Integrating Lego Robotics Into a 5th Grade Cross Curricular Unit to Promote the Development of Narrative Writing Skills

Shelli L. Casler-Failing
Georgia Southern University, scaslerfailing@georgiasouthern.edu

Mete Akcaoglu
Georgia Southern University, makcaoglu@georgiasouthern.edu

Valerie Woodrum
Nevils Elementary School, vwoodrum@bullochschools.org

Valerie Morris
Nevils Elementary School, vmorris@bullochschools.org

Jay McNeely
Nevils Elementary School, jmcneely@bullochschools.org

Follow this and additional works at: https://digitalcommons.georgiasouthern.edu/stem

Part of the Science and Mathematics Education Commons

Recommended Citation
Casler-Failing, Shelli L. 3762344; Akcaoglu, Mete; Woodrum, Valerie; Morris, Valerie; and McNeely, Jay, "Integrating Lego Robotics Into a 5th Grade Cross Curricular Unit to Promote the Development of Narrative Writing Skills" (2018). Interdisciplinary STEM Teaching & Learning Conference. 23.

This event is brought to you for free and open access by the Conferences & Events at Digital Commons@Georgia Southern. It has been accepted for inclusion in Interdisciplinary STEM Teaching & Learning Conference by an authorized administrator of Digital Commons@Georgia Southern. For more information, please contact digitalcommons@georgiasouthern.edu.
Integrating LEGO Robotics Into a 5th Grade Cross Curricular Unit to Promote the Development of Narrative Writing Skills

Presented by: Dr. Shelli Casler-Failing
Georgia Southern University
Department of Middle Grades and Secondary Education
Collaborators on Project

• Dr. Shelli Casler-Failing
 – Georgia Southern University
• Dr. Mete Akcaoglu
 – Georgia Southern University
• Ms. Valerie Morris
 – Nevils Elementary School
• Ms. Valerie Woodrum
 – Nevils Elementary School
• Jay McNeely
 – Nevils Elementary School
Purpose of Intervention

• Improve student writing
• Create an engaging cross-curricular experience for students
• Incorporate *more* learning in *less* time
• To stretch the boundaries of previous robotics interventions
Informal Pilot Study

• Unit developed based upon experiences from prior school year
• Conducted over the course of 4 weeks
 – 2.5 hours each week
• 16 students in first session, 12 students in second session
• Students transported to campus
The Scenario

• Students read an article about the bombing of Hiroshima during WWII prior to beginning robotics intervention

• Hiroshima scenario guided the Final Challenge and “large” writing tasks

• Final Challenge integrated real-world knowledge of Hurricane Maria in Puerto Rico

• Final writing activity integrated real-world experiences with Hurricane Irma
The Unit

Four day unit incorporating robotics education, building, programming, collaboration, problem-solving, planning, engineering design, history, math, and ELA

Day 1: Introduction to robots
Build robot with color sensor attachment
Programming basics
Reflective writing
The Unit

Day 2: Quick review of robot’s functions
Introduction to turns
Programming tasks
Introduction to Final Challenge
Proposal Development
Day 3: Review of robot’s functions
Review of programming blocks
Presentation of proposals
Programming of the Final Challenge
Reflective writing
The Unit

Day 4: Discussion – questions and review
Complete Final Challenge programming
Whole class presentations
Presentation of Culminating Activity
Writing time
Results

• Improved writing skills
• Understanding of the events of Hiroshima
• Improved collaborative skills
• Improved problem-solving skills
• Basic knowledge of building and programming robots
• Student engagement
• Robotics can be incorporated into content areas outside of the traditional STEM disciplines
Thank you!

Questions?

scaslerfailing@georgiasouthern.edu
Hiroshima – Final Challenge

Field Used for First Group

Field Used for Second Group
Proposal

• What is the problem?
 1-2 sentences

• What is your solution?
 4-5 sentences

• How do you plan to implement your solution?
 What will you need to do? What will your robot need to do? How will you accomplish this?
 5-10 sentences