥∥∥
4

∥∥∥∥∥∥∥


∑

K2

K2|uK2 |
2




1
2

∥∥∥∥∥∥∥
4

.

Observe that

(9.7)

∥∥∥∥∥∥

(∑

K

|v∗K |2

) 1
2

∥∥∥∥∥∥
4

≤

∥∥∥∥∥∥

(∑

K

|vK |2

) 1
2

∥∥∥∥∥∥
4

≤ C‖v‖4 ≤ C‖v‖0, 1
3
≤ C .
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Here the first inequality is obtained by using Fefferman-Stein’s vector-valued inequality on
the maximal function, and the second one is a consequence of classical Littlewood-Paley
theorem. Similarly,

(9.8)

∥∥∥∥∥∥∥


∑

K0

K0|u
∗
K0

|2




1
2

∥∥∥∥∥∥∥
4

≤

∥∥∥∥∥∥∥


∑

K0

K0|uK0 |
2




1
2

∥∥∥∥∥∥∥
4

≤ C‖∂1/2x u‖4 ≤ C‖u‖ 1
2
, 1
3
≤ C‖u‖Ys ,

and

(9.9)

∥∥∥∥∥∥∥


∑

K1

K2s
1 |uK1 |

2




1
2

∥∥∥∥∥∥∥
4

≤ C‖∂sxu‖4 ≤ C‖u‖s, 1
3
≤ C‖u‖Ys .

Hence from (9.7), (9.8) and (9.9), we have

(9.10) (8.10) ≤ CM‖u‖4Ys
.

For the contribution of (9.2), since in this subcase K ≤ CM , we estimate (8.10) by

(9.11)
∑

K1

‖uK1‖∞

∫

T×R

∑

K3≤K1

|uK3 |
∑

M

∑

K≤CM

Ksv∗K |gK3,M |
∑

K2

∑

K0≤CK2

K0u
∗
K0

|uK2 |dxdt ,

which is bounded by

(9.12)

∑

K1

K
− 2s−1

2
1 ‖u‖Ys

∫

T×R

∑

K3≤K1

|uK3 |

(∑

K

|v∗K |2

)1/2(∑

M

M2s|gK3,M |2

)1/2


∑

K0

K0|u
∗
K0

|2




1/2
∑

K2

K2|uK2 |
2




1/2

dxdt .

By a use of Cauchy-Schwarz inequality, (9.12) is estimated by

(9.13)

∑

K1

K
− 2s−1

2
1 ‖u‖Ys

∫

T×R

(∑

K

|v∗K |2

)1/2

∑

K0

K0|u
∗
K0

|2




1/2
∑

K2

K2|uK2 |
2




1/2


∑

K3

K2s
3 |uK3 |

2




1/2
 ∑

K3≤K1

∑

M

M2s

K2s
3

|gK3,M |2




1/2

dxdt .

Using Hölder inequality, we then bound it further by

(9.14)

∑

K1

K
− 2s−1

2
1 ‖u‖Ys

∥∥∥∥∥∥

(∑

K

|v∗K |2

)1/2
∥∥∥∥∥∥
4

∥∥∥∥∥∥∥


∑

K2

K0|u
∗
K0

|2




1/2
∥∥∥∥∥∥∥
6

∥∥∥∥∥∥∥


∑

K2

K2|uK2 |
2




1/2
∥∥∥∥∥∥∥
6∥∥∥∥∥∥∥


∑

K3

K2s
3 |uK3 |

2




1/2
∥∥∥∥∥∥∥
4

∥∥∥∥∥∥∥


 ∑

K3≤K1

∑

M

M2s

K2s
3

|gK3,M |2




1/2
∥∥∥∥∥∥∥
6

,
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which is majorized by

∑

K1

K
− 2s−1

2
1 ‖u‖4Ys

∑

K3≤K1

K−s
3

∥∥∥∥∥∥

(∑

M

M2s|gK3,M |2

)1/2
∥∥∥∥∥∥
6

≤
∑

K1

K
− 2s−1

2
1 ‖u‖4Ys

∑

K3≤K1

K−s
3 ‖∂sxGK3‖∞ .

From the definition of GK3 , we have

(9.15) ∂xGK3(x, t) = O (MK3) ‖u‖Ys = O(MK3) ‖φ‖Hs .

Hence, for s < 1,

(9.16) ‖∂sxGK3‖∞ ≤ CMKs
3‖φ‖Hs .

Since s > 1/2, we then have

(9.17) (9.14) ≤ CM‖φ‖Hs

∑

K1

K
− 2s−1

2
+ε

1 ‖u‖4Ys
≤ CM‖φ‖Hs‖u‖4Ys

.

This completes our discussion on Case (8.11).

10. Proof of Case (8.12)

In this case, it suffices to consider the following subcases:

K ≤ 210K2 ;(10.1)

K ≤ 210M ;(10.2)

K > 29(K2 +M) and K3 ≥ K
1/2
0 ;(10.3)

K > 29(K2 +M) , K3 ≤ K
1/2
0 and M ≥ 2−10K

2/3
0 ;(10.4)

K > 29(K2 +M) , K3 ≤ K
1/2
0 and M < 2−10K

2/3
0 .(10.5)

(10.1) and (10.2) can be proved exactly the same as the case (9.1) and the case (9.2)
respectively. We omit the details.

For the case of (10.3), observe that (8.12) and (10.3) imply

(10.6) K ≤ CK1

and

(10.7) K
1/2
0 ≤ K

1/2
2 K

1/2
3 .

Hence (8.10) is bounded by

(10.8)

∫ ∑

K1

∑

K≤CK1

Ksv∗K |uK1 |
∑

K0≥K2≥K3

K0≤K2
3

K0u
∗
K0

|uK2 ||uK3 |‖GK3‖∞dxdt .

Applying Hölder inequality, we estimate (10.8) by

(10.9) CM

∫ (∑

K

|v∗K |2

) 1
2


∑

K1

K2s
1 |uK1 |

2




1
2 ∏

j=0,2,3


∑

Kj

K1+ε
j |uKj |

2




1
2

dxdt .
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One more use of Hölder inequality yields that (10.8) is bounded by

CM

∥∥∥∥∥∥

(∑

K

|vK |2

) 1
2

∥∥∥∥∥∥
4

∥∥∥∥∥∥∥


∑

K1

K2s
1 |uK1 |

2




1
2

∥∥∥∥∥∥∥
4

∏

j=0,2,3

∥∥∥∥∥∥∥


∑

Kj

K1+ε
j |uKj |

2




1
2

∥∥∥∥∥∥∥
6

.

Hence we obtain

(10.10) (10.8) ≤ CM‖u‖4Ys
.

This finishes the proof of (10.3).

For the case of (10.4), we estimate (8.10) by

(10.11)
∑

K2,K3

∫ ∑

K1

∑

K≤CK1

Ksv∗K |uK1 |
∑

K0

K0|u
∗
K0

||uK2 ||uK3 |
∑

M≥CK
2/3
0

|gK3,M | dxdt ,

which is dominated by

(10.12)

C
∑

K2,K3

∫ (∑

K

|v∗K |2

)1/2

∑

K1

K2s
1 |uK1 |

2




1/2

|uK2 ||uK3 |


∑

K0

K0|u
∗
K0

|2




1/2(∑

M

M3/2|gK3,M |2

)1/2

dxdt .

By Hölder inequality with L4 norms for the first two functions in the integrand, L6+ for the
next three functions, and Lp norm (very large p) for the last one, (10.12) is dominated by

(10.13) C‖u‖Ys

∑

K2,K3

‖uK2‖6+‖uK3‖6+

∥∥∥∥∥∥∥


∑

K0

K0|u
∗
K0

|2




1/2
∥∥∥∥∥∥∥
6+

‖∂3/4x GK3‖∞ .

Applying (9.16), we estimate (10.12) by

CM‖φ‖Hs‖u‖
2
Ys

3∏

j=2

∑

Kj

K
3/8
j ‖uKj‖6+

≤ CM‖φ‖Hs‖u‖
2
Ys

3∏

j=2

∑

Kj

K
3/8
j ‖uKj‖0+, 1

2

≤ CM‖φ‖Hs‖u‖
4
Ys
,

as desired. This completes the discussion of (10.4).

We now turn to the case (10.5). In this case, we have

(10.14) |n0 + n1|+ 2K2 +M ≥ |n| ≥ K/2 ≥ 28(K2 +M) ,

which implies

(10.15) |n0 + n1| ≥ 25(K2 +M) .
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Notice that
(10.16)

(n0 + n1 + n2 + n3 +m)3 − n30 − n31 − n32 − n33 −m3 =

3(n0 + n1)(n0 + n2 + n3 +m)(n1 + n2 + n3 +m) + (n2 + n3 +m)3 − n32 − n33 −m3 .

From (10.15), (10.16) and (10.5), we obtain

(10.17)
∣∣n3 − n30 − n31 − n32 − n33 −m3

∣∣ ≥ C(K2 +M)K0K1 ≥ CK0K1 ≥ CK2
0 .

Henceforth one of the following four statements must be true:
∣∣λ− n3

∣∣ ≥ K2
0 ,(10.18) ∣∣(λ− λ1 − λ2 − λ3 − µ)− n30

∣∣ ≥ K2
0 ,(10.19)

∃i ∈ {1, 2, 3} such that |λi − n3i | ≥ K2
0 ,(10.20)

|µ| ≥ K2
0 .(10.21)

For the case of (10.18), we set

(10.22) ṽ(x, t) =
(
v̂1|λ−n3|≥K2

0

)∨
(x, t) .

We then estimate (8.10) by

(10.23)
∑

K2,K3

‖uK2‖∞‖uK3‖∞‖GK3‖∞
∑

K0

∫
|∂xuK0 |

∑

K1

∑

K≤CK1

Ksṽ∗K |uK1 |dxdt .

This is clearly bounded by

(10.24) CM‖u‖2Ys

∑

K0

∫
K0|u

∗
K0

|

(∑

K

|ṽ∗K |2

)1/2

∑

K1

K2s
1 |uK1 |

2




1/2

dxdt .

Using Cauchy-Schwarz inequality, we bound (10.24) by

(10.25) CM‖u‖2Ys

∫ 
∑

K0

Kε
0 |u

∗
K0

|2




1
2

∑

K0

K2−ε
0

∑

K

|ṽ∗K |2




1
2

∑

K1

K2s
1 |uK1 |

2




1
2

dxdt .

By Hölder inequality, (10.25) is majorized by

CM‖u‖2Ys

∥∥∥∥∥∥∥


∑

K0

Kε
0 |u

∗
K0

|2




1
2

∥∥∥∥∥∥∥
4

∥∥∥∥∥∥∥


∑

K0

K2−ε
0

∑

K

|ṽ∗K |2




1
2

∥∥∥∥∥∥∥
2

∥∥∥∥∥∥∥


∑

K1

K2s
1 |uK1 |

2




1
2

∥∥∥∥∥∥∥
4

,

which is controlled by

(10.26) CM‖u‖3Ys
‖∂εxu‖4


∑

K0

K2−ε
0 ‖ṽ‖22




1/2

≤ CM‖u‖3Ys
‖∂εxu‖4

∑

K0

K
−ε/2
0 ≤ CM‖u‖4Ys

.

This finishes the proof of the case (10.18).

For the case of (10.19), let ũ be defined by

(10.27) ũ = (û1|λ−n3|≥K2
0
)∨ .
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Then (8.10) can be estimated by

(10.28)
∑

K2,K3

‖uK2‖∞‖uK3‖∞‖GK3‖∞
∑

K0

∫
|∂xũK0 |

∑

K1

∑

K≤CK1

Ksv∗K |uK1 |dxdt .

By Schür test and Hölder inequality, we control (10.28) by
(10.29)

∑

K2,K3

‖uK2‖∞‖uK3‖∞‖GK3‖∞
∑

K0

‖∂xũK0‖2

∥∥∥∥∥∥

(∑

K

|vK |2

)1/2
∥∥∥∥∥∥
4

∥∥∥∥∥∥∥


∑

K1

K2s
1 |uK1 |

2




1/2
∥∥∥∥∥∥∥
4

,

which is bounded by

(10.30) CM‖u‖3Ys

∑

K0

‖uK0‖0, 1
2
≤ CM‖u‖4Ys

.

This completes the proof of the case (10.19).

For the case of (10.20), if j = 1, then we dominate (8.10) by

(10.31)
∑

K2,K3

‖uK2‖∞‖uK3‖∞‖GK3‖∞
∑

K0

∫
|∂xuK0 |

∑

K1

∑

K≤CK1

Ksv∗K |ũK1 |dxdt .

As we did in the case (10.19), we bound (10.31) by

(10.32) CM‖u‖2Ys

∑

K0

‖∂xuK0‖4‖v‖4

∥∥∥∥∥∥∥


∑

K1

K2s
1 |ũK1 |

2




1/2
∥∥∥∥∥∥∥
2

.

This can be futher controlled by

(10.33) CM‖u‖3Ys

∑

K0

1

K0
‖∂xuK0‖4‖v‖4 ≤ CM‖u‖3Ys

∑

K0

1

K0
‖uK0‖1, 1

3
≤ CM‖u‖4Ys

,

as desired.

We now consider j = 2 or j = 3. Without loss of generality, assume j = 2. In this case,
we estimate (8.10) by

(10.34)
∑

K3

‖uK3‖‖GK3‖∞
∑

K0

∫
|∂xuK0 |

∑

K1

∑

K≤CK1

Ksv∗K |uK1 |
∑

K2≤CK0

|ũK2 |dxdt ,

which is bounded by

CM‖u‖Ys

∑

K0

‖∂xuK0‖∞
∑

K2≤K0

‖ũK2‖2‖v‖4

∥∥∥∥∥∥∥


∑

K1

K2s
1 |uK1 |

2




1/2
∥∥∥∥∥∥∥
4

.
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Notice that
∑

K0

‖∂xuK0‖∞
∑

K2≤K0

‖ũK2‖2 ≤ C
∑

K0

1

K0
‖∂xuK0‖∞‖u‖Ys

≤ C
∑

n

∫
|û(n, λ)|dλ‖u‖Ys

≤ C‖u‖2Ys
.

Henceforth (10.34) is dominated by

(10.35) (10.34) ≤ CM‖u‖4Ys
.

This completes the case of (10.20).

We now turn to the most difficult case (10.21) in Case (8.12). We should decompose GK3 ,
with respect to the t-variable, into Littlewood-Paley multipliers in the same spirit as before.
More precisely, for any dyadic number L, let QL be

(10.36) QLu(x, t) =

∫
ψL(τ)u(x, t − τ)dτ .

Here the Fourier transform of ψL is a bump function supported on [−2L, 2L] and ψ̂L(x) = 1
if x ∈ [−L,L]. Let

(10.37) ΠLu = QLu−QL/2u .

Then ΠLu gives a Littlewood-Paley multiplier with respect to the time variable t. Using this
multiplier, we represent

(10.38) uK =
∑

L

uK,L .

Here uK,L = ΠL(uK). We decompose GK3 as
(10.39)

GK3 = C +
∑

L

(
F3(QLP4K3u, · · · , QLPK3/8u)− F3(QL/2P4K3u, · · · , QL/2PK3/8u)

)

= C +
∑

j=4,2,1, 1
2
, 1
4
, 1
8

L

HK3,L ujK3,L ,

where HK3,L is given by

(10.40) HK3,L = F4

(
QℓLP4K3u, · · · , QℓLPK3/8u; ℓ = 1,

1

2

)
.

Let M1 be defined by
(10.41)
M1 = sup {|DαF4(u1, · · · , u12)| : uj satisfies ‖uj‖Ys ≤ C0‖φ‖Hs for all j = 1, · · · , 12; α} .

Here Dα = ∂α1
x1

· · · ∂α12
x12

and α is taken over all tuples (α1, · · · , α12) ∈ (N ∪ {0})12 with

0 ≤ αj ≤ 1 for all j ∈ {1, · · · , 12}. M1 is a real number because F4 ∈ C1.
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In order to finish the proof, we need to consider further three subcases:

L ≤ 210K3
3 ,(10.42)

210K3
3 < L ≤ 2−5K2

0 ,(10.43)

L > 2−5K2
0 .(10.44)

For the contribution of (10.42), we set

(10.45) hK0,jK3,L =
(

̂HK3,LujK3,L1|µ|≥K2
0

)∨
.

Here j = 4, 2, 1, 12 ,
1
4 ,

1
8 . From the definition of HK3,L, we get

(10.46) ‖hK0,jK3,L‖4 ≤ CM1‖φ‖Hs
L

K2
0

‖ujK3,L‖4 .

Then (8.10) is bounded by

(10.47)

∑

K2

‖uK2‖∞
∑

K0

∫
K0u

∗
K0

∑

K3≤CK
1/2
0

‖uK3‖∞

·
∑

L≤CK3
3

|hK0,jK3,L|
∑

K1

∑

K≤CK1

Ksv∗K |uK1 |dxdt ,

which is majorized by

(10.48)

∑

K2

‖uK2‖∞
∑

K0

K0

∑

K3≤CK
1/2
0

‖uK3‖∞

∫
u∗K0

·
∑

L≤CK3
3

|hK0,jK3,L|

(∑

K

|v∗K |2

)1/2

∑

K1

K2s
1 |uK1 |

2




1/2

dxdt .

Using Hölder inequality with L4 norms for four functions in the integrand, we estimate
(10.48) by

(10.49)

CM1‖φ‖Hs‖u‖2Ys

∑

K0

K0‖uK0‖4
∑

K3≤K
1/2
0

‖uK3‖∞
∑

L≤CK3
3

L

K2
0

‖ujK3,L‖4

≤CM1‖φ‖
2
Hs‖u‖3Ys

∑

K0

K
1/2
0 ‖uK0‖0, 1

3

≤CM1‖φ‖
2
Hs‖u‖4Ys

.

This finishes the case of (10.42).

For the contribution of (10.43), we bound (8.10) by

(10.50)

∑

K2

‖uK2‖∞
∑

K3

‖uK3‖∞

∫ ∑

K0

|∂xuK0 |
∑

210K3
3<L≤2−10K2

0

|hK0,jK3,L|

·
∑

K1

∑

K≤CK1

Ksv∗K |uK1 |dxdt ,
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which is dominated by

(10.51)

C‖u‖Ys

∑

K3

‖uK3‖∞
∑

∆≤2−10

∆ dyadic

∫ ∑

K0

|∂xuK0 |
∑

210K3
3<L

∆
2
K2

0<L≤∆K2
0

|hK0,jK3,L|

·

(∑

K

|v∗K |2

)1/2

∑

K1

K2s
1 |uK1 |

2




1/2

dxdt ,

By Cauchy-Schwarz inequality, we estimate (10.51) further by
(10.52)

C‖u‖Ys

∑

K3

‖uK3‖∞
∑

∆≤2−10

∆ dyadic

∆−1/2

∫ ∑

K0

|∂xuK0 |

K0

·




∑

210K3
3<L

∆
2
K2

0<L≤∆K2
0

L|hK0,jK3,L|
2




1/2

(∑

K

|v∗K |2

)1/2

∑

K1

K2s
1 |uK1 |

2




1/2

dxdt ,

Applying Hölder inequality with L∞ norm for the first function in the integrand, L2 norm
for the second one, and L4 norms for the last two functions, we then majorize (10.52) by
(10.53)

C‖u‖2Ys

∑

K3

‖uK3‖∞
∑

∆≤2−10

∆ dyadic

∆−1/2
∑

K0

‖∂xuK0‖∞
K0

∥∥∥∥∥∥∥∥∥∥∥




∑

210K3
3<L

∆
2
K2

0<L≤∆K2
0

L|hK0,jK3,L|
2




1/2
∥∥∥∥∥∥∥∥∥∥∥
2

.

Notice that if L ∼ ∆K2
0 , then

(10.54) ‖hK0,jK3,L‖2 ≤ CM1‖φ‖Hs∆‖ujK3,L‖2 .

Thus we have

(10.55)

∥∥∥∥∥∥∥∥∥∥∥




∑

210K3
3<L

∆
2
K2

0<L≤∆K2
0

L|hK0,jK3,L|
2




1/2
∥∥∥∥∥∥∥∥∥∥∥
2

≤CM1‖φ‖Hs∆




∑

210K3
3<L

∆
2
K2

0<L≤∆K2
0

L‖ujK3,L‖
2
2




1/2

≤CM1‖φ‖Hs∆‖ujK3‖0, 1
2

≤CM1‖φ‖
2
Hs∆ .
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From (10.55), (10.53) is bounded by

(10.56) CM1‖φ‖
2
Hs‖u‖2Ys

∑

K3

‖uK3‖∞
∑

∆≤2−10

∆ dyadic

∆1/2
∑

K0

‖∂xuK0‖∞
K0

,

which is clearly majorized by

(10.57) CM1‖φ‖
2
Hs‖u‖4Ys

.

This finishes the case of (10.43).

For the contribution of (10.44), we estimate (8.10) by

(10.58)

∑

K2

‖uK2‖∞
∑

K3

‖uK3‖∞

∫ ∑

K0

|∂xuK0 |
∑

L>2−5K2
0

|hK0,jK3,L|

·
∑

K1

∑

K≤CK1

Ksv∗K |uK1 |dxdt ,

which is bounded by

(10.59)

∑

K2

‖uK2‖∞
∑

K3

‖uK3‖∞

∫ 
∑

K0

|∂xuK0 |
2

K2
0




1/2
 ∑

L>2−5K2
0

L|hK0,jK3,L|
2




1/2

·

(∑

K

|v∗K |2

)1/2

∑

K1

K2s
1 |uK1 |

2




1/2

.

Applying Hölder inequality, we estimate (10.59) further by

(10.60) CM1‖u‖
2
Ys

∑

K3

‖uK3‖∞
∑

K0

‖∂xuK0‖∞
K0

∥∥∥∥∥∥∥


 ∑

L>2−5K2
0

L|ujK3,L|
2




1/2
∥∥∥∥∥∥∥
2

.

This is clearly majorized by

(10.61) CM1‖φ‖Hs‖u‖
4
Ys
.

Hence we complete the case of (10.44).

11. Proof of Case (8.13)

In this case, it suffices to consider the following subcases:

M ≥ 2−10K
2/3
0 ;(11.1)

M < 2−10K
2/3
0 and K2

2K3 ≥ 2−10K2
0 ;(11.2)

M < 2−10K
2/3
0 and K2

2M ≥ 2−10K2
0 ;(11.3)

M < 2−10K
2/3
0 , K2

2K3 < 2−10K2
0 and K2

2M < 2−10K2
0 .(11.4)

For the case of (11.1), notice that, in this case, we have

(11.5) K ≤ CM3/2 .



DISCRETE FOURIER RESTRICTION ASSOCIATED WITH KDV EQUATIONS 33

Henceforth we estimate (8.10) by

(11.6)

∫ ∑

K1≥K2≥K3

|uK1 ||uK2 ||uK3 |
∑

M

∑

K≤CM3/2

Ksv∗K
∑

K0≤CM3/2

K0u
∗
K0

|gK3,M |dxdt ,

which is bounded by
(11.7)

∫ ∑

K1≥K2≥K3

|uK1 ||uK2 ||uK3 |
∑

M

M
3
2
(1−s)|gK3,M |

∑

K≤CM3/2

Ksv∗K


∑

K0

K2s
0 |u∗K0

|2




1/2

dxdt ,

since 1/2 < s < 1. Applying Schür test, we estimate (11.7) by

(11.8)

∫ ∑

K1≥K2≥K3

|uK1 ||uK2 ||uK3 |

(∑

M

M3|gK3,M |2

)1/2

(∑

K

|v∗K |2

)1/2

∑

K0

K2s
0 |u∗K0

|2




1/2

dxdt .

By Hölder inequality and s > 1/2, (11.8) is majorized by
(11.9)

C
∑

K1≥K2≥K3

‖∂3/2x GK3‖∞




3∏

j=1

‖uKj‖6+



∥∥∥∥∥∥

(∑

K

|vK |2

)1/2
∥∥∥∥∥∥
4

∥∥∥∥∥∥∥


∑

K0

K2s
0 |u∗K0

|2




1/2
∥∥∥∥∥∥∥
4

≤CM(‖φ‖Hs + ‖φ‖2Hs)‖u‖Ys

∑

K1≥K3≥K3

K
3/2
3

3∏

j=1

‖uKj‖6+

≤CM(‖φ‖Hs + ‖φ‖2Hs)‖u‖Ys

3∏

j=1

∑

Kj

K
1/2
j ‖uKj‖0+, 1

2

≤CM(‖φ‖Hs + ‖φ‖2Hs)‖u‖4Ys
.

This finishes the case of (11.1).

For the case of (11.2), observe that, in this case,

(11.10) K0 ≤ CK
1/2
1 K

1/2
2 K

1/2
3 .

We estimate (8.10) by

(11.11)

∫ ∑

K1≥K2≥K3

|uK1 ||uK2 ||uK3 |
∑

K≤CK0

Ksv∗K
∑

K0≤C(K1K2K3)1/2

K0u
∗
K0

‖GK3‖∞dxdt ,

which is bounded by

(11.12) CM

∫ (∑

K

|v∗K |2

)1/2

∑

K0

K2s
0 |u∗K0

|2




1/2
3∏

j=1

∑

Kj

K
1/2
j |uKj |dxdt .
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Using Hölder inequality with L4 norms for first two functions and L6 norms for the last three
functions in the integrand, we obtain

(11.13) CM‖u‖Ys

3∏

j=1

∥∥∥∥∥∥
∑

Kj

K
1/2
j |uKj |

∥∥∥∥∥∥
6

≤ CM‖u‖4Ys
.

This completes the case of (11.2).

For the case of (11.3), we have, in this case,

(11.14) K0 ≤ CK
1/2
1 K

1/2
2 M1/2 .

Hence we dominate (8.10) by

(11.15)

∫ ∑

K1≥K2≥K3

|uK1 ||uK2 ||uK3 |
∑

M

|gK3,M |
∑

K≤CK0

Ksv∗K
∑

K0≤C(K1K2M)1/2

K0u
∗
K0
dxdt ,

which is bounded by

(11.16)

C
∑

K3

∫ (∑

K

|v∗K |2

)1/2

∑

K0

K2s
0 |u∗K0

|2




1/2

|uK3 |

·

(∑

M

M |gK3,M |2

)1/2 2∏

j=1

∑

Kj

K
1/2
j |uKj |dxdt .

Using Hölder inequality with L4 norms for first two functions, L6 norms for the third one,
Lp norm with p very large for the fourth one, and L6+ for the last two functions in the
integrand, we obtain

(11.17) C‖u‖Ys

2∏

j=1

∥∥∥∥∥∥
∑

Kj

K
1/2
j |uKj |

∥∥∥∥∥∥
6+

∑

K3

‖uK3‖6‖∂
1/2
x GK3‖∞ .

Clearly (11.17) is dominated by

(11.18) CM‖φ‖Hs‖u‖3Ys

∑

K3

K
1/2
3 ‖uK3‖6 ≤ CM‖φ‖Hs‖u‖4Ys

.

Hence the case of (11.3) is done.

For the case of (11.4), we observe that, in this case,

(11.19) M2K2 ≤ 2−10K2
0 .

In fact, if (11.19) does not hold, then from (11.4),

M2K2 > 2−10K2
0 > K2

2M .

Thus M > K2, which yields immediately

M3 > M2K2 > 2−10K2
0 ,

contradicting toM < 2−10K
2/3
0 . Hence (11.19) must be true. From (11.19), K2

2K3+K
2
2M <

2−9K2
0 , we get

(11.20)
∣∣(n2 + n3 +m)3 − n32 − n33 −m3

∣∣ ≤ 2−5K2
0 .
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Since n1+n2+n3+m 6= 0, from (8.13), (11.4) and (11.20), the crucial arithmetic observation
(10.16) then yields

(11.21) |n3 − n30 − n31 − n32 − n33 −m3| ≥ 2K2
0 .

Henceforth one of the following four statements must be true:
∣∣λ− n3

∣∣ ≥ K2
0 ,(11.22) ∣∣(λ− λ1 − λ2 − λ3 − µ)− n30

∣∣ ≥ K2
0 ,(11.23)

∃i ∈ {1, 2, 3} such that |λi − n3i | ≥ K2
0 ,(11.24)

|µ| ≥ K2
0 .(11.25)

For the case of (11.22), we estimate (8.10) by

(11.26)
∑

K1,K2,K3

‖uK1‖∞‖uK2‖∞‖uK3‖∞‖GK3‖∞
∑

K0

∫
K0|u

∗
K0

|

∣∣∣∣∣∣
∑

K≤CK0

∂sxṽK

∣∣∣∣∣∣
dxdt .

Then Cauchy-Schwarz inequality yields

(11.27)

CM‖u‖3Ys

∥∥∥∥∥∥∥


∑

K0

K2−2s
0

∣∣∣∣∣∣
∑

K≤CK0

∂sxṽK

∣∣∣∣∣∣

2


1/2
∥∥∥∥∥∥∥
2

∥∥∥∥∥∥∥


∑

K0

K2s
0 |u∗K0

|2




1/2
∥∥∥∥∥∥∥
2

≤CM‖u‖4Ys


∑

K0

K2−2s
0

∑

K≤CK0

‖∂sxṽK‖22




1/2

≤ CM‖u‖4Ys
.

This finishes the proof of the case (11.22).

For the case of (11.23), (8.10) can be estimated by

(11.28)
∑

K1,K2,K3

‖uK1‖∞‖uK2‖∞‖uK3‖∞‖GK3‖∞
∑

K0

∫
K0|ũ

∗
K0

|
∑

K≤CK0

Ksv∗Kdxdt .

By Schür test and Hölder inequality, we control (11.28) by

(11.29) CM‖u‖3Ys

∥∥∥∥∥∥

(∑

K

|v∗K |2

)1/2
∥∥∥∥∥∥
2

∥∥∥∥∥∥∥


∑

K0

K2s+2
0 |ũK0 |

2




1/2
∥∥∥∥∥∥∥
2

,

which is clearly bounded by

(11.30) CM‖u‖3Ys


∑

K0

K2s
0 ‖uK0‖

2
0, 1

2




1/2

≤ CM‖u‖4Ys
.

This completes the proof of the case (11.23).

For the case of (11.24), without loss of generality, assume j = 1. We then dominate (8.10)
by

(11.31)
∑

K2,K3

‖uK2‖∞‖uK3‖∞‖GK3‖∞
∑

K1

∑

K0

∫
K0|u

∗
K0

||ũK1 |
∑

K≤CK0

Ksv∗Kdxdt .
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By Hölder inequality, we bound (11.31) by

(11.32)

∑

K2,K3

‖uK2‖∞‖uK3‖∞‖GK3‖∞
∑

K1

∑

K0

∑

K≤CK0

KsK0‖uK0‖4‖ũK1‖2‖vK‖4

≤
∑

K2,K3

‖uK2‖∞‖uK3‖∞‖GK3‖∞
∑

K1

‖uK1‖0, 1
2

∑

K0

∑

K≤CK0

Ks‖uK0‖4‖vK‖4 .

By Schür test, we dominate (11.32) by

(11.33)

CM‖u‖2Ys

∑

K1

‖uK1‖0, 1
2


∑

K0

K2s
0 ‖uK0‖

2
4




1/2(∑

K

‖vK‖24

)1/2

≤CM‖u‖3Ys


∑

K0

K2s
0 ‖uK0‖

2
0, 1

3




1/2(∑

K

‖vK‖2
0, 1

3

)1/2

≤CM‖u‖4Ys
.

Hence the case of (11.24) is done.

In order to finish the proof, as before we need to consider further three subcases:

L ≤ 210K3
3 ,(11.34)

210K3
3 < L ≤ 2−5K2

0 ,(11.35)

L > 2−5K2
0 .(11.36)

For the contribution of (11.34), notice that

(11.37) ‖hK0,jK3,L‖6 ≤ CM1‖φ‖Hs
L

K2
0

‖ujK3,L‖6 .

Here hK0,jK3,L is defined as in (10.45). In this particular case we also have K3 ≤ K
2/3
0 from

K2
2K3 ≤ 2−10K2

0 . Then (8.10) is bounded by

(11.38)

∫ ∑

K0

K0u
∗
K0

∑

K≤CK0

Ksv∗K
∑

K1≥K2≥K3

K3≤K
2/3
0

|uK1 ||uK2 ||uK3 |
∑

L≤CK3
3

|hK0,jK3,L| dxdt .

Write (11.38) as

(11.39)
∑

∆dyadic
∆≤1

∫ ∑

K0

K0u
∗
K0

∑

K≤CK0

Ksv∗K
∑

K1≥K2≥K3

∆K
2/3
0 /2<K3≤∆K

2/3
0

|uK1 ||uK2 ||uK3 |
∑

L≤CK3
3

|hK0,jK3,L| dxdt .

Observe that if ∆K
2/3
0 /2 < K3 ≤ ∆K

2/3
0 , then we have

(11.40) K0 ≤ ∆−3/2K
1/2
1 K

1/2
2 K

1/2
3 .
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Henceforth, (11.39) is bounded by

(11.41)

C‖u‖Ys

∑

K0

∑

K≤K0

Ks
∑

K1,K2

K
1/2
1 K

1/2
2

∑

∆≤1

∆−3/2
∑

K3∼∆K
2/3
0

K
1/2
3

∫
u∗K0

v∗K |uK1 ||uK2 |
∑

L≤CK3
3

|hK0,jK3,L|dxdt .

Applying Hölder inequality with L4 norms for first two functions and L6 for the last three
functions, and then using (11.37), we get

(11.42)

CM1‖φ‖Hs‖u‖Ys

∑

K0

∑

K≤K0

Ks
∑

K1,K2

K
1/2
1 K

1/2
2

∑

∆≤1

∆−3/2
∑

K3∼∆K
2/3
0

K
1/2
3

‖uK0‖4‖v
∗
K‖4‖uK1‖6‖uK2‖6

∑

L≤CK3
3

L

K2
0

‖ujK3,L‖6 ,

which is bounded by

(11.43)

CM1‖φ‖Hs‖u‖Ys

∑

K0

∑

K≤K0

Ks
∑

∆≤1

∆−3/2
∑

L≤C∆3K2
0

L

K2
0

‖uK0‖4‖v
∗
K‖4

∑

K1

K
1/2
1 ‖uK1‖0+, 1

2

∑

K2

K
1/2
2 ‖uK2‖0+, 1

2

∑

K3

K
1/2
3 ‖ujK3,L‖0+, 1

2

≤CM1‖φ‖
2
Hs‖u‖3Ys

∑

∆≤1

∆3/2
∑

K0

∑

K≤CK0

Ks‖uK0‖4‖vK‖4

≤CM1‖φ‖
2
Hs‖u‖3Ys


∑

K0

K2s
0 ‖uK0‖

2
0, 1

3




1/2(∑

K

‖vK‖2
0, 1

3

)1/2

≤CM1‖φ‖
2
Hs‖u‖4Ys

.

This completes the case (11.34).

For the contribution of (11.35), (8.10) is bounded by

(11.44)

∑

K1

‖uK1‖∞
∑

K2

‖uK2‖∞
∑

K3

‖uK3‖∞

∫ ∑

K0

∑

K≤CK0

Ksv∗KK0u
∗
K0

∑

210K3
3<L≤2−5K2

0

|hK0,jK3,L|dxdt ,

which is dominated by

(11.45) C‖u‖2Ys

∑

K3

‖uK3‖∞
∑

∆≤2−5

∆ dyadic

∑

K0

∑

K≤CK0

Ks

∫
K0u

∗
K0
v∗K

∑

210K3
3<L

∆
2
K2

0<L≤∆K2
0

|hK0,jK3,L|dxdt .
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Using Cauchy-Schwarz inequality, we estimate (11.45) further by

(11.46)

C‖u‖2Ys

∑

K3

‖uK3‖∞
∑

∆≤2−5

∆ dyadic

∆− 1
2

∑

K0

∑

K≤CK0

Ks

∫
u∗K0

v∗K




∑

210K3
3<L

∆
2
K2

0<L≤∆K2
0

L|hK0,jK3,L|
2




1/2

dxdt .

Employing Hölder inequality with L4 norms for the first two functions and L2 for the last
one, we bound (11.46) by

(11.47)

C‖u‖2Ys

∑

K3

‖uK3‖∞
∑

∆≤2−5

∆ dyadic

∆− 1
2

∑

K0

∑

K≤CK0

Ks‖uK0‖4‖vK‖4

·

∥∥∥∥∥∥∥∥∥∥∥




∑

210K3
3<L

∆
2
K2

0<L≤∆K2
0

L|hK0,jK3,L|
2




1/2
∥∥∥∥∥∥∥∥∥∥∥
2

.

From (10.55), (11.47) is majorized by

(11.48)

CM1‖φ‖
2
Hs‖u‖2Ys

∑

K3

‖uK3‖∞
∑

∆≤2−5

∆ dyadic

∆
1
2

∑

K0

∑

K≤CK0

Ks‖uK0‖4‖vK‖4

≤CM1‖φ‖
2
Hs‖u‖3Ys


∑

K0

K2s
0 ‖uK0‖

2
0, 1

3




1/2(∑

K

‖vK‖2
0, 1

3

)1/2

≤CM1‖φ‖
2
Hs‖u‖4Ys

.

This finishes the proof for the case (11.35).

For the contribution of (11.36), we estimate (8.10) by
(11.49)∑

K1,K2

‖uK1‖∞‖uK2‖∞
∑

K3

‖uK3‖∞

∫ ∑

K0

K0u
∗
K0

∑

L>2−5K2
0

|hK0,jK3,L|
∑

K≤CK0

Ksv∗Kdxdt .

By Cauchy-Schwarz inequality, (11.49) is bounded by
(11.50)

∑

K1,K2

‖uK1‖∞‖uK2‖∞
∑

K3

‖uK3‖∞
∑

K0

∑

K≤CK0

Ks

∫
v∗Ku

∗
K0


 ∑

L>2−10K2
0

L|hK0,jK3,L|
2




1/2

dxdt .
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Employing Hölder inequality with L4 norms for the first two functions and L2 norm for the
last one, we dominate (11.50) by

(11.51)

CM1‖u‖
2
Ys

∑

K3

‖uK3‖∞
∑

K0

∑

K≤CK0

Ks‖uK0‖4‖vK‖4

∥∥∥∥∥∥∥


 ∑

L>2−5K2
0

L|ujK3,L|
2




1/2
∥∥∥∥∥∥∥
2

≤CM1‖u‖
2
Ys

∑

K3

‖uK3‖∞
∑

K0

∑

K≤CK0

Ks‖uK0‖0, 1
3
‖vK‖0, 1

3
‖u‖0, 1

2

≤CM1‖φ‖Hs‖u‖4Ys
.

Hence we complete the case of (11.36).
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