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Abstract

A graph G is called edge-magic if there exists a bijective function f : V (G) ∪
E (G) → {1, 2, . . . , |V (G)|+ |E (G)|} such that f (u) + f (v) + f (uv) is a constant for
each uv ∈ E (G). Also, G is called super edge-magic if f (V (G)) = {1, 2, . . . , |V (G)|}.
Furthermore, the super edge-magic deficiency µs (G) of a graph G is defined to be
either the smallest nonnegative integer n with the property that G ∪ nK1 is super
edge-magic or +∞ if there exists no such integer n. In this paper, we introduce the
parameter l (n) as the minimum size of a graph G of order n for which all graphs of
order n and size at least l (n) have µs (G) = +∞, and provide lower and upper bounds
for l (n). Imran, Baig, and Fen̆ovc̆́ıková established that for integers n with n ≡ 0
(mod 4), µs (Dn) ≤ 3n/2 − 1, where Dn is the cartesian product of the cycle Cn of
order n and the complete graph K2 of order 2. We improve this bound by showing
that µs (Dn) ≤ n + 1 when n ≥ 4 is even. Enomoto, Lladó, Nakamigawa, and Ringel
posed the conjecture that every nontrivial tree is super edge-magic. We propose a new
approach to attack this conjecture. This approach may also help to resolve another
labeling conjecture on trees by Graham and Sloane.

1 Introduction

Unless stated otherwise, the graph-theoretical notation and terminology used here will follow
Chartrand and Lesniak [2]. In particular, the vertex set of a graph G is denoted by V (G),
while the edge set of G is denoted by E (G). The cycle of order n and the complete graph of
order n are denoted by Cn and Kn, respectively.

For the sake of brevity, we will use the notation [a, b] for the interval of integers x such that
a ≤ x ≤ b. Kotzig and Rosa [28] initiated the study of what they called magic valuations.
This concept was later named edge-magic labelings by Ringel and Lladó [29], and this has
become the popular term. A graph G is called edge-magic if there exists a bijective function
f : V (G) ∪ E (G) → [1, |V (G)|+ |E (G)|] such that f (u) + f (v) + f (uv) is a constant for
each uv ∈ E (G). Such a function is called an edge-magic labeling. More recently, they have
also been referred to as edge-magic total labelings by Wallis [33].

Enomoto, Lladó, Nakamigawa, and Ringel [4] introduced a particular type of edge-magic
labelings, namely, super edge-magic labelings. They defined an edge-magic labeling of a
graph G with the additional property that f (V (G)) = [1, |V (G)|] to be a super edge-magic
labeling. Thus, a super edge-magic graph is a graph that admits a super edge-magic labeling.

Lately, super edge-magic labelings and super edge-magic graphs are called by Wallis [33]
strong edge-magic total labelings and strongly edge-magic graphs, respectively. Hegde and
Shetty [16] showed that the concepts of super edge-magic graphs and strongly indexable
graphs (see [1] for the definition of a strongly indexable graph) are equivalent.

The following result found in [5] provides necessary and sufficient conditions for a graph
to be super edge-magic, which will prove to be useful later.

Lemma 1.1. A graph G is super edge-magic if and only if there exists a bijective function
f : V (G) → [1, |V (G)|] such that the set

S = {f (u) + f (v) |uv ∈ E (G)}
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consists of |E (G)| consecutive integers. In such a case, f extends to a super edge-magic
labeling of G with magic constant k = |V (G)|+ |E (G)|+ s, where s = min (S) and

S = [k − (|V (G)|+ |E (G)|) , k − (|V (G)|+ 1)] .

Enomoto, Lladó, Nakamigawa, and Ringel [4] showed that caterpillars are super edge-
magic and posed the following conjecture.

Conjecture 1.1. Every nontrivial tree is super edge-magic.

Lee and Shan [24] have verified the above conjecture for trees with up to 17 vertices with
a computer. Fukuchi and Oshima [9] have shown that if T is a tree of order n ≥ 2 such that
T has diameter greater than or equal to n−5, then T is super edge-magic. Various classes of
banana trees (see [10] for the definition of a banana tree) that have super edge-magic labelings
have been found independently by Swaminathan and Jeyanthi [32], and Hussain, Baskoro,
and Slamin [17]. Fukuchi [8] showed how to recursively create super edge-magic trees from
certain kinds of existing super edge-magic trees. Ngurah, Baskoro, and Simanjuntak [26]
provided a method for constructing new (super) edge-magic graphs from existing ones. For
further knowledge on the progress of Conjecture 1.1, the authors suggest that the reader
consults the extensive survey by Gallian [10].

For every graph G, Kotzig and Rosa [28] proved that there exists an edge-magic graph
H such that H = G ∪ nK1 for some nonnegative integer n. This motivated them to define
the edge-magic deficiency of a graph. The edge-magic deficiency µ (G) of a graph G is
the smallest nonnegative integer n for which G ∪ nK1 is edge-magic. Inspired by Kotzig
and Rosa’s notion, the concept of super edge-magic deficiency µs (G) of a graph G was
analogously defined in [6] as either the smallest nonnegative integer n with the property
that G ∪ nK1 is super edge-magic or +∞ if there exists no such integer n. Thus, the super
edge-magic deficiency of a graph G is a measure of how“ close”(“ far ”) G is to (from)
being super edge-magic.

An alternative term exists for the super edge-magic deficiency, namely, the vertex depen-
dent characteristic. This term was coined by Hedge and Shetty [15]. In [15], they gave a
construction of polygons having same angles and distinct sides using the result on the super
edge-magic deficiency of cycles provided in [7].

2 Lower and upper bounds

It is known from [7] that µs (Kn) = +∞ for every integer n ≥ 5. It follows that for every
integer n with n ̸= 1, 2, 3, 4, there exists a positive integer l (n) with the property that if G
is a graph of order n and size at least l (n), then µs (G) = +∞. It is interesting to determine
the exact value of l (n). However, it seems that this is a very hard problem. In this section,
we present lower and upper bounds for this value.

We begin with the following lower bound for l (n).

Theorem 2.1. For every integer n ≥ 4,

l (n) ≥ ⌈n/2⌉ (⌊n/2⌋+ 1) + 1.
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Proof. Define the graph G with

V (G) = {xi | i ∈ [1, ⌈n/2⌉]} ∪ {yi | i ∈ [1, ⌊n/2⌋]}

and

E (G) = {xiyj |i ∈ [1, ⌈n/2⌉] and j ∈ [1, ⌊n/2⌋]} ∪ {x1xi | i ∈ [2, ⌈n/2⌉]} ∪
{
y1y⌊n/2⌋

}
.

Now, consider the vertex labeling f : V (G) → [1, ⌈n/2⌉⌊n/2⌋+ 1] such that

f (v) =

{
i if v = xi and i ∈ [1, ⌈n/2⌉]
⌈n/2⌉i+ 1 if v = yi and i ∈ [1, ⌊n/2⌋] .

Then

{f (x1) + f (xi) | i ∈ [2, ⌈n/2⌉} = [3, ⌈n/2⌉+ 1] ,
{f (xi) + f (yj) | i ∈ [1, ⌈n/2⌉] and j ∈ [1, ⌊n/2⌋] = [⌈n/2⌉+ 2, ⌈n/2⌉ (⌊n/2⌋+ 1) + 1] ,{
f (y1) + f

(
y⌊n/2⌋

)}
= {⌈n/2⌉ (⌊n/2⌋+ 1) + 2}.

Since |E (G)| = ⌈n/2⌉ (⌊n/2⌋+ 1), it follows that the set

S = {f (x) + f (y) | xy ∈ E (G)}

is a set of |E (G)| consecutive integers. This shows that µs (G) < +∞. Hence, there exists a
graph G of order n and size ⌈n/2⌉ (⌊n/2⌋+ 1) so that µs (G) < +∞. Therefore, we conclude
that l (n) ≥ ⌈n/2⌉ (⌊n/2⌋+ 1) + 1.

For a finite set S of integers, we define the gap Γ (S) of S to be

Γ (S) = (max(S)−min(S) + 1)− |S| .

Then the following fact is a consequence of the above definition.

Observation 1. Let S be a finite set of integers. Then S is a set of consecutive integers if
and only if Γ (S) = 0.

To study graphs for which the clique number ω (G) of a graph G (the largest order among
the complete subgraph of G) is large in relation to the size of the graph, we have resorted
to the theory of well spread sets introduced by Kotzig [27]. A set {xi | i ∈ [1, n]} ⊂ N with
x1 < x2 < · · · < xn is a well spread set or a weak Sidon set (WS-set for short) by Ruzsa
[31] if the sums xi + xj (i < j) are all different. Furthermore, we define the smallest span of
pairwise sums ρ∗ (n) of cardinality of n to be

ρ∗ (n) = min {xn + xn−1 − x2 − x1 + 1 | {x1 < x2 < · · · < xn} is WS-set} .

The following lemma found by Kotzig [27] provides a lower bound of ρ∗ (n) for every
integer n ≥ 7.
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Lemma 2.2. For every integer n ≥ 7,

ρ∗ (n) ≥ n2 − 5n+ 14.

With the aid of Lemma 2.2, it is possible to present the following result.

Theorem 2.3. For every integer n ≥ 7,

µs (Kn+1 − e) = +∞,

where e ∈ E (Kn+1).

Proof. Assume, to the contrary, that µs (Kn+1 − e) = k for some positive integer k. Then
there exists a bijective function f : V ((Kn+1 − e) ∪ kK1) → [1, n+ 1 + k] such that the set

S = {f (x) + f (y) |xy ∈ E ((Kn+1 − e) ∪ kK1}

is a set of
(
n+1
2

)
− 1 consecutive integers, that is, Γ (S) = 0 by Observation 1.

Now, assume that u, v ∈ V (Kn+1 − e), but uv /∈ E (Kn+1 − e). Also, consider the
subgraph of Kn+1 − e obtained by eliminating vertex u so that the resulting subgraph is Kn

and consider the set

S ′ = {f (x) + f (y) |xy ∈ E ((Kn+1 − e) ∪ kK1) \ {u}} .

Since the sums considered in S ′ are the same sums as the sums considered in S, but for n−1
sums (the ones corresponding to edges incident with u), it follows that Γ (S ′) ≤ n − 1. On
the other hand, the set

Ω = {f (x) |x ∈ V ((Kn+1 − e) \ {u}}

is a well spread set of cardinality n. It follows from Lemma 2.2 that

max(W )−min(W ) + 1 ≥ n2 − 5n+ 14,

where W = {f (x) + f (y) |f (x) , f (y) ∈ Ω and f (x) ̸= f (y)} . This implies that

Γ (S ′) ≥ n2 − 5n+ 14−
(
n

2

)
=

(
n2 − 9n+ 28

)
/2.

Therefore, (
n2 − 9n+ 28

)
/2 ≤ Γ (S ′) ≤ n− 1

for all integers n ≥ 7. However, since (n2 − 9n+ 28) /2 > n − 1 for all integers n ≥ 7, it
follows that Γ (S ′) > n− 1, producing a contradiction.

In fact, for any integer n ≥ 8, the preceding result provides us with an upper bound
on l (n), since for these values of n, we know that µs (Kn) = µs (Kn − e) = +∞, where
e ∈ E (Kn). Therefore, we have the following upper bound for l (n).
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Corollary 2.4. For every integer n ≥ 7,

l (n) ≤
(
n

2

)
− 2.

From now on, let Kn − αe denote the set of all graphs obtained from Kn by removing
exactly α edges, where α is a positive integer. Our next theorem generalizes the preceding
result.

Theorem 2.5. For a fixed positive integer α, there exists some positive integer j (α) such
that if n > j (α), then µs (G) = +∞ for all G ∈ Kn − αe, where n > 2α.

Proof. For a fixed positive integer α, assume that n > 2α, where n is a positive integer. Let
G ∈ Kn − αe and suppose, to the contrary, that for every integer n ∈ N, there exists some
G ∈ Kn−αe such that µs (G) < +∞. Then there exists an injective function f : V (G) → N
such that the set

S = {f (x) + f (y) |xy ∈ E (G)}

is a set of |E (G)| consecutive integers. Also, notice that there are at most 2α vertices that
have degree at most n − 2, since there are exactly α edges missing to form Kn. So, if we
eliminate all vertices of degree at most n−2, then the resulting graph is a complete graph. If
it is Kn−2α, then we are done; otherwise, keep eliminating vertices until we arrive at Kn−2α.

Now, consider the set S ′ = {f (x) + f (y) |xy ∈ E (Kn−2α)} . Since S ′ comes from the set
S by removing at most 2α (n− 1) sums induced by edges, it follows that

Γ (S ′) ≤ 2α (n− 1) .

On the other hand, it follows from Lemma 2.2 that

Γ (S ′) ≥ (n− 2α)2 − 5 (n− 2α) + 14−
(
n− 2α

2

)
.

This together with the preceding inequality implies that

(n− 2α)2 − 5 (n− 2α) + 14−
(
n− 2α

2

)
≤ Γ (S ′) ≤ 2α (n− 1) .

However, since the inequality

(n− 2α)2 − 5 (n− 2α) + 14−
(
n− 2α

2

)
> 2α (n− 1)

is valid for all integers

n >
(8α+ 9) +

√
(8α + 9)2 − (16α2 + 88α + 112)

2
,

this produces a contradiction.
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Observe that if we let α = 2 and we compute the minimum value of n that satisfies
the last inequality in the proof of Theorem 2.5, we get n ≥ 21. This means that for
n ≥ 21, we have µs (G) = +∞ for any graph G ∈ Kn − 2e. However, it is also known
that µs (Kn) = µs (Kn − e) = +∞. Therefore, l (n) ≤

(
n
2

)
− 2 for n ≥ 21. If we continue

in this manner, then we can obtain upper bounds on l (n) for sufficiently large integers n as
the next result indicates.

Corollary 2.6. For sufficiently large integers n,

l (n) ≤
(
n

2

)
− α,

where α is a fixed positive integer such that n > 2α.

3 An improved upper bound

The prism Dn is defined to be the cartesian product of Cn and K2. The prism is also
known to be the Cayley graph of the dihedral group Dn with respect to the generating set
{x, x−1, y}. It was proved in [5] that if n ≥ 3 is odd, then Dn is super edge-magic, that is,
µs (Dn) = 0 in this case. Ngurah and Baskoro [25] showed that if n ≥ 4 is even, then Dn

is not edge-magic, implying that µs (Dn) ≥ µ (Dn) ≥ 1 by definitions. Imran, Baig, and
Fen̆ovc̆́ıková [22] established the following upper bound for µs (Dn).

Theorem 3.1. For integers n with n ≡ 0 (mod 4),

µs (Dn) ≤ 3n/2− 1.

In this section, we provide an improved upper bound for µs (Dn) when n ≥ 4 is even, and
propose an open problem for µs (Dn) when n ≥ 6 is even. To proceed, we introduce some
additional definitions and results next.

The graph labeling method that has received the most attention over the years was
originated with a paper by Rosa [30] who called them β-valuations. A few years later,
Golomb [14] called these labelings graceful and this is the term that has been used since then.
For a graph G, an injective function f : V (G) → [1, |E (G)|] is called a graceful labeling if
each uv ∈ E (G) is labeled |f (u)− f (v)| and the resulting edge labels are distinct. Rosa
[30] also introduced the concept of α-valuations (a particular type of graceful labelings) as
a tool for decomposing the complete graph into isomorphic subgraphs. A graceful labeling
f is called an α-valuation if there exists an integer λ so that

min {f (u) , f (v)} ≤ λ < max {f (u) , f (v)}
for each uv ∈ E (G) .

Douglas and Reid [3] obtained the following result.

Theorem 3.2. For every integer n ≥ 2, the prism D2n has an α-valuation.

The following result found in [21] shows how α-valuations are useful for computing the
super edge-magic deficiency of certain graphs.
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Theorem 3.3. Let G be a graph without isolated vertices that has an α-valuation. Then

µs (G) ≤ |E (G)| − |V (G)|+ 1.

For every integer n ≥ 3, we have |V (Dn)| = 2n and |E (Dn)| = 3n. Thus, the next result
is readily followed from the preceding two theorems. Certainly, this improves the bound
given in Theorem 3.1.

Theorem 3.4. For even integers n with n ≥ 4,

µs (Dn) ≤ n+ 1.

It is known from [21] that µs (Q3) = 5, where Q3 is the 3-cube. Since D4 = Q3, it follows
that µs (D4) = 5. This indicates that the bound given in Theorem 3.4 is attained for n = 4.
However, there is no knowledge whether µs (Dn) = n + 1 for even integers n with n ≥ 6 so
far. This motivates us to propose the following problem.

Problem 3.1. Determine whether

µs (Dn) = n+ 1

for even integers n with n ≥ 6.

4 A new approach

In this section, we propose a new approach to attack Conjecture 1.1. For this reason, we
now provide the definition for the key concept to be discussed below.

For a graph G, a numbering f of G is a labeling that assigns distinct elements of the set
[1, |V (G)|] to the vertices of G, where each uv ∈ E (G) is labeled f (u)+ f (v). The strength
strf (G) of a numbering f : V (G) → [1, |V (G)|] of G is defined by

strf (G) = max {f (u) + f (v) |uv ∈ E (G)} ,

that is, strf (G) is the maximum edge label of G and the strength str(G) of a graph G itself
is

str (G) = min {strf (G) |f is a numbering of G} .
This type of numberings was introduced in [18] as a generalization of the problem of find-

ing whether a graph is super edge-magic or not (see Lemma 1.1 or consult [1] for alternative
and often more useful definitions of the same concept).

There are other related parameters that have been studied in the area of graph labelings.
Excellent sources for more information on this topic are found in the extensive survey by
Gallian [10], which also includes information on other kinds of graph labeling problems as
well as their applications.

Several bounds for the strength of a graph have been found in terms of other parameters
defined on graphs (see [11, 18, 19, 20]). The strengths of familiar classes of graphs were
found in [18]. The strength of trees was also determined by Gao, Lau, and Shiu [11] as the
next result indicates.
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Theorem 4.1. For every nontrivial tree T ,

str (T ) = |V (T )|+ 1.

We are now ready to state the following conjecture, which may give us a viable approach
towards settling Conjecture 1.1.

Conjecture 4.1. For every nontrivial tree T , there exists some positive constant c such that

str (T ) ≥ c · µs (T ) + |V (T )|+ 1.

It is now immediate that if Conjecture 4.1 is true, then Theorem 4.1 implies Conjecture
1.1.

We next consider a graph labeling that is related to super edge-magic labelings. Harmo-
nious labelings have been defined and studied by Graham and Sloane [13] as part of their
study of additive bases and are applicable to error-correcting codes. A harmonious labeling
of a graph G with |E (G)| ≥ |V (G)| is an injective function f : V (G) → [1, |E (G)| − 1]
satisfying the condition that the induced edge labeling given by f (u)+f (v) (mod |E (G)|)
for each uv ∈ E (G) is also an injective function. Furthermore, G is said to be harmonious
if such a labeling exists. This definition extends to trees (for which |E (G)| = |V (G)| − 1) if
at most one vertex label is allowed to be repeated.

Grace [12] introduced sequential graphs, a subclass of harmonious graphs, and showed
that any tree admitting an α-valuation is sequential and hence is harmonious. On the other
hand, Lee, Schmeichel, and Shee [23] introduced a generalization of harmonious graphs,
namely, felicitous graphs. The following relation among labelings of trees was established in
[5].

Theorem 4.2. If T is a super edge-magic tree, then T is sequential and harmonious.

As with super edge-magic labelings, many classes of trees have been shown to be har-
monious (see [10] for a detailed list of trees), but whether all trees are harmonious is not
known.

Conjecture 4.2. Every nontrivial tree is harmonious.

Of course, if Conjecture 4.1 is true, so is Conjecture 1.1. Indeed, in light of Theorem 4.2,
the truth of Conjecture 1.1 in turn implies that every nontrivial tree is sequential and the
truth of the above conjecture due to Graham and Sloane [13] as well as the fact that every
nontrivial tree is felicitous.

5 Conclusions

The present paper is divided into three main parts.
In the first part, we study the super edge-magic deficiency of graphs that have ”many

edges” and we conclude that all such graphs have infinite super edge-magic deficiency.
In the second part, we have improved a bound for the super edge-magic deficiency of Dn

when n is even and n ≥ 4 that was established by Imran, Baig, and Fen̆ovc̆́ıková [22], and we
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propose the problem of determining whether the new bound given in Theorem 3.4 provides
the real value for µs (Dn) when n is even and n ≥ 6.

The last part of this paper is focused to introduce a possible new approach to attack the
conjecture that states that every nontrivial tree is super edge-magic and harmonious, using
the concepts of super edge-magic deficiency and strength.
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