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ON GORENSTEIN FIBER PRODUCTS AND APPLICATIONS

SAEED NASSEH, RYO TAKAHASHI, AND KELLER VANDEBOGERT

Abstract. We show that a non-trivial fiber product S ×k T of commutative
noetherian local rings S, T with a common residue field k is Gorenstein if and
only if it is a hypersurface of dimension 1. In this case, both S and T are
regular rings of dimension 1. We also give some applications of this result.

1. Introduction

Throughout this paper, (S,mS , k) and (T,mT , k) are commutative noetherian
local rings with a common residue field k, and S ×k T denotes the fiber product
of S and T over k. Note that, S ×k T is the pull-back of the natural surjections

S
πS−−→ k

πT←−− T and

S ×k T = {(s, t) ∈ S × T | πS(s) = πT (t)} .

This ring is a commutative noetherian local ring with maximal ideal mS×kT =
mS ⊕ mT and residue field k. Also, mS and mT are ideals of S ×k T and there
are ring isomorphisms S ∼= (S ×k T )/mT and T ∼= (S ×k T )/mS. If S 6= k 6= T
(or equivalently, mS 6= 0 6= mT ), then we say that S ×k T is a non-trivial fiber
product. (For more information about fiber products, in addition to the references
introduced below, see [5, 7, 9, 10, 11, 12, 13, 15].)

In case that S = T , it is shown in [1, Theorem 1.8] that S ×k S is Gorenstein if
and only if S is a regular ring of dimension 1. (See also D’Anna [6] and Shapiro [17].)
In this note we give the following generalization of [1, Theorem 1.8] which we prove
in 2.5; compare this result with Ogoma [14, Theorem 4].

Main Theorem. Let S ×k T be a non-trivial fiber product. The ring S ×k T is

Gorenstein if and only if it is a hypersurface of dimension 1, and then both S and

T are regular rings of dimension 1.

Moreover, in this case, S ×k T is isomorphic to a fiber product Q/(p)×k Q/(q),
where Q, Q/(p), and Q/(q) are regular local rings with residue field k and p, q ∈ Q
are prime elements.

As applications of this theorem, we give a stronger version of a result of Taka-
hashi [18, Theorem A] and prove a generalization of [2, Proposition 3.10] due to
Atkins and Vraciu; see Corollaries 3.6 and 3.8.
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2. Proof Of Main Theorem

For the rest of this paper, (R,mR, ℓ) will be a commutative noetherian local ring,
and recall that the rings S and T are introduced in the Introduction. The following
result is proved in [1, Proposition 1.7] when S and T are artinian.

Proposition 2.1. Let S ×k T be non-trivial fiber product. Then S ×k T is Cohen-

Macaulay if and only if dimS ×k T 6 1 and S and T are Cohen-Macaulay with

dimS = dimS ×k T = dimT .

Proof. The assertion follows from the equalities

dimS ×k T = max{dimS, dimT }

depthS ×k T = min{depthS, depthT, 1}.

(See Lescot [10], or Christensen, Striuli, and Veliche [5, Remark 3.1].) �

The following lemma will be used in the proof of Main Theorem.

Lemma 2.2. Assume that R is a hypersurface of dimension 1, and let I be a non-

zero ideal of R such that R/I is a regular ring of dimension 1. Then R/I ∼= Q/(f),
where Q is a regular local ring and f ∈ Q is a prime element.

Proof. Let R ∼= Q/(g), where (Q,mQ, ℓ) is a 2-dimensional regular local ring and
g ∈ mQ. Since I is a prime ideal of R, it corresponds to a prime ideal q/(g) of
Q/(g), where q ∈ Spec(Q) ∩ V ((g)). If g = g1g2 · · · gn is a prime factorization of g
in Q, then there exists an integer 1 6 i 6 n such that gi ∈ q. Let f := gi, and note
that htQ(q) = 1 = htQ((f)) because htR(I) = 0. Hence, q = (f). Therefore,

R

I
∼=

Q/(g)

q/(g)
=

Q/(g)

(f)/(g)
∼=

Q

(f)

as desired. �

Next we introduce some notations and discuss some results from [9] and [10] to
use in the proof of our Main Theorem. (See also [5].)

2.3. Let M be a finitely generated R-module. Recall that the Poincaré series

and the Bass series of M , denoted PM
R (t) and IRM (t), respectively, are the formal

Laurent series defined as follows:

PM
R (t) :=

∑

i>0

rankℓ(Ext
i
R(M, ℓ))ti

IRM (t) :=
∑

i>0

rankℓ(Ext
i
R(ℓ,M))ti.

We simply denote IRR (t) by IR(t). The coefficient of tdepthR in IR(t) is called type

of R, and is denoted γR. Note that γR 6= 0 and all the coefficients of ti in IR(t) for
i < depthR are zero. Also, note that the constant term in P ℓ

R(t) is 1.

2.4. By Kostrikin and Šafarevič [9] we have the equality

1

P k
S×kT

(t)
=

1

P k
S (t)

+
1

P k
T (t)

− 1 (2.4.1)

which gives a relation between Poincaré series of k over S×k T and over the rings S
and T . Also, by a result of Lescot [10, Theorem 3.1] we have the following formulas:
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If S and T are singular, then

IS×kT (t)

P k
S×kT

(t)
= t+

IS(t)

P k
S (t)

+
IT (t)

P k
T (t)

. (2.4.2)

If S is singular and T is regular with dimT = n, then

IS×kT (t)

P k
S×kT

(t)
= t+

IS(t)

P k
S (t)

−
tn+1

(1 + t)n
. (2.4.3)

If S and T are regular with dimS = m and dimT = n, then

IS×kT (t)

P k
S×kT

(t)
= t−

tm+1

(1 + t)m
−

tn+1

(1 + t)n
. (2.4.4)

We are now ready to prove the Main Theorem.

2.5 (Proof of Main Theorem). Assume that A := S ×k T is a Gorenstein ring.
By Proposition 2.1, we have dimA 6 1 and S and T are Cohen-Macaulay with
dimS = dimA = dimT . We prove the theorem by considering the following three
cases, and when using the Poincaré and Bass series, we simply write I and P instead
of I(t) and P (t).

Case 1: Assume that S and T are singular. Then by (2.4.1) and (2.4.2) we have

IA
(

P k
T + P k

S − P k
TP

k
S

)

= tP k
TP

k
S + ISP

k
T + ITP

k
S . (2.5.1)

If dimA = 0, then both S and T are Cohen-Macaulay of dimension zero. Now
by looking at the constant terms on the left and right of (2.5.1) we obtain 1 = γA =
γS + γT . But this is impossible because γS and γT are positive integers.

If dimA = 1, then S and T are Cohen-Macaulay of dimension one. Now by
looking at the coefficient of t on the left and right of (2.5.1) we obtain 1 = γA =
1 + γS + γT . Hence, γS + γT = 0, which is again impossible. Therefore, both of S
and T cannot be singular, and Case 1 does not hold.

Case 2: Assume that S is singular and T is regular with dimT = n. Then it
follows from (2.4.1) and (2.4.3) that

IA
(

P k
T + P k

S − P k
TP

k
S

)

(1 + t)n =
(

t(1 + t)n − tn+1
)

P k
TP

k
S + (1+ t)nISP

k
T . (2.5.2)

If dimA = 0, then we have n = 0. Since T is regular, we must have T = k,
which is a contradiction with our assumption.

If dimA = 1, then n = 1. Now by looking at the coefficient of t on the left and
right of (2.5.2) we obtain 1 = γA = 1 + γS . This implies that γS = 0, which is
impossible. Hence, Case 2 also does not hold.

Therefore, the only possibility is the following case.
Case 3. Both S and T are regular rings. If dimA = 0, then both S and T have

dimension zero, and hence, both are equal to k. This contradiction shows that we
must have dimA = 1 = dimS = dimT . Therefore, by [5, (3.2) Observation], the
ring A is a hypersurface of dimension one.

For the second part of the Main Theorem, note that S ∼= A/mT and T ∼= A/mS.
Hence the assertion follows from Lemma 2.2 and its proof. �

We conclude this section with the following result that will be used later.

Proposition 2.6. A non-trivial fiber product A := S ×k T is not regular.
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Proof. If A is a regular ring, then by Proposition 2.1 we have dimA 6 1. Now
by the Auslander-Buchsbaum formula we have pdA(A/mT ) 6 1. This implies that
pdA(mT ) = 0, and hence mT is a free A-module. But this cannot happen because
mSmT = 0, and mS 6= 0. Therefore, A is not a regular ring. �

3. Applications

This section contains some applications of the Main Theorem. In particular,
we give a stronger version of a result of Takahashi and prove a generalization of a
result of Atkins and Vraciu; see Corollaries 3.6 and 3.8 below.

We start with a result of Ogoma [13, Lemma 3.1] that plays an essential role in
this section.

3.1. Let a ⊆ R be an ideal of R that has a decomposition a = I ⊕ J , where I and
J are non-zero ideals of R. Then there is an isomorphism R ∼= (R/I)×R/a (R/J).
This isomorphism is naturally defined by r 7→ (r + I, r + J) for r ∈ R.

As an immediate observation of this discussion we record the following result.

Proposition 3.2. A local ring is a non-trivial fiber product of the form S ×k T if

and only if its maximal ideal is decomposable.

From Proposition 2.6 we obtain the following result.

Corollary 3.3. If mR is decomposable, then R is not regular.

The next result follows directly from [12, Corollary 4.2].

Corollary 3.4. Assume that mR is decomposable. For finitely generated R-modules

M and N if ExtiR(M,N) = 0 for all i≫ 0, then pdR(M) 6 1 or idR(N) 6 1.

Remark 3.5. Corollary 3.4 shows in particular that if mR is decomposable, then
R satisfies the Auslander-Reiten Conjecture, that is, if for a finitely generated R-
module M we have ExtiR(M,M ⊕R) = 0 for all i > 0, then M is a free R-module.
(See [4] for details about this conjecture.)

The following is a stronger version of a result of Takahashi [18, Theorem A].
Note that in this corollary we do not assume that R is complete; see Remark 3.7.

Corollary 3.6. If mR is decomposable, then the following are equivalent.

(i) There is a finitely generated R-module E of finite injective dimension such

that ExtiR(E,R) = 0 for all i≫ 0;
(ii) R is Gorenstein;

(iii) R is a hypersurface of dimension 1. In this case, R is isomorphic to a fiber

product Q/(p) ×ℓ Q/(q), where Q, Q/(p), and Q/(q) are regular local rings

with residue field ℓ and p, q ∈ Q are prime elements;

(iv) There is a finitely generated R-module M with infinite projective dimension

such that ExtiR(M,R) = 0 for all i≫ 0.

Proof. By Proposition 3.2, the ring R is a non-trivial fiber product. Let us assume
that R = S ×k T . (In particular, ℓ = k in this case.)

(i) =⇒ (ii). It follows from our vanishing assumption and Corollary 3.4 that R
is Gorenstein or pdR(E) <∞. In the latter case, R is also Gorenstein by Foxby [8].

(ii) =⇒ (iii) follows directly from the Main Theorem.
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(iii) =⇒ (iv). By Corollary 3.3, the ring R is not regular. Thus, by Auslander-
Buchsbaum and Serre [3, 16] we have pdR(k) =∞. Since R is Gorenstein we also
have ExtiR(k,R) = 0 for all i≫ 0.

(iv) =⇒ (i). SinceM has infinite projective dimension, our vanishing assumption
and Corollary 3.4 imply that R is a Gorenstein ring. This completes the proof. �

Remark 3.7. In Corollary 3.6, if we further assume that R is a quotient of a
regular ring, then by [18, Theorem 3.2.4] the ring R is isomorphic to a quotient
A/(xy) of a regular local ring A of dimension 2, where x, y is a regular system of
parameters for A.

The following is a generalization of [2, Proposition 3.10]. Recall that a finitely
generated R-module X is totally reflexive if HomR(HomR(X,R), R) ∼= X and

ExtiR(X,R) = 0 = ExtiR(HomR(X,R), R) for all i > 0.

Corollary 3.8. Assume that mR is decomposable. If R is artinian, then R has no

non-free finitely generated module M such that ExtiR(M,R) = 0 for all i ≫ 0. In

particular, R has no non-free totally reflexive modules.
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10. J. Lescot, La série de Bass d’un produit fibré d’anneaux locaux, C. R. Acad. Sci. Paris Sér. I

Math. 293 (1981), no. 12, 569–571.
11. W. F. Moore, Cohomology over fiber products of local rings, J. Algebra 321 (2009), no. 3,

758–773.
12. S. Nasseh and S. Sather-Wagstaff, Vanishing of Ext and Tor over fiber products, Proc. Amer.

Math. Soc., to appear.
13. T. Ogoma, Existence of dualizing complexes, J. Math. Kyoto Univ., 24 (1984), no. 1, 27–48.
14. T. Ogoma, Fiber products of Noetherian rings, Commutative algebra and combinatorics (Ky-

oto, 1985), 173–182, Adv. Stud. Pure Math., 11, North-Holland, Amsterdam, 1987.
15. T. Ogoma, Fiber products of Noetherian rings and their applications, Math. Proc. Camb.

Phil. Soc., 97 (1985), 231–241.
16. J.-P. Serre, Sur la dimension homologique des anneaux et des modules noethériens, Pro-

ceedings of the international symposium on algebraic number theory, Tokyo & Nikko, 1955
(Tokyo), Science Council of Japan, 1956, pp. 175–189.



6 SAEED NASSEH, RYO TAKAHASHI, AND KELLER VANDEBOGERT

17. J. Shapiro, On a construction of Gorenstein rings proposed by M. D’Anna, J. Alg. 323 (2010),
1155–1158.

18. R. Takahashi, Direct summands of syzygy modules of the residue class field, Nagoya Math.
J., 189 (2008), 1–25.

Department of Mathematical Sciences, Georgia Southern University, Statesboro,

Georgia 30460, U.S.A.

E-mail address: snasseh@georgiasouthern.edu

URL: https://cosm.georgiasouthern.edu/math/saeed.nasseh

Graduate School of Mathematics, Nagoya University, Furocho, Chikusaku, Nagoya,

Aichi 464-8602, Japan

E-mail address: takahashi@math.nagoya-u.ac.jp

URL: http://www.math.nagoya-u.ac.jp/~takahashi/

Department of Mathematical Sciences, Georgia Southern University, Statesboro,

Georgia 30460, U.S.A.

E-mail address: keller l vandebogert@georgiasouthern.edu


	On Gorenstein Fiber Products and Applications
	Recommended Citation


