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Abstract 

  Diabetes is a chronic illness that affects many people, and it’s thought that 

environmental exposure to certain compounds may increase its proliferation. In this 

study, we examine the dietary effects of 2-aminoanthracene (2AA), a polycyclic aromatic 

hydrocarbon (PAH), in rats, specifically as it relates to oxidative stress. Oxidative stress 

refers to the imbalance of reactive oxygen species (ROS) and antioxidants in living 

systems; it has been shown to contribute to type-1 diabetes. To accomplish the study 

objectives rats were divided into three dietary treatment groups, control (0 mg/kg-2AA), 

low dose (50 mg/kg-2AA) and high dose (100 mg/kg-2AA). Rats were fed 2AA for three 

months, and then euthanized using carbon dioxide. Various tissues including the liver and 

were flash-frozen in liquid nitrogen. To determine 2AA effects in the liver, a portion of 

the liver was homogenized in phosphate buffered saline solution. The supernatant was 

analyzed for serum albumin, aspartate aminotransferase (AST), IgA protein, and 

antioxidants. Furthermore, genes such as Pdx1, Sod1, Gpx1, Prdx6, Ncf2, Duox1 and 

Ptgs2 typically used to measure cellular oxidative stress were quantified. The expressions 

of these genes in the liver show the upregulation of Sod1 and Prdx6, and downregulation 

of Ptgs2 in treated groups.  AST activity was marginally increased in treated groups 

while the albumin concentration was elevated in the 50 mg/kg group and reduced in the 

100 mg/kg-2AA animals. IgA levels were slightly elevated while antioxidant levels were 

reduced in treated groups. Taken together, these results show that ingestion of 2AA may 

produce hepatic oxidative stress.   
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Background and Objective 

 Polycyclic aromatic hydrocarbons (PAHs) are a class of organic compounds 

produced during the incomplete combustion of hydrocarbons. They can also be formed in 

high pressure reactions involving hydrocarbons. People are exposed to PAHs everyday 

through many sources such as natural sources (forest fires, volcanos, etc.), cigarette 

smoke, vehicle exhaust [Cherg, Wetering, Talsma, Crommelin, & Hennink 1996; Lewitas 

1997], and diet. In nonsmokers up to 70% of PAH exposure occurring outside of the 

workplace is associated with the diet [Skupinska, Misiewicz, & Kasprzycka-Guttman 

2004]. This project will focus of on diet as the point of exposure. 

 PAHs are known to be carcinogenic. One especially toxic class of PAHs is 

anthracenes which are PAHs with the chemical formula C14H10. Anthracenes are 

classified as group of top concern by the United States Agency for Toxic Substances and 

Disease Registry (ASTDR) due to their toxicity to humans which is by comparison 

greater than that of other PAHs. Research has shown 2-aminoanthracene (2AA) to affect 

genes involved with carbohydrate and lipid metabolism, as well as inflammation and 

immune responses [Wilson, Buckeridge, Yau, Howerth, & Gato 2017]. These effects 

have led to symptoms of diabetes in rats. 

 Just like other PAHs 2AA is mildly carcinogenic. According to previous research 

exposure to mild carcinogens can cause oxidative stress [Kakehashi, Wei, Fukushima, & 

Wanibuchi 2013], and oxidative stress has been shown to be a factor that may contribute 

to type-1 diabetes [Mays, Hunter, Wilson, & Gato 2017]. Oxidative stress is a 

phenomenon that occurs when the balance of reactive oxygen species (ROS) to 

antioxidants in the body is disturbed. Reactive oxygen and nitrogen species are constantly 
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being produced through processes such as cellular respiration. These reactive species are 

harmful to the body. They can cause inflammation and damage to the cells. Over time 

this can lead to cancerous growth in the cells. Enzymatic antioxidants are needed to break 

down the reactive species. 

 In this project we examine the livers of rats that have been exposed to a diet 

containing 2AA. We hypothesized that rats exposed to 2AA for 12 weeks will 

demonstrate oxidative stress in their liver cells. This study’s aim was to provide us with 

information about the associated risk of type-1 diabetes from exposure to 2AA. In 

addition to the damage and inflammation we expected to observe from oxidative stress 

we also expected to see inhibition of carbohydrate and lipid metabolism [Wilson et al. 

2017]. This information is useful because it provides information about the risk humans 

assume from consuming 2AA which can be present in food products. The effects of 2AA 

on the liver was measured through analysis of serum isolated from liver samples for 

albumin levels, aspartate aminotransferase (AST) activity, IgA protein levels and 

antioxidant levels. Furthermore, analysis of specific genes related to oxidative stress was 

also carried out. The genes that were quantified in the study included Pdx1, Sod1, Gpx1, 

Prdx6, Ncf2, Duox1 and Ptgs2. 

Materials and Methods 

Animal Study 

 The rats used in this project were Male Sprague Dawley obtained from Taconic 

Bioscience Inc. (Hudson, NY). 2AA was purchased from Sigma Aldrich (St. Louis, MO). 

The diet used for this project was The Global Rodent Diet 2020. This formula was 
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obtained from Harlan Laboratories Inc. (Madison, WI). 2AA was sent to Harlan 

Laboratories and incorporated into some of the diet (all portions besides control). 

 During the feeding portion of the experiment the rats were housed at the Georgia 

Southern University Animal Facility. The rats were fed three different dose regimens 0 

mg/kg (control), 50 mg/kg (low dose-LD), and 100 mg/kg (high dose-HD). The rats were 

fed the diet for 12 weeks and were then sacrificed using carbon dioxide. The kidneys and 

livers of the animals were harvested and measured, and a blood sample was collected. 

Discomfort of the Sprague Dawley rats was minimized through treatment methods 

outlined in the Institute for Laboratory Research (ILAR) Guide for Care and Use of 

Laboratory Animals. All measures and protocols were approved by Institutional Animal 

Care and Use Committee (IACUC) prior to beginning the experiment. 

Homogenization of Hepatic Tissues 

In order to evaluate 2AA effects directly on the liver, 20-30 mg of each hepatic 

tissue from each sample was homogenized in 1X PBS (Fisher Scientific, Hampton NH, 

Cat#: BP399). Samples were then centrifuged at 4˚C for 15 minutes. The supernatant was 

aliquoted and saved in -80˚C freezer until analysis. 

Quantitative Determination of Serum Albumin 

 The concentration of serum albumin in the homogenized liver samples was 

determined using the Albumin Reagent Set (Pointe Scientific Inc., Canton, MI, Cat#: 

A7502-1L). In this experimentation bromocresol green dye was bound to albumin, and 

the absorbance was measured at 630 nm using a UV-Vis spectrometer in accordance with 
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the manufactures guidelines. A standard curve was created using Bovine serum albumin 

(BSA) to quantify the data collected. 

Quantitative Determination of Aspartate Aminotransferase (AST) 

 Aspartate aminotransferase (AST) activity was measured using the AST (SGOT) 

Liquid Reagent Set (Pointe Scientific Inc., Canton, MI, Cat#: A7561-450). This assay 

functions by the principle that AST catalyzes and transfers the amino group from L-

aspartate to α-Ketoglutarate to yield oxalacetate and L-glutamate. In a subsequent 

reaction the oxalacetate as NADH is oxidized to form NAD+. As this reaction progresses 

the rate of decrease of absorbance measured at 340 nm is directly proportional to the AST 

activity. To measure the absorbance accurately lactate dehydrogenase (LDH) must be 

added to prevent endogenous pyruvate, which is typically found in serum, from 

interfering with the absorbance reading. The experiment was carried out as specified in 

the manufacturers guidelines. The following equation was provided by the manufacturer 

to calculate AST activity from change in absorbance per minute: 

AST (IU/L) = ΔAbs./min × 1768 

IgA Quantitative Analysis via ELISA 

 Using the Mouse IgA Ready-Set-Go! ® (Affymetrix eBioscience, Santa Clara, 

CA, Cat#: 88-50450) assay kit IgA protein levels in serum were quantified for each of the 

treatment groups using enzyme-linked immunosorbent assay (ELISA). The reaction was 

set up in a 96 well microplate, and the absorbance of the plate was measured at 450 nm 

using a microplate reader. The experiment was carried out according to the manufactures 

guidelines. A standard curve was created from mouse IgA provided with the kit. This 
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standard curve was then used to calculate the IgA concentrations for samples from our 

study. 

Total RNA Isolation 

 Total RNA was isolated from liver samples using the RNeasy Mini by QIAGEN 

Total RNA Isolation Kit (QIAGEN N.V., Hilden, Germany, Cat#: 74104). The 

experiment was carried out using the guidelines stated in the protocol. Quality of the 

RNA was determined using gel electrophoresis. RNA Sample Loading Buffer (Sigma 

Aldrich, Saint Louis, MO, Cat#: R4268) was used for this process. The loading buffer 

was mixed at a ratio of 1 volume of sample to 2-5 volumes of RNA Sample Loading 

Buffer before being run in a gel. Excess isolated RNA was stored in a -80℃ freezer for 

further analysis. 

Analysis of Selected Genes 

Gene Expression was carried out using quantitative real time polymerase chain 

reaction (qRT-PCR) for the oxidative stress specific genes Pdx1, Sod1, Gpx1, Prdx6, 

Ncf2, Duox1 and Ptgs2. FASTA mRNA sequences of the genes were generated from the 

National Center for the Biotechnology Information (NCBI). Using PrimerQuest by 

Integrated DNA Technologies (IDT) (Coralville, IA) forward and reverse primers for 

each of the mRNA sequences was obtained. The primers used are listed in Table 1. 

cDNA for use in RT-qPCR was synthesized using iScript™ Reverse Transcription 

Supermix for RT-qPCR (Bio-Rad, Hercules, CA, Cat#: 1708840). cDNA was diluted 

with 10 mM Tris-HCl buffer (pH 8), 01 mM EDTA prior to use in the qPCR system in 

accordance with the manufactures guidelines. 
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 Acession # Forward Reverse 

PDX-1 U35632 CTGCCTTTCCCATGGATGAA  CTTGATGTGTCTCTCGGTCAAG 

SOD1 KR710602 GCAGGTCCTCACTTTAATCCTC  CTTCCAGCGTTTCCTGTCTT  

GPX1 KR709800 CATCAGGAGAACGCCAAGAA TGTCAGGCTCGATGTCAATG 

PRDX6 KY383188 CCTCTGAAGGCTCCTGTTTC AGTAAGGCGCGGGAATTT 

PKC KF705541 GTGCGGTCCTTGTCTTACTT CCCATCCTCCTTGTCCATAATC  

NCF2 KR709852 CTCCGGCTGGAACAAACTAA CTGGTTGGGTAGCCTCATAAC 

DUOX1 GBYX01074484 TCATTCGCCACGCTTTCT CCTTCGATAAGTAGCCAGTTCC 

PTGS2 KR709390 GCGGGAACACAACAGAGTAT GGACAGCCCTTCACGTTATT 

Table 1. Forward and reverse nucleotide sequences used as primers for each gene. 

 Quantification of Total Antioxidant Capacity 

 Quantification of total antioxidants present in serum was determined using the 

Cayman Chemical Antioxidant Assay Kit (Ann Arbor, MI, Item#: 709001). This assay 

relies on antioxidants in the serum samples to inhibit the oxidation of 2,2’-Azino-di-[3-

ethylbenzthiazoline sulphonate] (ABTS®) to ABTS®*+ by metmyoglobin. The 

suppression of ATBS®*+ production can be measured by the by reading the absorbance at 

405 or 750 nm. In this experiment absorbance was measured at 405 nm. The absorbance 

at either 405 or 750 nm is inversely related to the proposed concentration of antioxidants 

in the sample. A standard curve was generated using Trolox, a water-soluble tocopherol 

analogue. The concentration of antioxidants is quantified as millimolar (mM) Trolox 

equivalents. The reaction setup was prepared in a 96 well microplate, and the absorbance 

of standards and samples was measure by a microplate reader. The reaction was set up in 

accordance with manufacturers guidelines. 
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Results 

Quantitative Determination of Serum Albumin 

 A standard curve of absorbance vs. concentration of bovine serum albumin (BSA) 

was generated. This standard curve showed a strong linear relationship demonstrated by 

an r-squared value of 0.9837. The linear equation generated from this linear relationship 

was found to be y = 0.8414x – 0.0146. This relationship is summarized in Figure 1. This 

generated equation was used to calculate concentrations of serum albumin in the rat 

samples. 

Figure 1. Standard curve of absorbance vs. concentration for bovine serum albumin 

(BSA). 

 

 Through the analysis of serum albumin levels in rats using the BSA standard 

curve it was found that animals in the low dose treatment group experienced a slight 

increase in serum albumin levels as compared to control animals; 0.9230 and 0.7933 g/dL 

respectively. Whereas animals in the high concentration group experienced a decrease in 

serum albumin levels. Serum albumin concentration in high dose animals was found to be 
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an average of 0.6037 g/dL. Each groups data is summarized in Figure 2. The standard 

error of each mean measurement is displayed in Figure 2. 

 

Figure 2.  Mean albumin concentration from serum of rats in control (0 mg/kg-2AA), low 

dose (50 mg/kg-2AA), and high dose (100 mg/kg-2AA) treatment groups. 

 

Quantitative Determination of Aspartate Aminotransferase (AST) 

AST activity was measured and found to be slightly elevated in rats that had been 

fed 2AA. Looking at specific numeric values AST activity was measured to be an 

average 106.28 IU/L for the control group, 137.31 IU/L for the low dose group, and 

130.54 IU/L for the high dose group. While AST activity was elevated in both treated 

groups it was slightly higher in the low dose group. These results are summarized in 

Figure 3. The standard error for this measurements is also visualized in Figure 3. 
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Figure 3. Mean AST activity levels from serum of rats in control (0 mg/kg-2AA), low 

dose (0 mg/kg-2AA), and high dose (100 mg/kg-2AA) treatment groups. 

 

IgA Quantitative Analysis via ELISA 

 A standard curve of absorbance of standard mouse IgA at 450 nm vs. 

concentration of standard mouse IgA was created. This curve showed strong linearity 

with a generated linear equation of y = 0.0044x + 0.0839. This equation was used to 

calculate the concentration of IgA in our rat serum samples. The linear relation found 

from the standard mouse IgA is summarized in Figure 4. 
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Figure 4. Standard curve of absorbance vs. concentration of mouse IgA. 

 

 Using the generated standard curve concentrations of IgA in the serum samples 

the concentrations of IgA were calculated in ng/mL for each treatment group. The 

concentration for that of the low dose group was statistically insignificant from the 

control while the concentration of the high dose treatment group showed slightly elevated 

levels, though this elevation is also relatively statistically insignificant. The average 

concentrations of the low dose and high dose groups were 136.22 and 148.55 ng/mL 

respectively. The average concentration of IgA in the control treatment group was 133.41 

ng/mL. These findings are summarized in Figure 5. 
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Figure 5. Mean IgA levels from livers of rats for control (0 mg/kg-2AA), low dose (50 

mg/kg-2AA), and high dose 2AA (100 mg/kg-2AA) treatment groups. 

 

Analysis of Selected Genes 

 At the conclusion of PCR analysis relative quantities of each gene were determine 

along with their standard deviation in the real-time PCR measurements. The expression 

of these genes showed upregulation od Sod1 and Prdx6, and downregulation of Ptgs2. 

The results of this experiment are represented graphically in Figure 6. 
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Figure 6. Relative gene expression for select genes (Duox1, Gpx1, Ncf2, Pdx-1, Prdx6, 

Ptgs2, and Sod1) in RNA extracted from the livers of rats. Rats were either in the control 

(0 mg/kg-2AA), low dose (50 mg/kg-2AA), or high dose (100 mg/kg-2AA) treatment 

groups. 

 

Quantification of Total Antioxidant Capacity 

 A standard curve was generated using Trolox where an inverse relationship 

between absorbance and concentration was shown. The standard curve showed a strong 

linear relationship and generated a linear equation of y = -1.5663x + 0.8309. This 

equation was then used to quantify the concentration of antioxidant in the serum samples 

from each of the animal treatment groups. The linear relationship from the standard curve 

is visualized in Figure 7. 
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Figure 7. Standard curve generated from Trolox when absorbance was measured at 405 

nm. 

 

 The antioxidant concentration as millimolar Trolox equivalents was determined 

and it was found that antioxidant concentration was decreased in treated animals. Low 

dose treated animals showed lower antioxidant concentrations than high dose treated 

animals, but both groups demonstrated a decrease in antioxidant concentration as 

compared to the control group. The average concentrations for each group were found to 

be 0.2268 mM equivalents for the control group, 0.1673 mM for the low dose group, and 

0.1877 mM for the high dose group. This information is displayed on Figure 8 along with 

the standard error for each measured group. 
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Figure 8. Inhhibition of ABTS oxidation by antioxidants for control (0 mg/kg-2AA), low 

dose (50 mg/kg-2AA), or high dose (100 mg/kg-2AA) treatment groups. 

 

Discussion 

 The primary objective of this study was to demonstrate oxidative stress in the 

livers of rats exposed to 2AA. Two very important markers when looking to identify 

oxidative stress are serum albumin levels and antioxidant capacity in body fluids 

[Marrocco, Altieri, & Peluso 2017]. Albumin is a protein that has shown antioxidant 

properties. Through the reversible process of albumins oxidation of its cysteine residues 

albumin is able to act as an antioxidant and can be used as a general oxidative biomarker 

for oxidative stress based diseases [Marrocco et al. 2017]. In this study albumin levels 

were shown to be in higher concentration in the low dose treatment group and lower in 

the high dose treatment group as compared to the control (Figure 2). The decrease in 

albumin in the high dose treated group is a change we would expect to see due to 

albumins antioxidant properties, but the higher concentration of albumin in the low dose 

treatment groups makes this evidence relatively inconclusive. In future study total protein 
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concentrations could be measured to demonstrate the relative albumin level compared to 

the total protein concentration. As expected from previous research antioxidant capacity 

in serum was lower in both treated groups as compared to the control (Figure 8). In the 

antioxidant assay kit used in this study it is assumed that the antioxidant activity is 

equivalent to the reducing capacity [Marrocco et al. 2017]. Therefore, lower antioxidant 

capacity demonstrates an inability of the organism to break down ROS, and correlates to 

an imbalance in the ROS to antioxidants ratio known as oxidative stress. 

 Another marker that can be used to demonstrate oxidative stress is gene 

expression of genes that code for antioxidants. The genes measured in this study are 

involved with the coding of proteins and enzymes that break down ROS. The genes 

analyzed in this study included Pdx1, Sod1, Gpx1, Prdx6, Ncf2, Duox1 and Ptgs2. The 

genes that showed noticeable increase in expression where Sod1 and Prdx6 (Figure 6). 

Sod1 is a gene that codes for the production of the enzyme copper-zinc superoxide 

dismutase, commonly called SOD1. SOD1 is a member of the SOD class of antioxidant 

enzymes responsible for detoxifying superoxide anions by converting them to hydrogen 

peroxide. Expression of Sod1 can be induced by redox-active metals and superoxides 

[Messner, Murray, & Kowdley 2012]. Mice with Sod1 knockout experienced increased 

liver tumors likely do increased ROS [Elchuri et al. 2005]. In our study Sod1 was 

upregulated in treated individuals likely do to an immune response to cellular damage 

from ROS. Prdx6 was also shown to be significantly upregulated in both of our treated 

groups. Prdx6 is a gene that codes for the protein PRDX6. PRDX6 has shown to be 

abundantly expressed in hepatocytes, implying that it counteracts circulating oxidants 

[Wang et al. 2003]. As with Sod1 this over expression of Prdx6 represents an immune 
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response to excessive ROS. The only gene that showed significant downregulation for 

both treated groups was Ptgs2 (Figure 6). Ptgs2 expression is known to increase in the 

presence of inflammatory stimuli [Hellman et al. 2015]. Thus, downregulation is not in 

line with our anticipated findings. We would expect inflammation to be present and 

triggering upregulation of the Ptgs2 in treated individuals. Further study of the histology 

of hepatic tissue of 2AA treated groups could be carried out to assess the inflammation 

response to oxidative stress. 

 IgA protein concentration was found to be statically insignificant in treated 

groups as compared to the control (Figure 5) while AST activity was marginally 

increased in treated groups (Figure 3). IgA is an antibody produced in immune responses. 

Research has shown that the liver is very involved in the secretory IgA system, and liver 

disease has been shown to alter IgA metabolism [Brown & Kloppel 1989]. For this 

reason, we would have expected to see elevated IgA levels in the serum of treated 

individuals, though we were not able to demonstrate this relationship in this study. 

Elevated AST activity has been associated with liver damage in previous studies [Amin 

& Hamza 2005]. In this study we were only able to demonstrate slight elevation of the 

liver enzyme AST. 

Conclusion and Future Direction 

 In conclusion some evidence of oxidative stress due to dietary exposure to 2AA 

was demonstrated in this study, but further study is needed to conclusively determine this 

effect. We were unable to conclusively demonstrate inflammation of hepatic tissues in 

this study. Further study to analyze the histology of liver tissues could be incorporated 

into future experiments to help demonstrate inflammation and damage to hepatic tissues. 
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Another approach to help quantify liver damage could be to incorporate quantification of 

serum alanine transaminase (ALT). ALT is a liver enzyme like AST that has been shown 

to be a very specific marker of hepatocellular injury [Hall & Cash 2012]. Additionally, 

body weight analysis could be performed in future animal study portions to help quantify 

toxicity of 2AA. This could also be coupled with a higher dose regimented treatment 

group to determine if toxicity was high enough to demonstrate adequate results in this 

study. Total protein analysis could also be incorporated into future experimental designs 

to quantify specific protein values as a relative concentration of the total protein 

concentration. This could help determine if elevated values represent an elevation in one 

specific protein or the total concentration as a whole.  
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