Rigor Demystified, Now What?: Applying & Aligning Webb’s Depth of Knowledge to Literacy & Math Instruction.

Barbara Serianni
Armstrong State University, barbara.serianni@armstrong.edu

Kelly Brooksher
Armstrong State University, kbrooksher@georgiasouthern.edu

Follow this and additional works at: https://digitalcommons.georgiasouthern.edu/nyar_savannah

Part of the [Curriculum and Instruction Commons](https://digitalcommons.georgiasouthern.edu/curriculum-and-instruction-commons), [Educational Methods Commons](https://digitalcommons.georgiasouthern.edu/educational-methods-commons), and the [Elementary and Middle and Secondary Education Administration Commons](https://digitalcommons.georgiasouthern.edu/elementary-and-middle-and-secondary-education-administration-commons)

Recommended Citation
https://digitalcommons.georgiasouthern.edu/nyar_savannah/2016/2016/137

This presentation (open access) is brought to you for free and open access by the Conferences & Events at Digital Commons@Georgia Southern. It has been accepted for inclusion in National Youth-At-Risk Conference Savannah by an authorized administrator of Digital Commons@Georgia Southern. For more information, please contact digitalcommons@georgiasouthern.edu.
Demystifying Rigor: Dissecting Webb’s Depth of Knowledge for the Classroom

Kelly Brooksher & Barbara Serianni
Schedule

- Session is from 10:30-11:45 [75 min]
- Pedagogical implications under DOK [30 min]
- Practical tips: Instructional activities and assessments [20 min]
- Groups/collaboration [10 min]
- Questions [10 mins]
- Fluff time for “left turns” [5 min]
Prepare ALL students to be ready for college & careers

- Assumes a mindset that ALL students can achieve
- Systematically increase expectations & rigor for students
Blooms’ & Webb’s...
I Remember......

- 10% of what I read
- 20% of what I hear
- 30% of what I see
- 50% of what I see and hear
- 70% of what I discuss with others
- 80% of what I experience by doing
- 95% of what I teach others

Experts in brain based learning claim that traditional instruction is at odds with how the brain learns and that a typical classroom environment actually inhibits the brain from learning!
Pedagogical Implications

(What Will Teaching & Learning Look Like?)
Webb’s Depth of Knowledge

Level 1
Routine Thinking
Recall or reproduce knowledge or skills

Level 2
Conceptual Thinking
Requires students process knowledge about skills or concepts before responding

Level 3
Short-Term Strategic Thinking
Short-term use of higher order thinking to solve real world problems with predictable outcomes

Level 4
Extended Thinking
Investigate solutions to real world problems with unpredictable outcomes
DOK – Level One
Recall & Reproduction

Knowledge Acquisition

WHO?
WHAT?
HOW?
WHERE?
WHEN?
DOK – Level One
Knowledge Acquisition

❖ TEACHER ROLE

• Shows
• Tells
• Demonstrates
• Leads
• Defines

❖ STUDENT ROLE

• Remembers
• Memorizes
• Restates
• Absorbs
DOK – Level Two
Skill & Concept

Knowledge Application

How did it happen?

How does it work?

How is it used?
DOK – Level Two
Knowledge Application

TEACHER ROLE
• Questions to differentiate
• Models
• Explores connections
• Provides examples and non-examples

STUDENT ROLE
• Solves problems
• Constructs models
• Examines
• Compiles & organizes

DOK – Level Two
Knowledge Application
DOK – Level Three
Knowledge Analysis

Why did it happen? Why can you use it?
What is the effect? How can you use it?
What is the cause? What is the reason?
What is the result?
DOK – Level Three
Knowledge Analysis

TEACHER ROLE
- Asks open-ended questions
- Acts as a resource
- Encourages multiples approaches & solutions

STUDENT ROLE
- Uncovers & selects relevant evidence for analysis
- Critiques
- Debates
- Argues
DOK – Level Four
Extended Thinking

Knowledge Augmentation and Transfer

What if?

Why is the impact? What is the influence?
What would happen? Why is the relationship?
What do you believe/feel/think?

What can you create/design/develop?
DOK – Level Four
Knowledge Augmentation and Transfer

TEACHER ROLE
• Questions to extend thinking
• Facilitates teaming, collaboration, & self-evaluation

STUDENT ROLE
• Designs
• Takes risks
• Researches
• Creates tangible products
Interpret the Standards

SS.ELA-LITERACY.RST.6-8.5
DOK 4
Analyze the structure an author uses to organize a text, including how the major sections contribute to the whole and to an understanding of the topic.

SS.ELA-LITERACY.RST.6-8.8
DOK 2
Distinguish among facts, reasoned judgment based on research findings, and speculation in a text.

SS.ELA-LITERACY.RST.6-8.9
DOK 3
Compare and contrast the information gained from experiments, simulations, video, or multimedia sources with that gained from reading a text on the same topic.
Interpret the Standards

CCSS.ELA-LITERACY.W.4.8
Recall relevant information from experiences or gather relevant information from print and digital sources; take notes and categorize information, and provide a list of sources.

CCSS.ELA-LITERACY.W.4.9
Draw evidence from literary or informational texts to support analysis, reflection, and research.

DOK 1
Backwards Design

1. Identify Desired Results
2. Determine Acceptable Evidence
3. Plan Instruction & Activities
Identify Desired Results

Compare and contrast the information gained from experiments, simulations, video, or multimedia sources with that gained from reading a text on the same topic.
Determine Acceptable Evidence

- What will demonstrate that student learning took place?
- Formative and summative assessments
- Observations, tests, projects
Plan Instruction & Learning Activities

- What knowledge & skills will students need to achieve desired learning outcomes?
- Formative and summative assessments
- Consider teaching methods, sequencing, materials
<table>
<thead>
<tr>
<th>Instructional Strategy Category</th>
<th>Predicted Percentile Gains</th>
<th>Actual Percentile Gains</th>
</tr>
</thead>
<tbody>
<tr>
<td>Generating & testing hypotheses</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nonlinguistic representations</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Reinforcing effort and providing recognition</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Homework & practice</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Summarizing & note taking</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Identifying similarities and differences</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cooperative Learning</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Questions, cues, & advanced organizers</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Setting objectives & providing feedback</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Instructional Strategy Category</td>
<td>Predicted Percentile Gains</td>
<td>Actual Percentile Gains</td>
</tr>
<tr>
<td>--</td>
<td>----------------------------</td>
<td>-------------------------</td>
</tr>
<tr>
<td>Generating & testing hypotheses</td>
<td></td>
<td>23</td>
</tr>
<tr>
<td>Nonlinguistic representations</td>
<td></td>
<td>27</td>
</tr>
<tr>
<td>Reinforcing effort and providing recognition</td>
<td></td>
<td>29</td>
</tr>
<tr>
<td>Homework & practice</td>
<td></td>
<td>28</td>
</tr>
<tr>
<td>Summarizing & note taking</td>
<td></td>
<td>34</td>
</tr>
<tr>
<td>Identifying similarities and differences</td>
<td></td>
<td>45</td>
</tr>
<tr>
<td>Cooperative Learning</td>
<td></td>
<td>27</td>
</tr>
<tr>
<td>Questions, cues, & advanced organizers</td>
<td></td>
<td>22</td>
</tr>
<tr>
<td>Setting objectives & providing feedback</td>
<td></td>
<td>23</td>
</tr>
</tbody>
</table>
“Bump Up” the Thinking Level

- It’s easy… Use your DOK Wheel
- By your level of questioning
- What you are asking the student to do
- “How do you know?”
- A Guide for Using Webb’s DOK with CCSS (info on reference slide)
Questions?

http://tinyurl.com/NYARDOK
Rigor Demystified, Now What: Applying & Aligning Webb’s Depth of Knowledge to Literacy & Math Instruction

Barbara Serianni & Kelly Brooksher
Level 1
Requires students to use simple skills or abilities to recall or locate facts from the text.
Level 2
Requires both initial comprehension and subsequent processing of text or portions of text.

DOK Levels for Reading
Level 3
Requires deep knowledge

DOK Levels for Reading
Level 4

Requires complex reasoning, planning, developing, and thinking most likely over an extended period of time

DOK Levels for Reading
Level 1

Requires the recall of information (fact, definition, term, or property), the use of a procedure, or applying an algorithm or formula.

DOK Levels for Math
Level 2
Requires demonstration of conceptual understanding through models and explanations, comparing and classifying information, estimating, and interpreting data from a simple graph.

DOK Levels for Math
Level 3 requires reasoning, planning, and using evidence to solve a problem or algorithm.

DOK Levels for Math
Level 4
Requires complex reasoning, planning, and thinking generally over extended periods of time (not time only on repetitive tasks)

DOK Levels for Math
Key Ideas and Details:

CCSS.ELA-LITERACY.CCRA.R.1
Read closely to determine what the text says explicitly and to make logical inferences from it; cite specific textual evidence when writing or speaking to support conclusions drawn from the text.
DOK 2

CCSS.ELA-LITERACY.CCRA.R.2
Determine central ideas or themes of a text and analyze their development; summarize the key supporting details and ideas.
DOK 2

CCSS.ELA-LITERACY.CCRA.R.3
Analyze how and why individuals, events, or ideas develop and interact over the course of a text.
DOK 4
Craft and Structure:

CCSS.ELA-LITERACY.CCRA.R.4
Interpret words and phrases as they are used in a text, including determining technical, connotative, and figurative meanings, and analyze how specific word choices shape meaning or tone. DOK 3

CCSS.ELA-LITERACY.CCRA.R.5
Analyze the structure of texts, including how specific sentences, paragraphs, and larger portions of the text (e.g., a section, chapter, scene, or stanza) relate to each other and the whole. DOK 3

CCSS.ELA-LITERACY.CCRA.R.6
Assess how point of view or purpose shapes the content and style of a text. DOK 3
Integration of Knowledge and Ideas:

CCSS.ELA-LITERACY.CCRA.R.7
Integrate and evaluate content presented in diverse media and formats, including visually and quantitatively, as well as in words. *DOK 4*

CCSS.ELA-LITERACY.CCRA.R.8
Delineate and evaluate the argument and specific claims in a text, including the validity of the reasoning as well as the relevance and sufficiency of the evidence. *DOK 4*

CCSS.ELA-LITERACY.CCRA.R.9
Analyze how two or more texts address similar themes or topics in order to build knowledge or to compare the approaches the authors take. *DOK 3*
College & Career Readiness
Anchor Standards - Reading

Range of Reading and Level of Text Complexity:

CCSS.ELA-LITERACY.CCRA.R.10
Read and comprehend complex literary and informational texts independently and proficiently \textit{DOK 2}
Standards of Mathematical Practice

CCSS.MATH.PRACTICE.MP1 Make sense of problems and persevere in solving them. DOK 3

Mathematically proficient students start by explaining to themselves the meaning of a problem and looking for entry points to its solution. They analyze givens, constraints, relationships, and goals. They make conjectures about the form and meaning of the solution and plan a solution pathway rather than simply jumping into a solution attempt. They consider analogous problems, and try special cases and simpler forms of the original problem in order to gain insight into its solution. They monitor and evaluate their progress and change course if necessary.
Standards of Mathematical Practice

CCSS.MATH.PRACTICE.MP2 Reason abstractly and quantitatively. DOK 3

Mathematically proficient students make sense of quantities and their relationships in problem situations.
Standards of Mathematical Practice

CCSS.MATH.PRACTICE.MP3 Construct viable arguments and critique the reasoning of others. DOK 4

Mathematically proficient students understand and use stated assumptions, definitions, and previously established results in constructing arguments. They make conjectures and build a logical progression of statements to explore the truth of their conjectures. They are able to analyze situations by breaking them into cases, and can recognize and use counterexamples. They justify their conclusions, communicate them to others, and respond to the arguments of others. They reason inductively about data, making plausible arguments that take into account the context from which the data arose. Mathematically proficient students are also able to compare the effectiveness of two plausible arguments, distinguish correct logic or reasoning from that which is flawed, and—if there is a flaw in an argument—explain what it is.
Standards of Mathematical Practice

CCSS.MATH.PRACTICE.MP4 Model with mathematics. DOK 3

Mathematically proficient students can apply the mathematics they know to solve problems arising in everyday life, society, and the workplace.
Standards of Mathematical Practice

CCSS.MATH.PRACTICE.MP5 Use appropriate tools strategically. DOK 3

Mathematically proficient students consider the available tools when solving a mathematical problem. These tools might include pencil and paper, concrete models, a ruler, a protractor, a calculator, a spreadsheet, a computer algebra system, a statistical package, or dynamic geometry software. Proficient students are sufficiently familiar with tools appropriate for their grade or course to make sound decisions about when each of these tools might be helpful, recognizing both the insight to be gained and their limitations.
CCS.MATH.PRACTICE.MP6 Attend to precision. DOK 2

Mathematically proficient students try to communicate precisely to others. They try to use clear definitions in discussion with others and in their own reasoning. They state the meaning of the symbols they choose, including using the equal sign consistently and appropriately.
Standards of Mathematical Practice

CCSS.MATH.PRACTICE.MP7 Look for and make use of structure. *DOK 3*

Mathematically proficient students look closely to discern a pattern or structure.
Mathematically proficient students notice if calculations are repeated, and look both for general methods and for shortcuts. They continually evaluate the reasonableness of their intermediate results.
Think of a recent literacy or math activity

Look at the standard(s) and the rigor level. Is it aligned?

Yes – How could you bump up the thinking level?

No – How could you change the activity to align with the standard?
Students At Risk

Reluctant Learners

- Worn down
- Worn out
- Don’t feel smart
- Don’t want to stand out
- Defeated
- Sad
- Mad
- They NEED YOU!
Questions?

http://tinyurl.com/NYARDOK

barbara.serianni@armstrong.edu

kelly.brooksher@armstrong.edu