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EXTENSION GROUPS FOR DG MODULES

SAEED NASSEH AND SEAN SATHER-WAGSTAFF

Abstract. Let M and N be differential graded (DG) modules over a pos-
itively graded commutative DG algebra A. We show that the Ext-groups
Exti

A
(M,N) defined in terms of semi-projective resolutions are not in general

isomorphic to the Yoneda Ext-groups YExti
A
(M,N) given in terms of equiva-

lence classes of extensions. On the other hand, we show that these groups are
isomorphic when the first DG module is semi-projective.

1. Introduction

Convention. In this paper, R is a commutative ring with identity.

Given two R-modules M and N , a classical result originating with work of
Baer [4] states that Ext1R(M,N), defined via projective/injective resolutions, is
isomorphic to the abelian group YExt1R(M,N) of equivalence classes of exact se-
quences of the form 0 → N → X → M → 0. The purpose of this note is to discuss
possible extensions of this result to the abelian category of differential graded (DG)
modules over a positively graded commutative DG algebra A. See Section 2 for
background information on this category.

Specifically, we show that Baer’s isomorphism fails in general in this context: Ex-
amples 3.1 and 3.2 exhibit DG A-modulesM , N with Ext1A(M,N) ≇ YExt1A(M,N).
(See 2.4 and 2.6 below for definitions.) On the other hand, the following result shows
that a reasonable hypothesis on the first module does yield such an isomorphism.

Theorem A. Let A be a DG R-algebra, and let N , Q be DG A-modules such that

Q is semi-projective. Then there is an isomorphism YExtiA(Q,N) ∼= ExtiA(Q,N)
of abelian groups for all i > 1.

This is the main result of Section 3; see Proof 3.8. In the subsequent Section 4,
we discuss some properties of YExt with respect to truncations.

It is worth noting here that we apply results from this paper in our answer to
a question of Vasconcelos in [12]. Specifically, in that paper, we investigate DG A-
modules C with Ext1A(C,C) = 0 using geometric techniques. These techniques yield
an isomorphism between YExt1A(C,C) and a certain quotient of tangent spaces; it
is then important for us to know when the vanishing of Ext1A(C,C) implies the
vanishing of related YExt1-modules; see Proposition 4.4 below.
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2 SAEED NASSEH AND SEAN SATHER-WAGSTAFF

2. DG Modules

We assume that the reader is familiar with the category of R-complexes and the
derived category D(R). Standard references for these topics are [6, 7, 9, 10, 13, 14].
For clarity, we include some definitions and notation.

Definition 2.1. In this paper, complexes of R-modules (“R-complexes” for short)

are indexed homologically: M = · · ·
∂M
n+2

−−−→ Mn+1

∂M
n+1

−−−→ Mn
∂M
n−−→ Mn−1

∂M
n−1

−−−→ · · · .
The degree of an element m ∈ M is denoted |m|. The infimum and supremum of M
are the infimum and supremum, respectively, of the set {n ∈ Z | Hn(M) 6= 0}. The
tensor product of two R-complexes M,N is denoted M⊗RN , and the Hom complex

is denoted HomR(M,N). A chain map M → N is a cycle in HomR(M,N)0.

Next we discuss DG algebras and DG modules, which are treated in, e.g., [1, 2,
3, 5, 8, 11]. We follow the notation and terminology from [2, 5]; given the slight
differences in the literature, though, we include a summary next.

Definition 2.2. A positively graded commutative differential graded R-algebra (DG

R-algebra for short) is an R-complex A equipped with a chain map µA : A⊗RA → A
with ab := µA(a⊗ b) that is associative, unital, and graded commutative such that
Ai = 0 for i < 0. The map µA is the product on A. Given a DG R-algebra A, the
underlying algebra is the graded commutative R-algebra A♮ = ⊕i>0Ai.

A differential graded module over a DG R-algebra A (DG A-module for short)
is an R-complex M with a chain map µM : A ⊗R M → M such that the rule
am := µM (a⊗m) is associative and unital. The map µM is the scalar multiplication

on M . The underlying A♮-module associated to M is the A♮-module M ♮ = ⊕i∈ZMi.
The DG A-module HomA(M,N) is the subcomplex of HomR(M,N) of the A-

linear homomorphisms. A morphism M → N of DG A-modules is a cycle in
HomA(M,N)0. Projective objects in the category of DG A-modules are called
categorically projective. Quasiisomorphisms of DG A-modules are identified by the
symbol ≃, also used for the “quasiisomorphic” equivalence relation.

Two important DG R-algebras to keep in mind are R itself and, more generally,
the Koszul complex over R (on a finite sequence of elements of R) with the exterior
product. A DG R-module is just an R-complex, and a morphism of DG R-modules
is simply a chain map.

Remark 2.3. Let A be a DG R-algebra. The category of DG A-modules is an
abelian category with enough projectives.

Definition 2.4. Let A be a DG R-algebra, and let M , N be DG A-modules. For
each i > 0 we have a well-defined Yoneda Ext group YExtiA(M,N), defined in terms
of a resolution of M by categorically projective DG A-modules:

· · · → Q1 → Q0 → M → 0.

A standard result shows that YExt1A(M,N) is isomorphic to the set of equivalence
classes of exact sequences 0 → N → X → M → 0 of DG A-modules under the
Baer sum; see, e.g., [15, (3.4.6)] and the proof of Theorem 3.5.

We now turn to the derived category D(A), and related notions.

Definition 2.5. Let A be a DG R-algebra. A DG A-module Q is graded-projective
if HomA(Q,−) preserves surjective morphisms, that is, if Q♮ is a projective graded
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R♮-module. The DG module Q is semi-projective if HomA(Q,−) respects surjec-
tive quasiisomorphisms, that is, if Q is graded-projective and respects quasiisomor-

phisms. A semi-projective resolution of M is a quasiisomorphism L
≃
−→ M of DG

A-modules such that L is semi-projective.

Fact 2.6. Let A be a DG R-algebra. Then every DG A-module has a semi-
projective resolution.

Definition 2.7. Let A be a DG R-algebra. The derived category D(A) is formed
from the category of DG A-modules by formally inverting the quasiisomorphisms;
see [11]. Isomorphisms in D(A) are identified by the symbol ≃.

The derived functor RHomA(M,N) is defined via a semi-projective resolution

P
≃
−→ M , as RHomA(M,N) ≃ HomA(P,N). For each i ∈ Z, set ExtiA(M,N) :=

H−i(RHomA(M,N)).

3. DG Ext vs. Yoneda Ext

We begin this section with examples of DG A-modules M and N such that
Ext1A(M,N) ≇ YExt1A(M,N). These present two facets of the distinctness of Ext
and YExt, as the first example has M and N both bounded, while the second one
(from personal communication with Avramov) has M graded-projective.

Example 3.1. Let R = k[[X ]], and consider the following exact sequence of DG
R-modules, i.e., exact sequence of R-complexes:

0 // R // R // k // 0

0

��

0

��

0

��

0 // R
X //

1

��

R //

1

��

k //

1

��

0

0 // R
X //

��

R //

��

k //

��

0

0 0 0.

This sequence does not split over R (it is not even degree-wise split) so it gives
a non-trivial class in YExt1R(k,R), and we conclude that YExt1R(k,R) 6= 0. On
the other hand, k is homologically trivial, so we have Ext1R(k,R) = 0 since 0 is a
semi-free resolution of k.

Example 3.2. Let R = k[X ]/(X2) and consider the following exact graded-

projective DG R-module M = · · ·
X
−→ R

X
−→ R

X
−→ · · · . Since M is exact, we

have ExtiR(M,M) = 0 for all i. We claim, however, that YExt1R(M,M) 6= 0. To
see this, first note that M is isomorphic to the suspension ΣM and that M is not
contractible. Thus, the mapping cone sequence for the identity morphism idM is
isomorphic to one of the form 0 → M → X → M → 0 and is not split.
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The definition of the isomorphism YExtiA(Q,N) → ExtiA(Q,N) for i = 1 in
Theorem A is contained in the following construction. The subsequent lemma and
theorem show that Ψ is a well-defined isomorphism.

Construction 3.3. Let A be a DG R-algebra, and let N , Q be DG A-modules
such that Q is graded-projective. Define Ψ: YExt1A(Q,N) → H−1(HomA(Q,N)) as
follows. Note that if Q is semi-projective, then Ext1A(Q,N) ∼= H−1(HomA(Q,N)),
which fits with what we have in Theorem A.

Let ζ ∈ YExt1A(Q,N) be represented by the sequence

0 → N
f
−→ X

g
−→ Q → 0. (3.3.1)

Since Q is graded-projective, this sequence is graded-split, that is there are elements
h ∈ HomA(X,N)0 and k ∈ HomA(Q,X)0 with

hf = idN gk = idQ hk = 0 fh+ kg = idX .

Thus, the sequence (3.3.1) is isomorphic to one of the form

...

∂N
i+1

��

...

∂X
i+1

��

...

∂
Q
i+1

��

0 // Ni

∂N
i

��

ǫi // Ni ⊕Qi

∂X
i

��

πi // Qi

∂
Q
i

��

// 0

0 // Ni−1

∂N
i−1

��

ǫi−1
// Ni−1 ⊕Qi−1

∂X
i−1

��

πi−1
// Qi−1

∂
Q
i−1

��

// 0

...
...

...

(3.3.2)

where ǫj is the natural inclusion and πj is the natural surjection for each j. Since
this diagram comes from a graded-splitting of (3.3.1), the scalar multiplication on
the middle column of (3.3.2) is the natural one a [ pq ] = [ apaq ]. (We write elements of
Ni ⊕Qi as column vectors.)

The fact that (3.3.2) commutes implies that ∂X
i has a specific form:

∂X
i =

[
∂N
i λi

0 ∂
Q

i

]
. (3.3.3)

Here, we have λi : Qi → Ni−1, that is, λ = {λi} ∈ HomR(Q,N)−1. Since the
horizontal maps in the sequence (3.3.2) are morphisms of DG A-modules, it fol-
lows that λ is a cycle in HomA(Q,N)−1. Thus, λ represents a homology class
in H−1(HomA(Q,N)), and we define Ψ: YExt1A(Q,N) → H−1(HomA(Q,N)) by
setting Ψ(ζ) equal to [λ] the homology class of λ in H−1(HomA(Q,N)).

Lemma 3.4. Let A be a DG R-algebra, and let N , Q be DG A-modules such that Q
is graded-projective. Then the map Ψ: YExt1A(Q,N) → H−1(HomA(Q,N)) from

Construction 3.3 is well-defined.
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Proof. Let ζ ∈ YExt1A(Q,N) be represented by the sequence (3.3.2), and let ζ be
represented by another exact sequence

...

∂N
i+1

��

...

∂X′

i+1

��

...

∂
Q
i+1

��

0 // Ni

∂N
i

��

ǫi // Ni ⊕Qi

∂X′

i

��

πi // Qi

∂
Q
i

��

// 0

0 // Ni−1

∂N
i−1

��

ǫi−1
// Ni−1 ⊕Qi−1

∂X′

i−1
��

πi−1
// Qi−1

∂
Q
i−1

��

// 0

...
...

...

(3.4.1)

where

∂X′

i =
[
∂N
i λ′

i

0 ∂
Q
i

]
. (3.4.2)

We need to show that λ− λ′ ∈ Im(∂
HomA(Q,N)
0 ). The sequences (3.3.2) and (3.4.1)

are equivalent in YExt1R(Q,N), so for each i there is a commutative diagram

0 // Ni

=

��

ǫi // Ni ⊕Qi

[ ui vi
wi xi

] ∼=

��

πi // Qi

=

��

// 0

0 // Ni
ǫi // Ni ⊕Qi

πi // Qi
// 0

(3.4.3)

where the middle vertical arrow describes a DG A-module isomorphism, and such
that the following diagram commutes for all i

Ni ⊕Qi
[
∂N
i λi

0 ∂
Q
i

]

��

∼=

[ ui vi
wi xi

]
// Ni ⊕Qi

[
∂N
i λ′

i

0 ∂
Q
i

]

��

Ni−1 ⊕Qi−1 ∼=

[
ui−1 vi−1

wi−1 xi−1

]

// Ni−1 ⊕Qi−1.

(3.4.4)

The fact that diagram (3.4.3) commutes implies that ui = idNi
, xi = idQi

, and
wi = 0. Also, the fact that the middle vertical arrow in diagram (3.4.3) describes
a DG A-module morphism implies that the sequence vi : Qi → Ni respects scalar
multiplication, i.e., we have v ∈ HomA(Q,N)0. The fact that diagram (3.4.4)

commutes implies that λi − λ′

i = ∂N
i vi − vi−1∂

Q
i . We conclude that λ − λ′ =

∂
HomA(Q,N)
0 (v) ∈ Im(∂

HomA(Q,N)
0 ), so Ψ is well-defined. �

The next result contains the case i = 1 of Theorem A from the introduction,
because if Q is semi-projective, then Ext1A(Q,N) ∼= H−1(HomA(Q,N)).

Theorem 3.5. Let A be a DG R-algebra, and let N , Q be DG A-modules such

that Q is graded-projective. Then the map Ψ: YExt1A(Q,N) → H−1(HomA(Q,N))
from Construction 3.3 is a group isomorphism.

Proof. We break the proof into three claims.
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Claim 1. Ψ is additive. Let ζ, ζ′ ∈ YExt1A(Q,N) be represented by exact sequences

0 → N
ǫ
−→ X

π
−→ Q → 0 and 0 → N

ǫ′

−→ X ′ π′

−→ Q → 0 respectively, where Xi =
Ni⊕Qi = X ′

i and the differentials ∂X and ∂X′

are described as in (3.3.3) and (3.4.2),
respectively. We need to show that the Baer sum ζ + ζ′ is represented by an exact

sequence 0 → N
ǫ̃
−→ X̃

π̃
−→ Q → 0, where X̃i = Ni ⊕ Qi and ∂X̃

i =
[
∂N
i λi+λ′

i

0 ∂
Q
i

]
,

with scalar multiplication a [ pq ] = [ apaq ]. Note that it is straightforward to show

that the sequence X̃ defined in this way is a DG A-module, and the natural maps

N
ǫ̃
−→ X̃

π̃
−→ Q are A-linear, using the analogous properties for X and X ′.

We construct the Baer sum in two steps. The first step is to construct the
pull-back diagram

X ′′ //

��

p
X ′

π′

��

X
π // Q.

The DG module X ′′ is a submodule of the direct sum X ⊕X ′, so each X ′′

i is the
submodule of

(X ⊕X ′)i = Xi ⊕X ′

i
∼= Ni ⊕Qi ⊕Ni ⊕Qi

consisting of all vectors [ x
x′ ] such that π′

i(x
′) = πi(x), that is, all vectors of the form

[p q p′ q′]T such that q = q′. In other words, we have

Ni ⊕Qi ⊕Ni

∼=
−→ X ′′

i (3.5.1)

where the isomorphism is given by [p q p′]T 7→ [p q p′ q]T . The differential
on X ⊕ X ′ is the natural diagonal map. So, under the isomorphism (3.5.1), the
differential on X ′′ has the form

X ′′

i
∼= Ni ⊕Qi ⊕Ni

∂X′′

i =



∂N
i λi 0

0 ∂
Q
i

0

0 λ′

i ∂N
i




−−−−−−−−−−−−−→ Ni−1 ⊕Qi−1 ⊕Ni−1
∼= X ′′

i−1.

The next step in the construction of ζ + ζ′ is to build X̃ , which is the cokernel

of the morphism γ : N → X ′′ given by p 7→
[
−p
0
p

]
. That is, since γ is injective, the

complex X̃ is determined by the exact sequence 0 → N
γ
−→ X ′′ τ

−→ X̃ → 0. It is
straightforward to show that this sequence has the following form

0 // Ni

[
−1
0
1

]

//

∂N
i

��

Ni ⊕Qi ⊕Ni

[ 1 0 1
0 1 0 ] //



∂N
i λi 0

0 ∂
Q
i

0

0 λ′

i ∂N
i




��

Ni ⊕Qi
//

[
∂N
i λi+λ′

i

0 ∂
Q
i

]

��

0

0 // Ni−1

[
−1
0
1

]

// Ni−1 ⊕Qi−1 ⊕Ni−1

[ 1 0 1
0 1 0 ] // Ni−1 ⊕Qi−1

// 0.

By inspecting the right-most column of this diagram, we see that X̃ has the desired
form. Furthermore, checking the module structures at each step of the construction,

we see that the scalar multiplication on X̃ is the natural one a [ pq ] = [ apaq ]. This
concludes the proof of Claim 1.



EXTENSION GROUPS FOR DG MODULES 7

Claim 2. Ψ is injective. Suppose that ζ ∈ Ker(Ψ) is represented by the dis-

plays (3.3.1)–(3.3.3). The condition Ψ(ζ) = 0 says that λ ∈ Im(∂
HomA(Q,N)
0 ), so

there is an element s ∈ HomA(Q,N)0 such that λ = ∂
HomA(Q,N)
0 (s). Thus, for each

i we have λi = ∂N
i si − si−1∂

Q
i . From this, it is straightforward to show that the

following diagram commutes:

Ni ⊕Qi
[
∂N
i λi

0 ∂
Q
i

]

��

∼=

[
1 si
0 1

]

// Ni ⊕Qi
[
∂N
i 0

0 ∂
Q
i

]

��

Ni−1 ⊕Qi−1 ∼=

[
1 si−1

0 1

]

// Ni−1 ⊕Qi−1.

From the fact that s is A-linear, it follows that the maps
[
1 si
0 1

]
describe an A-linear

isomorphism X
∼=
−→ N ⊕Q making the following diagram commute:

0 // N

=

��

ǫ // X

∼=

��

π // Q

=

��

// 0

0 // N
ǫ // N ⊕Q

π // Q // 0.

In other words, the sequence (3.3.1) splits, so we have ζ = 0, and Ψ is injective.
This concludes the proof of Claim 2.

Claim 3. Ψ is surjective. For this, let ξ ∈ H−1(HomA(Q,N)) be represented by

λ ∈ Ker(∂
HomA(Q,N)
−1 ). Using the fact that λ is A-linear such that ∂

HomA(Q,N)
−1 (λ) =

0, one checks directly that the displays (3.3.2)–(3.3.3) describe an exact sequence
of DG A-module homomorphisms of the form (3.3.1) whose image under Ψ is ξ.
This concludes the proof of Claim 3 and the proof of the theorem. �

Remark 3.6. After the results of this paper were announced, Avramov, et al. [2]
established the following generalization of Theorem 3.5.

Proposition 3.7. Let A be a DG R-algebra, and let M and N be DG A-modules.

There is a monomorphism of abelian groups

κ : H0(HomA(Σ
−1M,N)) → YExt1U (M,N)

with image equal to the set of equivalence classes of graded-split exact sequences of

the form 0 → N → X → M → 0.

To see how this generalizes Theorem 3.5, first note that if M is graded-projective,
then the map κ is bijective, as in this case every element of YExt1U (M,N) is graded-
split; thus, we have H−1(HomA(M,N)) ∼= H0(HomA(Σ

−1M,N)) ∼= YExt1U (M,N).

Proof 3.8 (Proof of Theorem A). Using Theorem 3.5, we need only justify the
isomorphism YExtiA(Q,N) ∼= ExtiA(Q,N) for i > 2. Let

L+
•
= · · ·

∂L
2−−→ L1

∂L
1−−→ L0

π
−→ Q → 0

be a resolution of Q by categorically projective DG A-modules. Since each Lj is

categorically projective, we have YExtiA(Lj ,−) = 0 for all i > 1 and Lj ≃ 0 for

each j, so we have ExtiA(Lj ,−) = 0 for all i. Set Qi := Im ∂L
i for each i > 1. Each
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Li is graded-projective, so the fact that Q is graded-projective implies that each
Qi is graded-projective.

Now, a straightforward dimension-shifting argument explains the first and third
isomorphisms in the following display for i > 2:

YExtiA(Q,N) ∼= YExt1A(Qi−1, N) ∼= Ext1A(Qi−1, N) ∼= ExtiA(Q,N).

The second isomorphism is from Theorem 3.5 since eachQi is graded-projective. �

The next example shows that one can have YExt0A(Q,N) 6∼= Ext0A(Q,N), even
when Q is semi-free.

Example 3.9. Continue with the assumptions and notation of Example 3.1, and
set Q = N = R. It is straightforward to show that the morphisms R → R are
precisely given by multiplication by fixed elements of R, so we have the first step
in the next display:

YExt0A(R,R) ∼= R 6= 0 = Ext0A(R,R).

The third step follows from the condition R ≃ 0.

Remark 3.10. It is perhaps worth noting that our proofs can also be used to give
the isomorphisms from Theorem A when Q is not necessarily semi-projective, but
N is “semi-injective”.

4. YExt1 and Truncations

For our work in [12], we need to know how YExt respects the following notion.

Definition 4.1. Let A be a DG R-algebra, and let M be a DG A-module. Given
an integer n, the nth soft left truncation of M is the complex

τ(M)(6n) := · · · → 0 → Mn/ Im(∂M
n+1) → Mn−1 → Mn−2 → · · ·

with differential induced by ∂M . In other words, τ(M)(6n) is the quotient DG
A-module M/M ′ where M ′ is the following DG submodule of M :

M ′ = · · · → Mn+2 → Mn+1 → Im(∂M
n+1) → 0.

Note that we have M ′ ≃ 0 if and only if n > sup(M), so the natural morphism
ρ : M → τ(M)(6n) of DG A-modules yields an isomorphism in D(A) if and only if
n > sup(M).

Proposition 4.2. Let A be a DG R-algebra, and let M and N be DG A-modules.

Assume that n is an integer such that Ni = 0 for all i > n. Then the natural

map YExt1A(τ(M)(6n), N) → YExt1A(M,N) induced by the morphism ρ : M →
τ(M)(6n) from Definition 4.1 is a monomorphism.

Proof. Let Υ denote the map YExt1A(τ(M)(6n), N) → YExt1A(M,N) induced by

ρ. Let α ∈ Ker(Υ) ⊆ YExt1A(τ(M)(6n), N) be represented by the exact sequence

0 → N
f
−→ X

g
−→ τ(M)(6n) → 0. (4.2.1)

Note that, since Ni = 0 = (τ(M)(6n))i for all i > n, we have Xi = 0 for all i > n.
Our assumptions imply that 0 = Υ([α]) = [β] where β comes from the following
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pull-back diagram:

0

��

0

��

0

��

0 // 0

��

// K
= //

h̃
��

K //

h

��

0

β : 0 // N

=

��

f̃
// X̃

p

g̃
//

ρ̃

��

M //

ρ

��

0

α : 0 // N

��

f
// X

��

g
// τ(M)(6n)

��

// 0

0 0 0.

(4.2.2)

The middle row β of this diagram is split exact since [β] = 0, so there is a morphism

F : X̃ → N of DG A-modules such that F ◦ f̃ = idN . Note that K has the form

K = · · ·
∂M
n+2

−−−→ Mn+1

∂M
n+1

−−−→ Im(∂M
n+1) → 0 (4.2.3)

because of the right-most column of the diagram.

We claim that F ◦ h̃ = 0. It suffices to check this degree-wise. When i > n, we

have Ni = 0, so Fi = 0, and Fi ◦ h̃i = 0. When i < n, the display (4.2.3) shows that

Ki = 0, so h̃i = 0, and Fi ◦ h̃i = 0. For i = n, we first note that the display (4.2.3)
shows that ∂K

n+1 is surjective. In the following diagram, the faces with solid arrows

commute because h̃ and F are morphisms:

0

��

��

Kn+1

h̃n+1

##●
●

●

●

●

●

●

●

∂K
n+1

����

oo

0

��

X̃n+1

∂X̃
n+1

��

Fn+1

oo

0

��

Kn

h̃n

##●
●

●

●

●

●

●

●

●

oo

Nn X̃n
Fn

oo

Since ∂K
n+1 is surjective, a simple diagram chase shows that Fn ◦ h̃n = 0. This

establishes the claim.
To conclude the proof, note that the previous claim shows that the map K → 0

is a left-splitting of the top row of diagram (4.2.2) that is compatible with the
left-splitting F of the middle row. It is now straightforward to show that F in-
duces a morphism F : X → N of DG A-modules that left-splits the bottom row of
diagram (4.2.2). Since this row represents α ∈ YExt1A(τ(M)(6n), N), we conclude
that [α] = 0, so Υ is a monomorphism. �
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The next example shows that the monomorphism from Proposition 4.2 may not
be an isomorphism.

Example 4.3. Continue with the assumptions and notation of Example 3.1. The
following diagram describes a non-zero element of YExt1R(M,N):

0 // N // R // M // 0

0

��

0

��

0

��

0 // 0 //

��

R
1 //

1

��

R //

π

��

0

0 // R
X //

��

R
π //

��

k //

��

0

0 0 0.

It is straightforward to show that τ(M)(60) = 0, so we have

0 = YExt1A(τ(M)(60), N) →֒ YExt1A(M,N) 6= 0

thus this map is not an isomorphism.

Proposition 4.4. Let A be a DG R-algebra, and let C be a semi-projective DG

A-module such that Ext1R(C,C) = 0. For n > sup(C), one has

YExt1A(C,C) = 0 = YExt1A(τ(C)(6n), τ(C)(6n)).

Proof. From Theorem 3.5, we have YExt1A(C,C) ∼= Ext1A(C,C) = 0. For the re-
mainder of the proof, assume without loss of generality that sup(C) < ∞. Another
application of Theorem 3.5 explains the first step in the next display:

YExt1A(C, τ(C)(6n)) ∼= Ext1A(C, τ(C)(6n)) ∼= Ext1A(C,C) = 0.

The second step comes from the assumption n > sup(C) which guarantees that
the natural morphism C → τ(C)(6n) represents an isomorphism in D(A). Propo-

sition 4.2 implies that YExt1A(τ(C)(6n), τ(C)(6n)) is isomorphic to a subgroup of

YExt1A(C, τ(C)(6n)) = 0, so YExt1A(τ(C)(6n), τ(C)(6n)) = 0, as desired. �
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2
, Springer-Verlag, Berlin, 1977, Lecture Notes in

Mathematics, Vol. 569, pp. 262–311. MR 57 #3132
14. , Des catégories dérivées des catégories abéliennes, Astérisque (1996), no. 239, xii+253
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