Mar 11th, 4:00 PM - 4:45 PM

Learning Independence through Guided-Inquiry in a Bioanalytical Laboratory Course

Laura D. Frost
Georgia Southern University, ldelong@georgiasouthern.edu

C. Michele Davis-McGibony
Georgia Southern University, mdavis@georgiasouthern.edu

Follow this and additional works at: https://digitalcommons.georgiasouthern.edu/sotlcommons

Part of the Curriculum and Instruction Commons, Educational Assessment, Evaluation, and Research Commons, Educational Methods Commons, Higher Education Commons, and the Social and Philosophical Foundations of Education Commons

Recommended Citation
Frost, Laura D. and Davis-McGibony, C. Michele, "Learning Independence through Guided-Inquiry in a Bioanalytical Laboratory Course" (2010). SoTL Commons Conference. 34.
https://digitalcommons.georgiasouthern.edu/sotlcommons/SoTL/2010/34

This presentation (open access) is brought to you for free and open access by the Conferences & Events at Digital Commons@Georgia Southern. It has been accepted for inclusion in SoTL Commons Conference by an authorized administrator of Digital Commons@Georgia Southern. For more information, please contact digitalcommons@georgiasouthern.edu.
Learning Independence through Guided-Inquiry in a Bioanalytical Laboratory Course

Laura D. Frost and C. Michele Davis-McGibony
Georgia Southern University, Department of Chemistry, Statesboro, GA

Rationale

Many students have trouble transferring a set of skills acquired in one chemistry course (such as analytical chemistry) to a different chemistry course (such as biochemistry) and visualizing how two different chemistry disciplines overlap with each other in a true interdisciplinary manner. Therefore, a new interdisciplinary laboratory course (Bioanalytical Chemistry) was created to solve this problem in which the laboratory of a sophomore analytical chemistry course is integrated with a first-semester biochemistry course. This course was evaluated via a research protocol which assessed student learning at three stages, including entry-level, periodically during the course, and at the end of the course.

Methodology

- **Student Confidence and Attitudes**

 * Formative surveys – Strengths, improvements, and insights survey (SII)
 - Offered after Phase 1 (analytical lab portion) and again after the Phase 2 (biochemical lab portion).
 - Measured student confidence in a lab skill set and asked for comments on student likes and dislikes regarding the labs.

 * Summative Assessment – Student Assessment of Learning Gains (SALG).
 - Offered post course.
 - Measured student perceptions of understanding, skills, attitudes, and learning integration on a 5 point Likert scale.

 * Student Confidence – Chemistry Self-Concept Inventory (CSCI)
 - Adapted from a General Chemistry instrument developed by Christopher Bauer. (Bauer, C.F., J. Chem. Educ., 2005, 82 (12), 1864.)
 - Offered pre- and post-course.
 - Measured student confidence in areas of math, analytical chemistry, and biochemistry.

- **Student Learning**

 - Written Lab Final
 - Given post Phase 2
 - Measured student learning vs. control group: Biochemistry I students taking a similar lab final.

Results

Formative: (SII)

- **Student feedback on laboratory experience (N=20)**

 - Phase 1 Unclear Concepts
 - **Negatives**
 - Experiment困难
 - Safety
 - **Positives**
 - Experiment interesting
 - Teamwork

 - Phase 2 Unclear Concepts
 - **Negatives**
 - Experiment failure
 - Safety
 - **Positives**
 - Teamwork
 - Experiment interesting

 Formative Summary

 A number of experiments did not work out as expected in the student’s hands. For the experiments that were reasonably successful, the student confidence on laboratory skills was high. (>3.5 on a 1–5 scale)

- **Student Assessment of Learning Gains**

 - 1–5 with 1=not at all, 5=a great deal (N=14)

 Summative Summary

 A clear majority of the students felt they gained an understanding of the concepts. A clear majority of the students felt they gained all relevant laboratory skills. Most students had a less than enthusiastic attitude about their laboratory experience. Most student are able to integrate this course into their learning somewhat.

Conclusions

Evaluation of the Curriculum

Based on the survey and learning data, the instructors gained the following insights:

1. Identify the labs that did not work and reorganize them for future offerings.
2. Reorganize the course offering so that the perception of “lab too long” is removed.
3. Having two labs a week with the same instructor can improve student learning in a laboratory course.

Assessment of Learning

Based on the survey and learning data, students:

1. attained a reasonable level of understanding of the laboratory concepts.
2. acquired laboratory skill in the desired areas, especially using an analytical balance, micropipetting, and operation of a uv-vis spectrophotometer.
3. had a better attitude when the laboratory experiments worked.
4. learned more in this laboratory than a control group of biochemistry students.

Future Work

- **Course Offering Modification**
 Offer all parts of course in same semester.
 Alleviate scheduling conflicts
 Alleviate negative student perceptions of “lab too long”

- **Group Comparison**
 Track the attitudes of a control group of students taking unlinked biochemistry and analytical chemistry.
 Provides a control group.

- **Experiment Revision**
 Revise experiments that became less feasible after “scale-up” to a full class of sophomore/junior students.

Acknowledgments

- This material is based upon work supported by the National Science Foundation under Grant No. 073070.
- GSU 2009 Bioanalytical Students for your patience and good attitudes during this experimental course offering.
- GSU Department of Chemistry for supporting this project and purchasing all consumables.
- GSU Center for Excellence in Teaching for guidance on survey technique and analysis.
- Allison Long and Judith Longfield for survey preparation and administration.