
Georgia Southern University Georgia Southern University

Georgia Southern Commons Georgia Southern Commons

Department of Mathematical Sciences Faculty
Publications Department of Mathematical Sciences

9-3-2014

Fast Inverse Distance Weighting-Based Spatiotemporal Fast Inverse Distance Weighting-Based Spatiotemporal

Interpolation: A Web-Based Application of Interpolating Daily Fine Interpolation: A Web-Based Application of Interpolating Daily Fine

Particulate Matter PMParticulate Matter PM2.52.5 in the Contiguous U.S. Using Parallel in the Contiguous U.S. Using Parallel

Programming and k-d Tree Programming and k-d Tree

Lixin Li
Georgia Southern University, lli@georgiasouthern.edu

Travis Losser
Georgia Southern University

Charles Yorke
Murray State University

Reinhard E. Piltner
Georgia Southern University, rpiltner@georgiasouthern.edu

Follow this and additional works at: https://digitalcommons.georgiasouthern.edu/math-sci-facpubs

 Part of the Education Commons, and the Mathematics Commons

Recommended Citation Recommended Citation
Li, Lixin, Travis Losser, Charles Yorke, Reinhard E. Piltner. 2014. "Fast Inverse Distance Weighting-Based
Spatiotemporal Interpolation: A Web-Based Application of Interpolating Daily Fine Particulate Matter
PM2.5 in the Contiguous U.S. Using Parallel Programming and k-d Tree." International Journal of

Environmental Research and Public Health, 11 (9): 9101-9141. doi: 10.3390/ijerph110909101
https://digitalcommons.georgiasouthern.edu/math-sci-facpubs/315

This article is brought to you for free and open access by the Department of Mathematical Sciences at Georgia
Southern Commons. It has been accepted for inclusion in Department of Mathematical Sciences Faculty
Publications by an authorized administrator of Georgia Southern Commons. For more information, please contact
digitalcommons@georgiasouthern.edu.

https://digitalcommons.georgiasouthern.edu/
https://digitalcommons.georgiasouthern.edu/math-sci-facpubs
https://digitalcommons.georgiasouthern.edu/math-sci-facpubs
https://digitalcommons.georgiasouthern.edu/math-sci
https://digitalcommons.georgiasouthern.edu/math-sci-facpubs?utm_source=digitalcommons.georgiasouthern.edu%2Fmath-sci-facpubs%2F315&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/784?utm_source=digitalcommons.georgiasouthern.edu%2Fmath-sci-facpubs%2F315&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/174?utm_source=digitalcommons.georgiasouthern.edu%2Fmath-sci-facpubs%2F315&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.georgiasouthern.edu/math-sci-facpubs/315?utm_source=digitalcommons.georgiasouthern.edu%2Fmath-sci-facpubs%2F315&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digitalcommons@georgiasouthern.edu

Int. J. Environ. Res. Public Health 2014, 11, 9101-9141; doi:10.3390/ijerph110909101
OPEN ACCESS

International Journal of
Environmental Research and

Public Health
ISSN 1660-4601

www.mdpi.com/journal/ijerph

Article

Fast Inverse Distance Weighting-Based Spatiotemporal
Interpolation: A Web-Based Application of Interpolating Daily
Fine Particulate Matter PM2.5 in the Contiguous U.S. Using
Parallel Programming and k-d Tree
Lixin Li 1,*, Travis Losser 1, Charles Yorke 2 and Reinhard Piltner 3

1 Department of Computer Sciences, Georgia Southern University, Statesboro, GA 30460, USA;
E-Mail: tlosser1@gmail.com

2 Department of Geosciences, Murray State University, Murray, KY 42071, USA;
E-Mail: cyorke@murraystate.edu

3 Department of Mathematical Sciences, Georgia Southern University, Statesboro, GA 30460, USA;
E-Mail: rpiltner@georgiasouthern.edu

* Author to whom correspondence should be addressed; E-Mail: lli@georgiasouthern.edu;
Tel.: +1-912-478-7646; Fax: +1-912-478-7672.

Received: 4 March 2014; in revised form: 18 August 2014 / Accepted: 18 August 2014 /
Published: 3 September 2014

Abstract: Epidemiological studies have identified associations between mortality and
changes in concentration of particulate matter. These studies have highlighted the public
concerns about health effects of particulate air pollution. Modeling fine particulate
matter PM2.5 exposure risk and monitoring day-to-day changes in PM2.5 concentration is
a critical step for understanding the pollution problem and embarking on the necessary
remedy. This research designs, implements and compares two inverse distance weighting
(IDW)-based spatiotemporal interpolation methods, in order to assess the trend of daily
PM2.5 concentration for the contiguous United States over the year of 2009, at both the
census block group level and county level. Traditionally, when handling spatiotemporal
interpolation, researchers tend to treat space and time separately and reduce the
spatiotemporal interpolation problems to a sequence of snapshots of spatial interpolations.
In this paper, PM2.5 data interpolation is conducted in the continuous space-time domain
by integrating space and time simultaneously, using the so-called extension approach. Time
values are calculated with the help of a factor under the assumption that spatial and temporal

Int. J. Environ. Res. Public Health 2014, 11 9102

dimensions are equally important when interpolating a continuous changing phenomenon
in the space-time domain. Various IDW-based spatiotemporal interpolation methods with
different parameter configurations are evaluated by cross-validation. In addition, this study
explores computational issues (computer processing speed) faced during implementation
of spatiotemporal interpolation for huge data sets. Parallel programming techniques and
an advanced data structure, named k-d tree, are adapted in this paper to address the
computational challenges. Significant computational improvement has been achieved.
Finally, a web-based spatiotemporal IDW-based interpolation application is designed and
implemented where users can visualize and animate spatiotemporal interpolation results.

Keywords: fine particulate matter PM2.5; spatiotemporal interpolation; inverse distance
weighting (IDW); parallel programming; k-d tree; leave-one-out cross-validation; k-fold
cross validation; web-based application; visualization

1. Introduction

1.1. Background

Since the beginning of the nineteenth century, the human population has been increasing at an
alarming rate. As population increases, so do human needs and demands for various resources for
their survival. Currently, demand for food, potable water, clean air and energy, as well as the demand for
habitable land are increasing. In the same direction, population increase requires more land for liquid and
solid waste disposal [1]. However, the need for more land for liquid and solid waste disposal leads to an
increase in the amounts of pollutants in our environment that affect the health of more and more people,
including elderly and children [2–4]. The health effects of pollutants have been subject to intense study
in recent years. This paper focuses on monitoring the trend of daily air pollution using fine particulate
air pollutant (PM2.5) concentration in the contiguous United States.

Epidemiological studies have identified certain associations between mortality and changes in
concentration of particulate matter [5–8]. These studies have highlighted the public concerns about
health effects of particulate air pollution. Particulate air pollution is a mixture of liquid droplets and solid
particles that varies in origin, size and composition. PM2.5 is considered a fine particle, not an ultra-fine
particle. Ultra-fine is a term reserved for particulate matter smaller than 0.1 micron (100 nanometers) in
size; particles that are on a nano-scale. The EPA sets standards for the maximum amount of PM2.5 that
can be in the ambient outdoor air with the goal of protecting health. Cities and states must then comply
with these standards. However, the EPA has not set any standards for the smaller, ultra-fine particles.
PM2.5 contains particles with an aerodynamic diameter of 2.5 micrometers or below. PM2.5 typically
contains a mixture of particles, such as acid condensates, soot and sulfate and nitrate particles. PM2.5 is
thought to pose a particularly great risk to people’s health, because it is more likely to be toxic and can
be breathed more deeply into the lungs.

Int. J. Environ. Res. Public Health 2014, 11 9103

To establish associations between pollutants concentration and health effects, researchers have
relied on exposure assessment models to estimate exposure risk to pollutant [1,9–13], since pollutants
measurements occur at certain point locations. Currently, several groups of exposure risk assessment
models have been developed, including geostatistical models [14,15], proximity models [16,17], air
dispersion models [18,19] and deterministic models [20]. This paper focuses on one of the deterministic
models, called IDW (inverse distance weighting) interpolation. Some of the advantages for the IDW
interpolation method include:

• IDW interpolation is simple and intuitive.
• IDW interpolation is fast to compute the interpolated values.

Some of the disadvantages the IDW interpolation method include:

• The choice of IDW interpolation parameters are empirical (i.e., based on, concerned with or
verifiable by observation or experience rather than theory or pure logic).

• The IDW interpolation is always exact (i.e., no smoothing).
• The IDW interpolation has sensitivity to outliers and sampling configuration (i.e., clustered and

isolated points).

1.2. Literature Review on Interpolation in GIS

Since air pollution concentrations are typically measured at certain point locations and certain
time instances by monitoring sites, estimation or prediction of pollutant concentrations at unmeasured
locations and times is the foundation for research investigating the associations between pollutants and
health effects. This procedure of estimation or prediction is called interpolation.

Spatial interpolation refers to the estimation of values at unsampled points based on known values
of surrounding points in space. It is commonly used in a Geographic Information System (GIS) to
generate a continuous layer of data from a set of point data taken at sample locations, in order to estimate
elevation, rainfall, temperature, chemical dispersion, pollution or other spatially-based continuously
changing phenomena. There are a number of spatial interpolation algorithms, such as IDW (inverse
distance weighting) [21], Kriging [22], shape functions [23], spline [24] and trend surface [25]. All of
the spatial interpolation methods assume a stronger correlation among points that are closer than those
farther apart, which is known as Tobler’s First Law of Geography [26]. In summary, spatial interpolation
methods are well developed and widely adopted in various GIS applications [27–32].

In the recent decade, spatiotemporal interpolation has gained attention in the GIS interpolation
research community [33–39]. Spatiotemporal interpolation involves estimation of the unknown values
at unsampled location-time pairs with a satisfying level of accuracy [40]. However, when applying
traditional spatial interpolation methods for spatiotemporal data, researchers face many challenges. One
of the major challenges is that traditional GIS researchers tend to treat space and time separately when
interpolation needs to be conducted in the continuous space-time domain. The primary strategy identified
from the literature is to reduce spatiotemporal interpolation problems to a sequence of snapshots
of spatial interpolations [41]. However, integrating space and time simultaneously can yield better
interpolation results than treating them separately for certain typical GIS applications [42].

Int. J. Environ. Res. Public Health 2014, 11 9104

In order to integrate space and time simultaneously for a spatiotemporal interpolation, an extension
approach has been proposed in [40] and reviewed in [43,44]. This approach extends the spatiotemporal
interpolation into a higher-dimensional spatial interpolation by treating time as another dimension in
space. Therefore, the extension approach can be used with any spatial interpolation method that can
be extended to higher dimensions. Some applications using the extension approach can be found
in [40,45,46].

The two of the most commonly used spatial interpolation methods in GIS applications are IDW and
Kriging [20,47–50]. Many studies have examined the relative performance of IDW and Kriging. In most
cases, the findings have been mixed [51]. In some studies, it was found that the performance of IDW
was not as good as Kriging [52]. However, in other studies, IDW outperformed Kriging [53].

Kriging and IDW interpolations are similar in that both weight the surrounding measured values to
derive a prediction for an unmeasured location [54]. However, Kriging and IDW interpolations have one
main difference. In Kriging, the weights are based not only on the distance between the measured points
and the prediction location, but also on the overall spatial arrangement among the measured points [54].
Therefore, Kriging depends on a fitted model to the measured points. Whereas IDW is a deterministic
interpolator that depends solely on the distance to the prediction location to interpolate the unmeasured
location [54].

Several epidemiological studies have used IDW-based interpolation methods to assess population
exposure to pollutants [55–58]. For example, Brauer, Lencar, Tamburic, Koehoorn, Demers and
Karr [58] employed the IDW-based interpolation technique to analyze air pollution exposure for adverse
effects on pregnancy outcomes by examining individual-level intra-urban exposure contrasts. Hoek,
Fischer, Van Den Brandt, Goldbohm and Brunekreef [55] used the IDW-based interpolation technique to
investigate the relationship between traffic-related air pollution and mortality. IDW-based interpolation
methods have been used for their simplicity and efficiency.

In view of this background, we design and implement in this paper IDW-based spatiotemporal
interpolation using the extension approach to assess the trend of daily PM2.5 concentrations for the
contiguous United States in 2009.

2. Methods

2.1. Experimental PM2.5 Data

To assess the trend of air pollution over the course of a year in the contiguous United States, daily
PM2.5 concentration is experimented on in this paper. Three sets of data were used.

The first dataset stores PM2.5 measurements that were obtained from the U.S. Environmental
Protection Agency (EPA). The data coverage contains point locations of the monitoring sites, the
concentration measurements of PM2.5 and the days when the measurements were taken in 2009. In
detail, the dataset contains 146,125 PM2.5 measurements collected at 955 monitoring sites on 365 days
in 2009. It has the following attributes: id, year, month, day, x, y and PM2.5 concentration measurement,
where x and y are the longitude and latitude coordinates of the monitoring sites. The PM2.5 concentration

Int. J. Environ. Res. Public Health 2014, 11 9105

measurement’s unit is micrograms per cubic meter (µg/m3). The locations of the monitoring sites are
illustrated as red dots in Figure 1.

Figure 1. The 955 monitoring sites with particulate matter (PM2.5) measurements.

The second and third datasets contain centroid locations of counties and census block groups in the
contiguous U.S. More specifically, the second dataset contains the centroid locations of 3109 counties,
and the third dataset contains the centroid locations of 207,630 census block groups. A census block
group is a geographical unit used by the United States Census Bureau that is between the census tract
and the census block. A census block group is generally defined to contain between 600 and 3000 people.
It is the smallest geographical unit for which the bureau publishes sample data, that is, data which are
only collected from a fraction of all households [59].

The goal of this paper is to develop and implement a fast IDW-based spatiotemporal interpolation
method to estimate the daily PM2.5 concentration values in 2009 at the centroids of counties and census
block groups (the second and third datasets) for the entire contiguous U.S., using the existing PM2.5

measurements (the first dataset) as input.

2.2. IDW-Based Spatiotemporal Interpolation Method Using the Extension Approach

In order to develop an efficient spatiotemporal interpolation method suitable for the daily PM2.5 data,
the IDW-based spatiotemporal interpolation method using the extension approach that treats time as an
equivalent to the spatial dimensions [40] is considered in this paper. The IDW method is a simple and
intuitive deterministic interpolation method based on Tobler’s First Law of Geography [26] that assumes
that sample values closer to the unmeasured location of interest have more influence on the interpolated
value than sample values farther apart. Measured points that are closer to the unmeasured point are given
a higher weight than measured points that are farther away. Thus, the IDW interpolation assumes that
each measured point has a local influence that diminishes with distance and weighs the points closer to
the interpolated location greater than those farther away.

Int. J. Environ. Res. Public Health 2014, 11 9106

2.2.1. Original IDW-Based Spatiotemporal Interpolation Method Using the Extension Approach

We adapt the traditional spatial IDW method and utilize the following spatiotemporal interpolation
formula based on the extension approach:

w(x, y, ct) =
N∑
i=1

λiwi λi =
(1
di
)p∑N

k=1(
1
dk
)p

(1)

where c is a factor with the unit [spatial distance unit/time unit], w(x, y, ct) is the interpolation value
to calculate at the unmeasured location (x, y) and time instance t, N is the number of nearest neighbors
with measured values surrounding (x, y, ct), λi are the weights assigned to each measured value wi at
(xi, yi, cti), di is the spatiotemporal Euclidean distance between (xi, yi, cti) and (x, y, ct) and p is the
exponent that influences the weighting of wi. Weighting value λi ranges from zero to one and is a
function of the inverse of the spatiotemporal distance between a nearest neighbor and the unmeasured
point. It is worth noting that the sum of all of the λis (i ∈ [1, N]) is one. The spatiotemporal Euclidean
distance di is calculated using the following formula by getting the sum of three distances squared under
the root sign:

di =
√
(xi − x)2 + (yi − y)2 + c2(ti − t)2 . (2)

Since time is treated as an equivalent to spatial dimensions using the extension approach, it is not
difficult to see from Equations (1) and (2) that different factor c values will cause different values of di,
λi, and eventually lead to different interpolation results of w. Therefore, the choice of the factor c is
crucial and needs to be addressed, because it affects the IDW interpolation performance.

A naive way of choosing the time values for the experimental PM2.5 data is to use incremental values,
such as incrementing one per day and considering the factor c as one, as shown in the second column in
Table 1. However, it has been shown from previous work [42] that this naive choice for time values does
not yield the best interpolation results.

Table 1. Two choices of time values: a naive choice of t and a scaled choice of c ∗ t for the
PM2.5 data set, where the factor c = 0.1086.

Day t c ∗ t

1 January 2009 1 0.1086
2 January 2009 2 0.2172
3 January 2009 3 0.3258
4 January 2009 4 0.4344

.

31 December 2009 365 39.6390

An idea has been proposed in [60] to scale time values for a spatiotemporal data set, so that the range
in the time extent of an input dataset is equal to the average ranges of the spatial extents. This will
lead to a factor c that is not equal to one. The assumption behind this idea is that spatial and temporal

Int. J. Environ. Res. Public Health 2014, 11 9107

dimensions are equally important when interpolating a continuous changing data set in the space-time
domain. Based on this idea, the factor c in Equations (1) and (2) for the PM2.5 data can be computed as:

c =
1

364
∗ (xmax − xmin) + (ymax − ymin)

2
(3)

where xmax is the largest x coordinate, xmin is the smallest x coordinate, ymax is the largest y coordinate
and ymin is the smallest y coordinate. After plugging the actual xmax, xmin, ymax and ymin values from the
PM2.5 dataset into Equation (3), we get c = 0.1086, where actual xmax = −68.0162, xmin = −124.1775,
ymax = 48.3997, ymin = 25.4714.

In this paper, we use the scaled time values c ∗ t as shown in the third column in Table 1, where t is
the naive choice of time using incremental values with one increment per day.

2.2.2. Improved IDW-Based Spatiotemporal Interpolation Method Using the Extension Approach

The IDW-based spatiotemporal interpolation method using the extension approach is improved by
excluding nearest neighbors that are far away from the interpolation point. Objects that are close to one
another are more alike than those that are farther away. Therefore, as the neighbors get farther away, the
measured values have little relationship to the value of the prediction point. Hence, it is better to exclude
the more distant neighbors that have little influence on the interpolation.

Using the fixed number of nearest-neighbors approach will always find neighbors, but they may be so
far away from the interpolation points that the IDW interpolation may be giving misleading information.
Therefore, it is better to limit the number of measured values by specifying a search neighborhood.
The search neighborhood restricts how far and where to look for the measured values to be used in the
interpolation. The distance calculation uses both space and time when determining how far the neighbor
is from the interpolation point.

The improved IDW-based interpolation uses attributes for the maximum Euclidean distance and the
maximum time difference, such that points in sparser neighborhoods use fewer nearest neighbors in
the interpolation calculation. The maximum for the Euclidean distance and the time difference are the
maximum values that are allowed between the nearest neighbor and the point being interpolated. For
example, if the date of the interpolation point is 20 April 2009, it does not make sense to use a measured
value with a date of 20 December 2009, when calculating the interpolated value, even if the measured
value was determined to be a nearest neighbor.

2.2.3. Discussion of the Methods

In this paper, we use inverse distance functions λi, which depend on distances di and dk from
Equation (1). The inverse distance function can be considered a special case of a radial basis function.
Radial basis functions (RBFs) became quite popular in recent years. Good introductions of radial basis
function methods are the books of Fasshauer [61] and Wendland [62].

Radial basis functions can be used for higher dimensional problems. They are not restricted to
two- and three-dimensional spatial problems. We can use the following distance r for an n-dimensional
problem:

r =
√
c21x

2
1 + c22x

2
2 + c23x

2
3 + ...+ c2nx

2
n (4)

Int. J. Environ. Res. Public Health 2014, 11 9108

The coefficients ci can be used for scaling purposes and to achieve the same physical unit for each term.
In our examples, we use the following r:

r =
√

c21x
2 + c22y

2 + c23t
2 (5)

where we have chosen c1 = 1, c2 = 1 and c3 is a numerical parameter with the unit “speed” (= spatial
distance/time unit).

Radial basis functions have been successfully used for higher dimensions. Therefore, in this paper,
we follow the more general approach of radial basis functions, use it for a problem with three dimensions
(two spatial and one time dimension) and choose the inverse function 1/r. Other types of radial basis
functions can be used, and we plan to report about such studies in a future publication.

We also need to point out that the common danger in interpolation of real-life problems is that a
method cannot know about “additional” variations not accounted for in the spatial and/or temporal
measurements. The common assumption is that nothing unusual happened between the measurements
in space and time. If high oscillations between measurement locations really happened and have not
been recorded, then this cannot be accounted for or detected in the interpolation method. We utilize
some trusted large data sets to test our approach to quickly find connections to unsampled location-time
pairs using assumptions reasonable for geographic data. Very reasonable for our approach is to prefer an
estimation of a radius of influence in space and time instead of always using a fixed number of sampled
data values, which would not take into account that points very far away with no real influence should
be left out. That is why we introduced the improved IDW method in this paper. In our numerical
experiments, it showed that the use of even randomly selected influence radii (i.e., the maximum
Euclidean distance and the maximum time difference) for unsampled points leads to better interpolation
results (see Section 3.4).

In summary, this article provides methodological advances, but has limited insight into the space-time
patterns of air pollution that occur across the contiguous U.S. The focus of this paper is a test of
the original and improved IDW methods on the large experimental PM2.5 dataset, by addressing
computational issues with the help of parallel programming techniques and advanced data structures.
For the health outcomes, there is a time delay which could be substantial, depending on the type of
health problems caused by the PM2.5 pollution. At this point in time, we cannot provide a health
problem correlation analysis for the test data we utilized. We hope that this study can be useful for
future correlation studies between PM2.5 pollution and health outcomes.

2.3. Applying Parallel Computing Techniques

2.3.1. Motivation of Using Parallel Computing

Initially, we implemented the IDW method using the traditional sequential algorithm where the
interpolation for each location was done in sequence with one interpolation at a time. However, the
sequential algorithm turned out to be too slow for very large datasets, such as the experimental PM2.5

data in the contiguous United States. According to Section 2.1, daily PM2.5 concentration values in
2009 for centroids of individual counties and census block groups need to be interpolated, which leads
to 3109× 365 = 1, 134, 785 interpolation results at the county level and 207, 630 × 365 = 75, 784, 950

Int. J. Environ. Res. Public Health 2014, 11 9109

interpolation results at the census block group level. Since the PM2.5 interpolation results are very large,
it would be beneficial to apply parallel computing techniques.

Parallel computing is the ability to perform different tasks of a process simultaneously. This is
achieved by using a separate thread for each task. There are several threads in a process at a time,
but the processor will handle only a single thread at a time. It appears to be concurrent processing to
the end user, but internally, only a single thread will be running. A processor is able to multi-task by
switching between the threads. In multiprocessing, there is more than one processor, and each thread
will be handled by a different processor, which leads to concurrent processing of tasks.

The IDW spatiotemporal interpolation application takes advantage of a multi-core processor.
A multi-core processor has two or more processors that have been attached for enhanced performance,
reduced power consumption and more efficient simultaneous processing of multiple tasks. Therefore,
the performance is improved by splitting the work of the IDW spatiotemporal interpolations between
multiple threads, where each thread is handled by different processors, and performing multiple
interpolations simultaneously. Hence, the sequential algorithm was redesigned to use a multi-threaded
parallel computing approach with a multi-core processor.

A multi-threaded program contains two or more parts that can run concurrently. Each part of such
a program is called a thread, and each thread defines a separate path of execution. A thread is a single
sequential flow of control within a program. Since a thread can only run once, a thread needs to be
created per task. A simplistic model would create a new thread each time a request arrives and service
the request in the new thread. This approach works fine for prototyping, but has significant disadvantages
that would become apparent when deploying an application that worked this way. A disadvantage of the
thread-per-request approach is that the overhead of creating a new thread for each request is significant;
an application that created a new thread for each request would spend more time and consume more
system resources creating and destroying threads than it would processing actual user requests [63].
A thread pool offers a solution to both the problem of thread life-cycle overhead and the problem of
excessive resource consumption [63].

Since creating and starting new threads is computationally expensive, a cached thread pool is used
in our study to improve performance for the spatiotemporal IDW interpolation method and prevent
excessive resource consumption. A cached thread pool is a group of pre-instantiated and idle threads
that stand ready to be given work. The cached thread pool creates new threads as needed, but will reuse
previously constructed threads when they are available. A cached thread pool improves the performance
of programs that execute many short-lived asynchronous tasks. When the thread pool is handed a task, it
takes a previously constructed thread from the container. If no existing thread is available, a new thread
is created and added to the pool. Once the thread completes the task, the thread hands itself back to the
thread pool to be put into the container for re-use. Threads that have not been used for sixty seconds are
terminated and removed from the cache.

In addition to the overhead of creating and destroying threads, active threads consume system
resources. Creating too many threads in one Java Virtual Machine (JVM) can cause the system to run out
of memory due to excessive resource consumption [63]. To prevent excessive consumption of resources,
an application needs some means of limiting how many requests are being processed at any given time.
In the interpolation application running on an N -processor machine, adding additional threads improves

Int. J. Environ. Res. Public Health 2014, 11 9110

throughput as the number of threads approaches N , but adding additional threads beyond N will do
no good. Too many threads may even degrade performance, because of the additional context switching
overhead (i.e., the process of storing and restoring the CPU state, so that thread execution can be resumed
from the same point at a later point in time). The optimum size of the thread pool depends on the number
of processors available and the nature of the tasks on the work queue. On an N -processor system for
a work queue that holds entirely compute-bound tasks, such as our interpolation work, maximum CPU
utilization will be achieved with a thread pool of N threads. In summary, multi-threading using a thread
pool enables the spatiotemporal IDW interpolation method to be more efficient by making maximum
use of the CPU, because idle time can be kept to a minimum and the interpolation work is split up
between threads.

2.3.2. Implementation of Parallel Computing

During the interpolation, each thread takes one line of location data from the dataset to be interpolated
and performs the interpolation for all the possible time instances for that line of data. For our
experimental PM2.5 data, the datasets to be interpolated contain the centroid locations of individual
counties or census block groups in the contiguous United States. Since the time domain is (2009,
month, day), all of the possible time instances are the 365 days in 2009. After a thread finishes the
interpolation work for the line of the location data, it retrieves the next line of location data from the
interpolation queue. This is repeated, until the interpolation queue is empty. Each thread can perform
the interpolation work without conflicting with other threads, because the points being interpolated are
not dependent on the interpolation values for other points. Therefore, a performance advantage is gained
by using threading methodology to split and share the whole interpolation work among processor cores
and threads.

Our IDW interpolation application uses the Java Virtual Machine (JVM) for the multi-threading
functionality. In the JVM, there is a direct mapping between a Java thread and a native operating system
thread. After the JVM prepares the state for the Java thread, such as thread-local storage, allocation
buffers, synchronization objects, stacks and the program counter, the native operating system thread is
created. The operating system is therefore responsible for scheduling all threads and dispatching them
to any available CPU. Once the native thread has initialized, it invokes the run method that contains the
tasks that are executed in the Java thread. Please see Section 3.1 for the results of improvements on
computational performance by using the parallel programming techniques discussed in this section.

2.4. k-d Tree Data Structure

2.4.1. Motivation of Using k-d Tree

The most time-consuming part of the IDW interpolation method is the k-nearest neighbors search. The
IDW interpolation method assumes that points that are close to one another are more alike than those
that are farther apart. In order to predict a value for any unmeasured location, the IDW interpolation
method uses the measured values surrounding the prediction location. Those measured values closest to
the prediction location are defined as the k-nearest neighbors and have more influence on the predicted

Int. J. Environ. Res. Public Health 2014, 11 9111

value than those farther away. Thus, IDW assumes that each measured point has a local influence that
diminishes with distance.

The k-nearest neighbors are determined by calculating the Euclidean distance between the point
with a known measurement and the point that is to be interpolated. The measured points that have the
closest distances to the interpolation point are selected as the nearest neighbors. The number of nearest
neighbors to find is a user-defined constant. The naive nearest neighbor search implementation involves
the brute force computation of distances between the point to interpolate and all of the measured points
in the dataset. However, as the number of samples in the dataset grows, the brute force approach quickly
becomes unfeasible. Since the PM2.5 datasets are extremely large with more than 75 million points to
interpolate at the census block group level and more than one million points to interpolate at the county
level, the brute force algorithm is not a feasible implementation to use for finding the k-nearest neighbors
in the IDW interpolation method.

The IDW interpolation application requires fast nearest neighbor searches in multidimensional data.
An efficient solution used for this problem is the k-d tree. It has the advantage that it is easy to
build and has a simple algorithm for nearest neighbor searches. A k-d tree, or k-dimensional tree,
is a data structure used in computer science for organizing points in a space with k dimensions. k-d
trees are multidimensional binary search trees [64] that are very useful for nearest neighbor searches in
multidimensional data, so they have been adapted to improve the performance of the k-nearest neighbors
search in our study.

2.4.2. Properties of a k-d Tree

The k-d tree data structure is a type of binary tree that uses keys that have multiple dimensions. At a
high level, a k-d tree is a generalization of a binary search tree that stores points in k-dimensional space.
That is, a k-d tree can be used to store a collection of points in the Cartesian plane. While it is possible
to build a k-d tree to hold data of any dimension, all of the data stored in a k-d tree must have the same
dimension. Figure 2 shows an example of a k-d tree that stores 11 points in a three-dimensional space.
The coordinate system in three-dimensional space needs three coordinate axes, the x-, y- and z-axis.
Therefore, a point in three-dimensional space has three components (d0, d1, d2), where d0, d1 and d2 are
the coordinates of the x-, y- and z-axis. In the case for the spatiotemporal IDW interpolation based on
the extension approach, the z-axis is replaced by the t-axis for the spatiotemporal data.

In each level of the k-d tree shown in Figure 2, a certain component of each node has been bolded.
Suppose the components are zero-indexed (for example, the x dimension is component zero, the y
dimension is component one and the z or t dimension is component two). In level n of the tree, the
(n%3)rd component of each node is shown in bold. The reason that these values are bolded is because
each node acts like a binary search tree node that discriminates only along the bolded component. For
example, the root of the k-d tree in Figure 2 has the value (3, 1, 4), with the first component, 3, in bold.
The first component (x-coordinate) of every node in the k-d tree’s left sub-tree is less than or equal
to three, while the first component of every node in the right sub-tree is greater than three. Similarly,
consider the k-d tree’s left sub-tree. The root of this sub-tree has the value (2,3, 7), with the second
component, 3, in bold. All of the nodes in this sub-tree’s left sub-tree have a value for the second

Int. J. Environ. Res. Public Health 2014, 11 9112

component (y-coordinate) that is less than or equal to three, while in the right sub-tree, the second
component of each node is greater than three. This trend continues throughout the tree.

Figure 2. A sample k-d tree that stores points in three-dimensional space.

(2,3,7)

(3,1,4)

(4,3,4)

(2,1,3) (2,4,5) (6,1,4)

(1,4,4) (0,5,7) (5,2,5)

(7,1,6)(4,0,6)

2.4.3. Constructing a k-d Tree

Constructing a k-d tree is fairly straightforward by partitioning point sets. Each node in a k-d tree is
defined by a plane through one of the dimensions that partitions the set of points into two sets, each with
half of the points of the parent node. These children are again partitioned into equal halves, using planes
through a different dimension. The cutting planes along any path from the root to another node defines a
unique box-shaped region of space, and each subsequent plane cuts this box into two boxes. For a set of
n points in k dimensions, partitioning stops after log n levels, with each point in its own leaf cell. Each
box-shaped region is defined by 2k planes, where k is the number of dimensions.

The k-d tree constructing algorithm selects the splitting plane in k-dimensional space by cycling
through the dimensions, that is, the algorithm partitions first on d0, then d1, . . . , dk−1 before cycling
back to d0. For example, in a two-dimensional k-d tree, each level in the tree alternates between the
x-axis and the y-axis in order to partition the points. At the root level, all of the points to the left of the
root point have smaller or equal x-values, and all of the points to the right have larger x-values. At one
level lower, the tree partitions according to the y-values. Thus, all of the points in the left branch of a
node have smaller or equal y-values, and all the points in the right branch have greater y-values. The
next level down splits by the x-axis again, and so on.

Once the algorithm knows the axis or dimension it is working in, it goes through the list of points and
finds the median point according to its value on the axis. Once the median point has been found, it is
simply a matter of splitting the points up into two branches and recursively processing each branch.

For example, a collection of points in two-dimensional space is shown in Figure 3. The constructing
algorithm begins to build the k-d tree out of these data points, by choosing Node 0 (x0, y0) as the splitting
node, which is the median point according to the x-axis and splitting the data set into two groups: one
group with points whose x-components are less than or equal to the splitting node’s, and the other group
with points whose x-components are greater than the splitting node’s. This split can be visualized in

Int. J. Environ. Res. Public Health 2014, 11 9113

Figure 4. This is equivalent to running a splitting hyper-plane through the median Node 0 according to
the x-axis.

Figure 3. A collection of points in two-dimensional space.

0

1

2

3

4

5

6

7
8

9

Figure 4. Visualization of splitting the data set from Figure 3 into two groups.

0

1

2

3

4

5

6

7
8

9

x≤x
0

x>x
0

To continue building the k-d tree, recursively build the k-d tree in the right half-space in Figure 4 (i.e.,
the points to the right of the central Node 0) by picking Node 2, which is the median point according to
the y-axis and splitting the data horizontally through it, as shown in Figure 5. Continuing this partition
to completion will result in the k-d tree, as shown in Figure 6.

Figure 5. Recursively build the k-d tree in the right half-space.

0

1

2

3

4

5

6

7
8

9

y>y
2

y≤y
2

Int. J. Environ. Res. Public Health 2014, 11 9114

Figure 6. Fully constructed k-d tree.

0

1

2

3

4

5

6

7
8

9

For the spatiotemporal IDW interpolation for the PM2.5 data, a three-dimensional k-d tree has been
constructed to find the k-nearest neighbors. Figure 7 illustrates a sample k-d tree constructed from some
selected PM2.5 data points.

Figure 7. A sample k-d tree constructed from some selected PM2.5 data points.

(-88.088, 30.770, 17.708)

(-122.399, 37.766, 0.760) (-78.819, 38.477, 5.323)

(-117.090, 33.363, 11.733) (-110.761, 43.478, 34.656) (-87.881, 30.498, 7.279) (-87.993, 44.509, 24.009)

(-110.761, 43.478, 34.330) (-87.993, 44.507, 23.901)

(-87.881, 30.498, 6.953) (-88.088, 30.770, 18.034)(-122.399, 37.766, 0.435) (-117.090, 33.363, 11.842)

2.4.4. Searching a k-d Tree

To give a better sense for the geometric intuition behind the k-d tree, the following example will trace
through what happens when looking up whether a given point is in the k-d tree. Suppose the query
point is Node 8 in Figure 6. Then, begin at the root of the k-d tree and consider whether Node 8’s
x-coordinate is less than or greater than the root Node 0’s x-coordinate. This is equivalent to asking in
which half-space Node 8 is. The node happens to be in the right half-space, and so, all of the nodes in
the left half-space can be ignored. Therefore, the right half-space is recursively explored. This is shown
graphically in Figure 8, where the grayed-out region corresponds to parts of the plane that will never be
looked in.

Now, check whether Node 8 is above or below Node 2, which is the root of the subtree in the
half-space to the right of Node 0. Node 8 is below it, so discard the top half-space and look in the
bottom, as shown in Figure 9.

Int. J. Environ. Res. Public Health 2014, 11 9115

Figure 8. The left half-space of k-tree is ignored when searching Node 8.

0

1

2

3

4

5

6

7
8

9

Figure 9. The top half-space in the right sub-tree is ignored when searching Node 8.

0

1

2

3

4

5

6

7
8

9

Next, check whether the query point, Node 8, is to the left or the right of Node 5. Node 5 is the root
of this region of space. Since, the query point is to the right, discard the sliver of a half-space to the left
of Node 5 and continue on as shown in Figure 10.

Figure 10. The half-space to the left of Node 5 is ignored when searching Node 8.

0

1

2

3

4

5

6

7
8

9

At this point, the algorithm has reached the query Point 8 that is being looked for, and the k-d tree
searching algorithm terminates.

Int. J. Environ. Res. Public Health 2014, 11 9116

2.4.5. Nearest Neighbor Search Algorithm using k-d Tree to Find One Nearest Neighbor

The nearest neighbor search algorithm is used to find the point in the tree that is nearest to the given
point. This search can be done efficiently by using the k-d tree properties to quickly eliminate large
portions of the search space. The k-d tree data structure hierarchically decomposes space into a small
number of cells, each containing a few representatives from an input set of points. This provides a fast
way to find the point closest to the query point q.

Figure 11 shows the fully constructed k-d tree partition as in Figure 6 with an additional query point
q indicated by a star and its tree structure. Each line segment in the k-d tree space partition represents
a branch in the tree, which effectively divides each sub-tree into two halves. The geometric function of
the splitting hyper-line (in a 3D case, it would be a splitting hyper-plane) for each partition is given in
the parenthesis next to each node in the tree structure of the figure.

Figure 11. A fully constructed k-d tree and its tree structure.

(x=x0)

0

1

2

3

4

5

6

7
8

9

q

0

1 2

43 65

7 98

c
e
ll (x=x6)

(y=y1) (y=y2)

(y=y7) (y=y8) (y=y9)

(x=x3)
(x=x4)

(x=x5)

To find the nearest neighbor for a given point q using the k-d tree shown in Figure 11, the nearest
neighbor search algorithm needs to search through the tree in an appropriate manner. The key to the
k-d tree traversal in a nearest neighbor search is in deciding on the right branch to explore. Since each
branch in a k-d tree represents a space partition, the idea is to explore the partition that is closer to the
query point first. The partition that is closer to the query point will likely contain the nearest neighbor.

The nearest neighbor search algorithm works by starting at the root node and walking down the k-d
tree recursively as if it were searching the tree for the query point. The path of walking down the tree to
search the query point q is illustrated by arrowed lines in Figure 11. Once the algorithm reaches a leaf
node in the k-d tree (i.e., Node 8 in Figure 11), it saves that node as the current best nearest neighbor.
As the algorithm starts unwinding the recursion and walking back up the tree, it checks whether each
node on the path is better than the best estimate it has seen so far. If the current node is determined to be
better than the previous node, the algorithm updates the best estimate to the current node.

During each step of walking up the tree, the algorithm must decide which, if any, neighboring
cells/nodes need to be checked, as well. This is done by forming a hyper-sphere centered at the query
point with the radius of the hyper-sphere being the calculated distance between the query point and the
current best nearest neighbor. The algorithm then checks whether the candidate hyper-sphere based on
the current best estimate could cross any of the splitting hyper-planes that form the cell. If the candidate

Int. J. Environ. Res. Public Health 2014, 11 9117

hyper-sphere does not cross the splitting hyper-plane, then the algorithm eliminates all points on the
other side of the splitting hyper-plane from consideration and walks back up to the next node on the path
in the k-d tree. Otherwise, it means there is a possibility that there is a closer point in cells on the other
side of the splitting hyper-plane. Therefore, the algorithm must look on the other side of the hyper-plane
of the k-d tree to determine if there are any closer points, following the same recursive process as the
entire search.

If there is a point in the data set that is closer to the query point than the current best guess, then it
must lie in the circle centered at the query point that passes through the current best guess (for example,
Node 2), as shown in Figure 11. Although in this example, this region is a circle, in three dimensions, it
would be a sphere, as is the case for the PM2.5 data. The sphere is called the candidate hypersphere.

Given a circle and a line (or a hyper-sphere and a hyper-plane), how does the algorithm determine
whether or not the circle intersects the line? To determine this mathematically, consider the following
arbitrary hyper-line and two hyper-circles, one of which crosses the hyper-line and one of which does
not, as shown in Figure 12.

Figure 12. The left hyper-circle does not cross the hyper-line, but the right hyper-circle does
cross the hyper-line.

y = y
0

q
2
(x

2
, y

2
)

q
1
(x

1
, y

1
)

r
1

r
2

current
best

|y
1
-y

0
|

|y
2
-y

0
|current

best

Figure 12 shows that the distance |y1 − y0| from the center of the left hyper-circle to the hyper-line
is greater than the radius of the left hyper-circle, and therefore, the hyper-circle does not cross the
hyper-line. However, the distance from the center of the right hyper-circle to the hyper-line is less
than the radius of the right hyper-circle, and therefore, some part of that hyper-circle does cross the
hyper-line. Hence, for the nearest neighbor searching algorithm to work properly, it is essential to check
the other side of the right hyper-line for potentially closer nearest neighbors.

In general, to check if a hyper-plane intersects with a hyper-sphere of radius r centered at the
query point q(q0, q1, q2, . . . , qk−1) in a k-dimensional space, the algorithm compares the radius of the
hyper-sphere to the distance from q to the partition plane. If node a(a0, a1, a2, . . . , ak−1) partitions
points based on their i-th dimension, then the hyper-sphere crosses the node’s splitting plane only if:

|qi − ai| < r (6)

Therefore, the following steps are followed to find the nearest neighbor for a given query point:

• Given a current best estimate of the node that may be the nearest neighbor, a candidate
hyper-sphere can be constructed that is centered at the query point q(q0, q1, q2, . . . , qk−1) and

Int. J. Environ. Res. Public Health 2014, 11 9118

running through the current best node point. The nearest neighbor to the query point must lie
inside the hyper-sphere.

• If the hyper-sphere is fully to one side of a splitting hyper-plane, then all points on the other side
of the splitting hyper-plane cannot be contained in the sphere and, thus, cannot be the nearest
neighbor.

• To determine whether the candidate hyper-sphere crosses the splitting hyper-plane that compares
coordinate at dimension i, check whether |qi − ai| < r.

2.4.6. Adapted Neighbor Search Algorithm Using a k-d Tree to Find Multiple Nearest Neighbors

The original nearest neighbor searching algorithm using the k-d tree data structure can be found
in [65]. It find one nearest neighbors. The original algorithm was adapted to make it more efficient for
searching the PM2.5 data to find multiple (k) nearest neighbors of a given data point q instead of just
finding one nearest neighbor. The modified algorithm uses a data structure called a bounded priority
queue that stores the list of k nearest neighbors with their distances to the query point q. The bounded
priority queue has a fixed upper bound on the number of elements (or points) that can be stored, which
is the number of nearest neighbors k. Whenever a new element is added to the queue, if the queue is at
capacity, the element with the highest priority value (i.e., the longest distance) is ejected from the queue.

Figure 13a shows a nearest neighbor priority queue that has a maximum size of five and holds five
elements, A–E. Suppose that the next nearest neighbor to be inserted into the priority queue is the
Element F with a priority or distance of 0.4. Since the priority queue has a maximum size of five,
the Element F is inserted into the priority queue, but the Element E with the longest distance is deleted
from the priority queue. Figure 13b shows the resulting priority queue after Element F is inserted.
In another case, suppose that the next nearest neighbor to be inserted into the priority queue is the
Element G with a distance of 4.0. Since the distance value for G is greater than the maximum priority
element in the priority queue, G will not be inserted into the queue.

Figure 13. Bounded priority queue for k-nearest neighbors.

A B C D E

(a)

0.1 0.25 1.33 3.2 4.6priority

A B F C D

(b)

0.1 0.25 0.4 1.33 3.2priority

Using the bounded priority queue to store nearest neighbors, the pseudocode for the adapted k-nearest
neighbor search using the k-d tree is given in Algorithms 1–3. This method getNearestNeighbors in
Algorithm 1 calls the searchNode method in Algorithms 2 and 3 initially on the leaf node. After the

Int. J. Environ. Res. Public Health 2014, 11 9119

searchNode method finishes with the leaf node, it returns to the getNearestNeighbors method, which
moves to the leaf’s parent and calls the searchNode method on the parent, and so on.

Algorithm 1: getNearestNeighbors(k, value) k-nearest neighbor search in a k-d tree
Input: k, number of nearest neighbors to retrieve; value, query point q to find the nearest neighbors
Output: neighborList, a list of the nearest neighbors for the query point q

if value is NULL {return NULL};
NearestNeighborList neighborList = new NearestNeighborList (k) ; /* Initialize the

bounded priority queue */

/* Perform the following steps to find the initial closest leaf

node. */

prev = NULL;
curr = root ; /* Set the current node to be the root. */

while curr ̸= NULL do
if value ≤ curr then search the left subtree

prev = curr;
curr = curr.left;

else search the right subtree
prev = curr;
curr = curr.right;

end
end
leaf = prev ; /* The leaf node would be Node 8 if using the example in

Figure 11. */

if leaf ̸= NULL then
/* Create a set that keeps track of the nodes that have been

examined. The examined HashSet is used to ensure that the

algorithm does not re-examine any nodes. The HashSet is

initially empty. */

examined = new HashSet();
/* Go up the tree looking for better solutions. */

curr = leaf;
while curr ̸= NULL do

/* Recursively search the tree. */

searchNode(value, curr, k, neighborList, examined);
curr = curr.parent;

end
end

return neighborList;

Int. J. Environ. Res. Public Health 2014, 11 9120

Algorithm 2: searchNode(value, curr, k, neighborList, examined), Part I moving up the k-d
tree to look for better nearest neighbors

Input: node, the current node in the k-d tree; value, query point q to find the nearest neighbors;
hyper_rectangle, the hyper rectangle; max_dist_sqd, the maximum distance squared;
level, the current level in the k-d tree; k, number of nearest neighbors to retrieve;
neighborList, the list of nearest neighbors found

Output: No explicit output. The reference to the current list of the nearest neighbors (that is,
neighborList) for the query point q is passed to this method by value. Therefore, if a node
is added to neighborList or removed from the nearest neighbor list in the
findNearestNeighbors method, the update is automatically reflected in the calling method
getNearestNeighbors.

examined.add(curr) ; /* Add the current node to the examined list. */

lastNode = NULL;
lastDistance = MAX_VALUE;
if neighborList.size > 0 then calculate the Euclidean distance between the last node in the nearest
neighbor list and the query point

lastNode = neighborList.last();
lastDistance = euclideanDistance(lastNode.value, value) ; /* Note: lastNode.value

is the actual (x, y, z, . . .) point for the last node. */

end
/* Calculate the Euclidean distance between the current node and

the query point. */

currDistance = euclideanDistance(curr.value, value);
/* Add the current node to the neighbor list if necessary. */

if currDistance < lastDistance then
if neighborList.size == k AND lastNode ̸= NULL then

neighborList.remove(lastNode);
end
neighborList.add(curr) ; /* Add the current node to neighborList. The

neighbor list is automatically sorted when the current node is

added to the list. */

else if currDistance == lastDistance then
neighborList.add(curr) ; /* Add the current node to neighborList. Note:

The neighbor list can have more than k neighbors if the last

nodes have equal distances in our implementation. */

else if neighborList.size < k then
neighborList.add(curr); /* Add the current node to neighborList. */

end

/* To be continued in Algorithm 3 */

Int. J. Environ. Res. Public Health 2014, 11 9121

Algorithm 3: searchNode(value, curr, k, neighborList, examined), Part II
/* Continued from Algorithm 2 */

lastNode = neighborList.last();
lastDistance = euclideanDistance(lastNode.value, value) ; /* Calculate the Euclidean

distance between the last node in neighborList and the query point.

lastDistance is equivalent as r in Equation (6). */

axis = curr.depth % k ; /* Get the current axis. */

left = curr.left ; /* Get the current node’s left child. */

right = curr.right ; /* Get the current node’s right child. */

if left ̸= NULL AND !examined.contains(left) then search the left child branch
examined.add(left) ; /* Add the left child to the examined list. */

/* Calculate the difference between the splitting coordinate of the

query point and the current node. difference is equivalent as

|qi − ai| in Equation (6). */

if axis == X_AXIS then
difference = abs(value.x - curr.value.x) ; /* abs is absolute operator. */

else if axis == Y_AXIS then
difference = abs(value.y - curr.value.y);

else if axis == T_AXIS then
difference = abs(value.t - curr.value.t);

end
intersection = (difference < lastDistance); ; /* Determine if the splitting plane

intersects the hyper-sphere using Equation (6). */

if intersection then continue down the left branch
searchNode(value, left, k, neighborList, examined);

end
end
if right ̸= NULL AND !examined.contains(right) then search the right child branch

examined.add(right) ; /* Add the right child to the examined list. */

if axis == X_AXIS then
difference = abs(value.x - curr.value.x);

else if axis == Y_AXIS then
difference = abs(value.y - curr.value.y);

else if axis == T_AXIS then
difference = abs(value.t - curr.value.t);

end
intersection = (difference < lastDistance); ; /* Determine if the splitting plane

intersects the hyper-sphere using Equation (6). */

if intersection then continue down the right branch
searchNode(value, right, k, neighborList, examined);

end
end

Int. J. Environ. Res. Public Health 2014, 11 9122

The main idea of the searchNode method in Algorithms 2 and 3 is to move up the k-d tree and look for
better solutions for nearest neighbors than the current best node, which is initially the closest leaf node
(the variable leaf in Algorithm 1). If the neighbor list already has k nearest neighbors, then check the
last node in the list to ensure that the distance from the query point is less than the current node distance.
If the last node has a distance greater than the current node, then remove the last node from the list and
add the current node. Otherwise, if the neighbor list is not full, then add the current node to the list.

Next, in the searchNode method, the algorithm checks whether there could be any points on the
other side of the splitting plane that are closer to the query point than the last node in the neighborList.
This is done by intersecting the splitting hyper-plane with a hyper-sphere around the query point that
has a radius equal to the distance from the query point to the last node in the list of nearest neighbors.
Since the hyper-planes are all axis-aligned, this is implemented as a simple comparison to see whether
the difference between the splitting coordinate of the query point and current node, which is |qi − ai| in
Equation (6), is less than the Euclidean distance from the query point to the last node in the list of nearest
neighbors, which is r in Equation (6). If the hyper-sphere crosses the plane, there could be nearer points
on the other side of the plane, so the algorithm must move down the other branch of the tree from the
current node looking for closer points, following the same recursive process as the entire search.

In summary, there are two changes to this algorithm that differentiate it from the conventional
one-nearest neighbor searching algorithm. The first change is when determining whether to look on
the opposite side of the splitting hyper-plane, the algorithm uses the distance from the query point to
the point with the longest distance in the nearest neighbor priority queue as the radius of the candidate
hyper-sphere. This is required when finding the k-nearest neighbors, because the candidate hyper-sphere
for the k-nearest points needs to encompass all k of those neighbors and not just the closest neighbor. The
other change is that when the algorithm considers whether to look on the opposite side of the splitting
hyper-plane, the algorithm takes into account whether the bounded priority queue for storing nearest
neighbors contains at least k points. This is extremely important, because if parts of the tree are pruned
off before there is at least k points, one of the closest points may be accidentally thrown out.

The k-nearest neighbor search algorithm can run in O(log n) time on a balanced k-d tree with n data
points provided that the points are randomly distributed [66]. In the worst case, the entire tree may need
to be searched. However, in low-dimensional spaces, such as the Cartesian plane or three-dimensional
space, the entire k-d tree is rarely searched.

Section 3.2 gives the improvement results on computational performance after using the adapted k-d
tree to search for k nearest neighbors.

2.5. Cross-Validation

Cross-validation [67] is a model evaluation method that is better than residuals [68]. In statistics, a
residual refers to the amount of variability in a dependent variable that is left over after accounting for
the variability explained by the predictors in the analysis. For example, when predictors or independent
variables are included in a regression, a prediction is made that they are associated with a dependent
variable. A residual is a numeric value for how much the prediction is wrong. The lower the residual, the
more accurate the predictions in a regression are, indicating that the independent variables are predictive

Int. J. Environ. Res. Public Health 2014, 11 9123

of the dependent variables. The problem with residual evaluations is that they do not give an indication
of how well the learner will do when it is asked to make new predictions for data it has not already seen.
One way to overcome this problem is to not use the entire dataset when training a learner. Some of the
data is removed before training begins. Then, when training is done, the data that was removed can be
used to test the performance of the learned model on new data. This is the basic idea for a whole class
of model evaluation methods called cross-validation.

In our study, K-fold cross-validation (KFOLDCV) using 10-folds and leave-one-out cross-validation
(LOOCV) were compared for determining an optimal IDW method for interpolating the PM2.5

concentration values based on the number of nearest neighbors N and the exponent p. The effect of
changing p and N was investigated by previewing the output of the IDW interpolation methods and
calculating error statistics using KFOLDCV and LOOCV.

2.5.1. K-Fold Cross-Validation Method

Cross-validation splits the data, once or several times, for estimating the performance of each
interpolation method. Part of the data is used as the training sample, and the remaining part is used as
the validation sample. The validation sample is used for estimating the performance of the interpolation
method. The interpolation method with the smallest error is selected as the best method.

In k-fold cross-validation, the dataset is divided into k subsets. Each time, one of the k subsets is used
as the test set (validation set), and the other k − 1 subsets are put together to form a training set. The
average error across all k trials is computed. The advantage of this method is that it matters less how the
data gets divided. Every data point gets to be in a test set exactly once and gets to be in a training set
k− 1 times. The variance of the resulting estimate is reduced as k is increased. The disadvantage of this
method is that the training algorithm has to be rerun from scratch k times, which means it takes k times
as much computation to make an evaluation.

2.5.2. Leave-One-Out Cross-Validation Method

Leave-one-out cross validation is the degenerate case of k-Fold cross validation, where k is chosen
as the total number of samples. Leave-one-out cross-validation performs N experiments for a dataset
with N samples. For each experiment, N-1 samples are used for training, and the remaining sample is
used for testing. That means that for N separate times, the function approximator is trained on all of the
data except for one point and an interpolation is made for that point. Leave-one-out cross-validation has
unbiased performance estimation, but has a very large variance that can cause unreliable estimates [67].

2.5.3. Error Statistics

In our study, 10-fold cross-validation and leave-one-out cross-validation were implemented to
evaluate the IDW spatiotemporal interpolation method given in Equation (1) with the time values as
shown in the third column in Table 1. The daily fine particulate matter PM2.5 concentration data for the
contiguous U.S. over the year of 2009 was used in the cross-validations to determine an optimal method
for the number of nearest neighbors Nand the exponent p in the IDW interpolation. Cross-validations

Int. J. Environ. Res. Public Health 2014, 11 9124

were performed on the following 45 IDW methods with each method having a different number of nearest
neighbors N and a different exponent p, with N ∈ {3, 4, 5, 6, 7} and p ∈ {1, 1.5, 2, 2.5, 3, 3.5, 4, 4.5, 5}.

Each of the 45 IDW methods were evaluated by calculating the error measurement for MARE (mean
absolute relative error) and the error measurement for RMSPE (root mean square percentage error).
MARE and RMSPE are defined as:

MARE =

∑N
i=1

|Ii−Oi|
Oi

N
(7)

RMSPE =

√∑N
i=1 (

(Oi− Ii)
Oi

)
2

N
∗ 100 (8)

where N is the number of observations, Iis are the interpolated values, and Ois are the original values
from the daily fine particulate matter PM2.5 concentration dataset described in Section 2.1. The optimal
number of nearest neighbors and exponent combination for the PM2.5 data can be determined by
minimizing the MARE error measurement or the RMSPE error measurement.

3. Results

3.1. Computational Performance Improvement by Using Parallel Computing

After applying the parallel programming techniques described in Section 2.3, the execution time of
the IDW spatiotemporal interpolation method is reduced, and good performance speedup is achieved.

A test was run on a system that was equipped with an Intel Core i7-3630 QM CPU running at
2.40 GHz with 6 GB of RAM and eight available processors for servicing thread requests. Using the
location dataset to be interpolated at the county level, for 1,134,785 (3109 × 365) PM2.5 interpolation
results, the process took 21,299 seconds (355 min) using a single thread and the sequential algorithm,
as illustrated by the first bar in Figure 14. Because of this unacceptable performance, the multi-threaded
approach described in Section 2.3 was employed. This improved the performance by 3.64 times.
As seen in the second bar in Figure 14, run time was reduced to 5,845 seconds on the same computer
using the same dataset.

A test was also run on the same system using the dataset to be interpolated at the census block group
level. For 75,784,950 (207, 630 × 365) PM2.5 interpolation results, using the single thread approach
and the sequential algorithm, the run time was too long to be measured. Unfortunately, using the
multi-threaded approach, the run time was also too long for the interpolation at the census block group
level. This unacceptable performance is mainly caused by the brute force search for k-nearest neighbors
in large datasets. The brute force nearest neighbor search forces the computation of spatiotemporal
Euclidean distances in Equation (2) between the point to interpolate and all of the measured points and
the storage of all these distance values into the computer’s memory.

Therefore, to improve the performance of the k-nearest neighbor search, the k-d tree data structure
was adapted. The resulted further computational performance improvement is described in the next
section, Section 3.2.

Int. J. Environ. Res. Public Health 2014, 11 9125

Figure 14. Effect of parallel computing on inverse distance weighting (IDW) run time using
the PM2.5 data at the county level.

Single−Threaded Multi−Threaded

 0

 5000

10,000

15,000

20,000

25,000
R

u
n

 t
im

e
 i
n

 s
e

c
o

n
d

s

21,299

5845

3.2. Computational Performance Improvement of by Using k-d Tree

By using the adapted k-d tree data structure to search multiple nearest neighbors described in
Section 2.4.6, the performance of the IDW interpolations is further improved dramatically.

The test was run on the same system as in Section 3.1 that was equipped with an Intel Core i7-3630
QM CPU running at 2.40 GHz with 6 GB of RAM. Using the PM2.5 location dataset to be interpolated at
the county level, for 1,134,785 (3109×365) interpolation results, the interpolation using the k-d tree took
only 190 s with the single-threaded approach and 58 s using the multi-threaded approach, as illustrated
in Figure 15. Compared with the brute force approach to find the nearest neighbors, using the adapted
k-d tree reduced the run time by 112-times for the single-threaded approach and by 101-times for the
multi-threaded approach. It is also worthy mentioning that when k-d tree was used, the multi-thread
parallel programming approach improved the computational performance from 190 s to 58 s, which is
3.28 times faster.

A test was also run on the same system using the PM2.5 data to be interpolated at the census block
group level. As mentioned in Section 3.1, for 75,784,950 (207, 630× 365) interpolation results, the run
time was too long to be measured using the brute force approach to find the nearest neighbors, even with
the help of parallel computing. However, using the adapted k-d tree and single-threaded approach,
the interpolation took 13,120 s (218.67 min). Using the adapted k-d tree combined with parallel
programming techniques, we reduced the run time by 4.76-times and achieved a great performance
of 2756 s (46 min) for computing 75.78 million PM2.5 interpolation results at the census block group
level, as shown in Figure 16.

Int. J. Environ. Res. Public Health 2014, 11 9126

Figure 15. The effect of k-d tree with paralleling programming on IDW run time using the
PM2.5 data at the county level.

using brute force using k−d tree

 0

 5000

10,000

15,000

20,000

25,000

R
u

n
 t
im

e
 i
n

 s
e

c
o

n
d

s

21,299

5845

190 58

Single−Threaded

Multi−Threaded

Figure 16. The effect of k-d tree with paralleling programming on IDW run time using the
PM2.5 data at the census block group level.

using brute force using k−d tree

 0

10,000

20,000

30,000

40,000

50,000

Single−Threaded

Multi−Threaded

R
u

n
 t
im

e
 i
n

 s
e

c
o

n
d

s ...

run time too long

to be measured

13,120

2756

3.3. Leave-One-Out Cross-Validation Results for the Original IDW-Based Method

The original IDW interpolation method uses the same number of k-nearest neighbors for all
interpolation results, as shown in Equation (1). The number of nearest neighbors to find are specified
by the user. Therefore, the list of nearest neighbors found will always be k regardless of how far away
the neighbor is from the query point. Figure 17 illustrates the MARE (mean absolute relative error)
results for the 45 IDW methods that were evaluated in the leave-one-out cross-validation for the original
IDW-based interpolation in Section 2.2.1, using the PM2.5 data.

It can be concluded from Figure 17 that the best IDW methods for the PM2.5 data are the ones
with three nearest neighbors, because they minimize the mean absolute relative error (MARE) from
the cross-validation error statistics. Table 2 gives the detailed MARE values for nine IDW methods

Int. J. Environ. Res. Public Health 2014, 11 9127

with three nearest neighbors, but different exponents. It is shown from Table 2 that of these nine IDW
methods, the three nearest neighbors with an exponent of 3.5 have the lowest MARE of 0.53739.

Figure 17. MARE LOOCV results for various 45 IDW methods using the original
IDW-based interpolation.

1 1.5 2 2.5 3 3.5 4 4.5 5
0.5

0.6

0.7

0.8

0.9

1

1.1

Exponent

M
A

R
E

 (
M

e
a

n
 A

b
so

lu
te

 R
e

la
ti

v
e

 E
rr

o
r

3 neighbors

4 neighbors

5 neighbors

6 neighbors

7 neighbors

1.2

Table 2. MARE LOOCV results for nine IDW methods with three nearest neighbors using
the original IDW-based interpolation.

Neighbors Exponent MARE

3 1.0 0.54797
3 1.5 0.54301
3 2.0 0.54012
3 2.5 0.53849
3 3.0 0.53768
3 3.5 0.53739
3 4.0 0.53742
3 4.5 0.53768
3 5.0 0.53807

3.4. Cross-Validation Results for the Improved IDW-Based Method

The improved IDW interpolation method in Section 2.2.2 uses two parameters for the maximum
Euclidean distance and the maximum time difference that the nearest neighbors can have from the query
point that is to be interpolated. Therefore, the number of k-nearest neighbors is the maximum that can
be found, but less may be found if the neighbor does not satisfy the maximum Euclidean distance and
maximum time difference criteria.

Int. J. Environ. Res. Public Health 2014, 11 9128

3.4.1. Leave-One-Out Cross-Validation Results

Figure 18 illustrates the MARE (mean absolute relative error) results and Figure 19 illustrates the
RMSPE (root mean square percentage error) results in the improved IDW interpolation for the 45
IDW methods that were evaluated in the leave-one-out cross validation, using the PM2.5 data. The
maximum Euclidean distance that was used for the nearest neighbor criteria is 1.4, and the maximum
time difference for the nearest neighbor criteria is seven days. These two parameter values were chosen
arbitrarily to show the improvements that are achieved in the improved IDW-based interpolation method.
Better results could be further achieved by choosing better maximum Euclidean distance and time
difference values. Any of the k-nearest neighbors that are found that do not satisfy the maximum
Euclidean distance and the maximum time difference are rejected and are not used as a neighbor in
the improved IDW interpolation. Adding these two parameters to the improved IDW-based interpolation
method significantly improves the MARE results shown in Figure 18 when compared with the MARE
results shown in Figure 17 from the original IDW-based interpolation method.

Figure 18. MARE LOOCV results for the various 45 IDW methods using the improved
IDW interpolation.

0.3000

0.5000

0.7000

0.9000

1.1000

1.3000

1.5000

1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0

M
A

R
E

 (
M

e
a

n
 A

b
so

lu
te

 R
e

la
ti

v
e

 E
rr

o
r)

Exponent

Maximum Euclidean Distance from Neighbor = 1.4

Maximum Time Di!erence from Neighbor = 7 days

3-Neighbors 4-Neighbors 5-Neighbors

6-Neighbors 7-Neighbors

It can be concluded from Figures 18 and 19 that the best IDW methods for the PM2.5 data are the ones
with a maximum three and four nearest neighbors, because they minimize MARE and RMSPE from
the cross-validation error statistics. Table 3 gives the detailed MARE and RMSPE values for nine IDW
methods with a maximum of three and four nearest neighbors, but different exponents.

Int. J. Environ. Res. Public Health 2014, 11 9129

Figure 19. RMSPE (root mean square percentage error) LOOCV results for the various 45
IDW methods using the improved IDW interpolation.

100.0000

600.0000

1100.0000

1600.0000

2100.0000

2600.0000

1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0R
M

S
P

E
(R

o
o

t
M

e
a

n
 S

q
u

a
re

 P
e

rc
e

n
ta

g
e

 E
rr

o
r)

Exponent

Maximum Euclidean Distance from Neighbor = 1.4

Maximum Time Di!erence from Neighbor = 7 days

3-Neighbors 4-Neighbors 5-Neighbors

6-Neighbors 7-Neighbors

Table 3. MARE and RMSPE LOOCV results for nine IDW methods with a maximum of
three and four nearest neighbors using the improved IDW interpolation.

Exponent MARE: n = 3 MARE: n = 4 RMSPE: n = 3 RMSPE: n = 4

1.0 0.37027 0.38444 242.1428 279.8240
1.5 0.36641 0.37664 210.7435 241.7803
2.0 0.36423 0.37154 185.4772 208.6938
2.5 0.36302 0.36816 167.2276 182.7473
3.0 0.36240 0.36595 155.4234 164.5911
3.5 0.36214 0.36454 148.5401 153.2638
4.0 0.36209 0.36367 144.8794 146.9017
4.5 0.36219 0.36317 143.0899 143.6380
5.0 0.36237 0.36294 142.2915 142.0947

It is shown from Table 3 that of these nine IDW methods, the IDW methods with the maximum of
three or four nearest neighbors and with an exponent of 5.0 (n = 3, 4 and p = 5.0) have the lowest
MARE and RMSPE values, according to the leave-one-out cross-validation.

Int. J. Environ. Res. Public Health 2014, 11 9130

3.4.2. Ten-Fold Cross-Validation Results

Figure 20 illustrates the MARE results and Figure 21 illustrates the RMSPE results in the improved
IDW interpolation for the 45 IDW methods that were evaluated in the 10-fold cross-validation, using the
PM2.5 data. As in the leave-one-out cross-validation, the maximum Euclidean distance that was used for
the nearest neighbor criteria is 1.4, and the maximum time difference for the nearest neighbor criteria is
seven days. Therefore, any of the k-nearest neighbors that are found that do not satisfy the maximum
Euclidean distance and the maximum time difference are rejected and are not used as a neighbor in the
IDW interpolation.

Figure 20. MARE 10-fold-cross validation results for the various 45 IDW methods using
the improved IDW interpolation.

1.0000

1.5000

2.0000

2.5000

3.0000

3.5000

1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0

M
A

R
E

 (
M

e
a

n
 A

b
so

lu
te

 R
e

la
ti

v
e

 E
rr

o
r)

Exponent

Maximum Euclidean Distance from Neighbor = 1.4

Maximum Time Di!erence from Neighbor = 7 days

2-Neighbors 3-Neighbors 4-Neighbors

5-Neighbors 6-Neighbors 7-Neighbors

It can be concluded from Figures 20 and 21 that the best IDW methods for the PM2.5 data are the ones
with a maximum seven nearest neighbors, because they minimize the MARE and the RMSPE from the
10-fold cross-validation error statistics. Table 4 gives the detailed MARE and RMSPE values for nine
IDW methods with a maximum of seven neighbors, but different exponents.

Int. J. Environ. Res. Public Health 2014, 11 9131

Figure 21. RMSPE 10-fold cross-validation results for the various 45 IDW methods using
the improved IDW interpolation.

3200.0000

3700.0000

4200.0000

4700.0000

5200.0000

5700.0000

6200.0000

6700.0000

7200.0000

7700.0000

8200.0000

1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0R
M

S
P

E
(R

o
o

t
M

e
a

n
 S

q
u

a
re

 P
e

rc
e

n
ta

g
e

 E
rr

o
r)

Exponent

Maximum Euclidean Distance from Neighbor = 1.4

Maximum Time Di!erence from Neighbor = 7 days

2-Neighbors 3-Neighbors 4-Neighbors

5-Neighbors 6-Neighbors 7-Neighbors

Table 4. MARE and RMSPE results for nine IDW methods with a maximum of seven nearest
neighbors using the improved IDW interpolation.

Exponent MARE: n = 7 RMSPE: n = 7

1.0 1.88664 4016.4020
1.5 1.64071 3626.1590
2.0 1.47143 3472.6450
2.5 1.36437 3472.7490
3.0 1.29870 3542.2100
3.5 1.25827 3627.0180
4.0 1.23285 3702.0150
4.5 1.21648 3759.8730
5.0 1.20577 3801.4410

It is shown from Table 4 that of these nine IDW methods, the maximum of seven nearest neighbors
with an exponent of 5.0 has the lowest MARE and RMSPE values. Therefore, these settings (n = 7 and
p = 5.0) should be used as the improved IDW method to interpolate the PM2.5 data according to the
10-fold cross-validation.

Int. J. Environ. Res. Public Health 2014, 11 9132

3.4.3. Comparison of Leave-One-Out and 10-Fold Cross-Validation Results

Based on Table 3, using the improved IDW-based method significantly improves the performance,
compared with using the original IDW-based method. The MARE is approximately 0.54 when using
the original IDW-based method with the best setting of three nearest neighbors with an exponent of
3.5. However, the MARE is significantly reduced to approximately 0.36, when using the improved
IDW-based method with the best setting of a maximum of three or four nearest neighbors and with an
exponent of 5.0. Using the fixed number of nearest-neighbors approach, as in the original IDW-based
interpolation, will always find neighbors, but they may be so far away from the interpolation points
that the IDW interpolation may be giving misleading information. Therefore, it is better to limit
the number of measured values by specifying a search neighborhood as in the improved IDW-based
interpolation. The search neighborhood restricts how far and where to look for the measured values to be
used in the interpolation. The improved IDW-based interpolation is able to achieve better performance,
because neighbors that are far away are excluded from the interpolation, even if they are found to be
nearest neighbors.

Based on Tables 3 and 4, the leave-one-out and 10-fold cross-validations indicate different best
settings for the improved IDW-based method. The improved IDW methods with the maximum of
three or four nearest neighbors and an exponent of 5.0 have the lowest MARE and RMSPE values
using the leave-one-out cross-validation, while the improved-IDW method with the maximum of
seven nearest neighbors and an exponent of 5.0 has the lowest MARE and RMSPE values using the
10-fold cross-validation. It should be noted that [20] also discusses the character of the exponent and
suggests that the exponent should be deduced from the form of pollution encountered. For air
pollution, [20] concludes that elementary reasoning shows that the exponent should be two or three,
but more sophisticated considerations could show that the exponent may vary between one and three.
In our study, we use an alternative approach that the best exponent could depend on the specific outcome
or measure we wanted to model. Hence, we experiment with different exponents (1.0, 1.5, 2.0, 2.5,
3.0, 3.5, 4.0, 4.5, 5.0) in order to select the one with the best performance via cross-validation and
error statistics.

For a dataset with n samples, when compared with k-fold cross-validation, leave-one-out
cross-validation builds n models from n samples instead of k models, where n > k. For leave-one-out
cross-validation, each model is trained on n − 1 samples rather than (k − 1)n/k, as in k-fold
cross-validation. Since the PM2.5 dataset requires a steep learning curve for the training size in question,
10-fold cross-validation can overestimate the generalization errors. The IDW-based interpolation method
assumes that a point to estimate is influenced most by nearby points. Since the PM2.5 datasets are
sparse in various locations around the contiguous United States, leave-one-out cross-validation is the
better cross-validation technique for evaluating the IDW-based interpolation model, because with sparse
datasets, it is better to train on as many known measurements as possible. The 10-fold cross-validation
technique is best for large datasets that do not have sparse neighbors around the point to be interpolated.
Because 10-fold cross-validation may leave out the best nearest neighbors in the training set, the
IDW-based interpolation method will interpolate a poor estimate of the PM2.5 measurement. Therefore,

Int. J. Environ. Res. Public Health 2014, 11 9133

the 10-fold cross-validation technique will show a larger error than the true error rate, as shown in the
MARE and RMSPE data in Table 4.

Since leave-one-out cross-validation is the better cross-validation technique for the PM2.5 datasets,
based on our experimental results, the best setting for the nearest neighbors and exponent are a maximum
of three or four nearest neighbors and an exponent of 5.0, as shown in Table 3.

3.5. A Web-Based Spatiotemporal IDW Interpolation Application

A web-based spatiotemporal IDW interpolation application is designed and implemented for the
improved IDW method. The system can be used to run on a server, client, through the web or from
the command line. The final implementation is a web-based Java Swing application. It can be accessed
at the website (www.travis-losser.com). Spatiotemporal interpolations in the large geographic area of
the contiguous U.S. are CPU intensive, even after the improvements by parallel programming and the
adapted k-d tree data structure. Running the application on the server would cause the server to be
unresponsive when processing multiple large interpolations at once. Therefore, the system is designed
to use local files from the client’s file system and to process them using the client’s CPU. A user-friendly
GUI (graphic user interface) is designed for the system.

3.5.1. Interpolation and Cross-Validation

There are two steps involved in performing interpolation using the web application. The first step
to interpolate a dataset is to run a 10-fold cross-validation or LOOCV in order to explore a good
combination of the exponent p and the number of neighbors N . Running the 10-fold cross-validation
or the LOOCV function first requires the user to select a data file. If the format of the file is valid
and the file is successfully loaded, the user presses the “10 Fold Cross Validation” or the “LOOCV
Validation” button, as shown in Figure 22. The user is then presented with a dialog asking to select the
exponent, the number of nearest neighbors, the maximum Euclidean distance and the maximum time
difference, as shown in Figure 23. The maximum Euclidean distance is the maximum distance between
the nearest neighbors and the point being interpolated. The maximum time difference is the maximum
time difference between the nearest neighbors and the point being interpolated. Once the validation is
complete, the error statistic MARE in Equation (7) and the error statistic RMSPE in Equation (8) along
with some other error statistics are displayed on the GUI screen and written to a text file. The user
will be responsible for choosing the optimal exponent, the number of nearest neighbors, the maximum
Euclidean distance and the maximum time difference based on the error statistics results.

The second step is to click the “Interpolate!” button. A file with the locations to be interpolated needs
to be selected. Once the location file is selected, the contents will be displayed in the Centroid Locations
Data Pane for the user to browse, as shown in Figure 22. The Centroid Locations Data Pane displays
the x and y coordinates for the centroid locations of counties or census block groups in the contiguous
U.S. that are to be interpolated. When the user clicks the Interpolate button, the system will ask the
user to input the exponent, the number of nearest neighbors, the maximum Euclidean distance and the
maximum time difference, as shown in Figure 23, which the user should have decided from the previous

Int. J. Environ. Res. Public Health 2014, 11 9134

validation step. Then, the interpolation is performed, and the the interpolation results are exported to a
text file.

Figure 22. The web application GUI (graphic user interface) with a location file selected.

Figure 23. The web application GUI dialog where the user selects the exponent, the number
of nearest neighbors, the maximum Euclidean distance and the maximum time difference.

3.5.2. Visualization and Animation

The “Visualization” button in the web application allows the user to visualize and animate the
interpolation results for fine particulate matter PM2.5 overlaid on a contiguous U.S. map. The results

Int. J. Environ. Res. Public Health 2014, 11 9135

are color rendered with the highest PM2.5 concentration as red and the lowest as light green. This GUI
interface has two noteworthy controls. First, the bottom of the screen has a slider that can be used to
select a day to view the results. As the slider is moved, the interpolated results are updated and displayed
on the map. Figures 24 and 25 show the PM2.5 interpolation results at the centroids of census block
groups in the contiguous U.S. at two different time instances of 20 January 2009 and 1 April 2009.
Second, clicking on the “Play” button automatically advances the time on the map and animates the
daily change in PM2.5 over the course of the year.

Figure 24. Interpolated PM2.5 visualization map for centroids of census block groups in the
contiguous U.S. on 20 January 2009.

Figure 25. Interpolated PM2.5 visualization map for centroids of census block groups in the
contiguous U.S. on 1 April 2009.

4. Conclusions and Future Work

In order to help find associations between air pollution and health effects, this study estimates
pollution levels of daily fine particulate matter PM2.5 for the contiguous U.S. over the year of 2009 using

Int. J. Environ. Res. Public Health 2014, 11 9136

IDW (inverse distance weighting)-based spatiotemporal interpolation. Spatiotemporal interpolation is
necessary in this study, because PM2.5 concentrations are measured only at certain locations and time
instances by monitoring stations. IDW is one of the most popular methods of spatial interpolation. In this
research, we have designed, implemented and compared two IDW-based spatiotemporal interpolation
methods based on the extension approach [40] and produced daily PM2.5 interpolation results at both the
census block group level and county level.

This study has made several contributions to the spatiotemporal interpolation research community.
First, two IDW-based spatiotemporal interpolation methods have been designed, implemented and
compared. One method is based on the traditional IDW method with a fixed number of nearest neighbors.
Another method is an improved IDW method by excluding nearest neighbors that are far away for
the interpolation point and specifying a search neighborhood. Second, when designing the IDW-based
spatiotemporal interpolation using the extension approach by integrating space and time simultaneously,
we calculate time values with the help of a new factor c in Equation (3). The assumption behind this
idea is that spatial and temporal dimensions are equally important when interpolating a continuous
changing data set in the space-time domain. Third, the study explores computational issues encountered
when implementing spatiotemporal interpolation for large datasets and presents researchers with the
appropriate techniques. Multi-threaded parallel computing techniques together with the adapted k-d tree
data structure have been designed and implemented. Significant computational improvement has been
achieved. The fourth contribution of this paper is concerned with finding optimal values for the number
of nearest neighbors N and the exponent p for the IDW-based spatiotemporal interpolation method.
The study shows how cross-validation can be used to select the appropriate N and p values. Finally, a
web-based spatiotemporal interpolation application is designed and implemented. The web application
has a friendly GUI and incorporates all of the work done in this study.

In future work, we would like to investigate whether there is a better way to calculate time values than
using Equation (3) for the daily PM2.5 data. Although we have compared two IDW-based methods in
this paper, we would like to further investigate different methods and compare them with the IDW-based
spatiotemporal interpolation methods to see whether the interpolation performance can be further
improved. Finally, we would like to link the PM2.5 interpolation results to various health outcomes
and evaluate the PM2.5 pollution impact on population health.

Acknowledgments

The authors of this paper would like to thank Xingyou Zhang at the Centers for Disease Control and
Prevention for providing the valuable experimental PM2.5 data for this study.

Author Contributions

Lixin Li contributed to the design and coordination of the study. Lixin Li, Travis Losser and Charles
Yorke drafted the manuscript. Travis Losser implemented parallel programming, the nearest neighbor
search algorithm using the k-d tree and cross-validation. Travis Losser and Charles Yorke implemented
the web-based spatiotemporal IDW interpolation application. Reinhard Piltner contributed to the design
of incorporating the c factor in the IDW-based spatiotemporal interpolation method to help in choosing

Int. J. Environ. Res. Public Health 2014, 11 9137

appropriate time values, critically reviewed the manuscript and added helpful explanations. All authors
read and approved the final version of the manuscript.

Conflicts of Interest

The authors declare no conflicts of interest.

References

1. Zou, B.; Wilson, J.G.; Zhan, F.B.; Zeng, Y. Air pollution exposure assessment methods utilized
in epidemiological studies. J. Environ. Monit. 2011, 11, 475–490.

2. Ahmed, S.; Gan, H.T.; Lam, C.S.; Poonepalli, A.; Ramasamy, S.; Tay, Y.; Tham, M.; Yu, Y.H.
Transcription factors and neural stem cell self-renewal, growth and differentiation. Cell Adhes.
Migr. 2009, 3, 412–424.

3. Rehman, A.; Pandey, R.K.; Dixit, S.; Sarviya, R.M. Performance and emission evaluation of
diesel engine fueled with vegetable oil. Int. J. Environ. Res. 2009, 3, 463–470.

4. Bell, M.L.; Ebisu, K.; Leaderer, B.P.; Gent, J.F.; Lee, H.J.; Koutrakis, P.; Wang, Y.; Dominici, F.;
Peng, R.D. Associations of PM2.5 Constituents and sources with hospital admissions: Analysis
of four counties in connecticut and Massachusetts (USA) for persons ≥ 65 years of age. Environ.
Health Perspect. 2014, 122, 138–144.

5. Brunekreef, B.; Holgate, S.T. Air pollution and health. Lancet 2002, 360, 1233–1242.
6. Pope, C.A.; Burnett, R.T.; Thurston, G.D.; Thun, M.J.; Calle, E.E.; Krewski, D.; Godleski, J.J.

Cardiovascular mortality and long-term exposure to particulate air pollution: Epidemiological
evidence of general pathophysiological pathways of disease. Circulation 2004, 109, 71–77.

7. Pope, C.A.; Dockery, D.W. Health effects of fine particulate air pollution: Lines that connect.
J. Air Waste Manag. Assoc. 2006, 56, 709–742.

8. Krall, J.R.; Anderson, G.B.; Dominici, F.; Bell, M.L.; Peng, R.D. Short-term exposure to
particulate matter constituents and mortality in a national study of U.S. urban communities.
Environ. Health Perspect. 2013, 121, 1111–1119.

9. Waller, L.A.; Louis, T.A.; Carlin, B.P. Environmental justice and statistical summaries of
differences in exposure distributions. J. Expo. Anal. Environ. Epidemiol. 1999, 9, 56–65.

10. Ryan, P.H.; Lemasters, G.K.; Biswas, P.; Levin, L.; Hu, S.; Lindsey, M.; Bernstein, D.I.;
Lockey, J.; Villareal, M.; Hershey, G.K.K.; Grinshpun, S.A. A comparison of proximity and
land use regression traffic exposure models and wheezing in infants. Environ. Health Perspect.
2007, 115, 278–284.

11. Silverman, K.C.; Tell, J.G.; Sargent, E.V.; Qiu, Z. Comparison of the industrial source complex
and AERMOD dispersion models: Case study for human health risk assessment. J. Air Waste
Manag. Assoc. 2007, 57, 1439–1446.

12. Salehi, F.; Monavari, S.M.; Arjomandi, R.; Dabiri, F.; Samadi, R. Approach towards
environmental monitoring plan in steam power plants. Int. J. Environ. Res. 2010, 4, 433–438.

13. Bell, M.L.; Belanger, K.; Ebisu, K.; Gent, J.F.; Lee, H.J.; Koutrakis, P.; Leaderer, B.P. Prenatal
exposure to fine particulate matter and birth weight. Epidemiology 2010, 21, 884–891.

Int. J. Environ. Res. Public Health 2014, 11 9138

14. Mulholland, J.A.; Butler, A.J.; Wilkinson, J.G.; Russell, A.G.; Tolbert, P.E. Temporal and spatial
distributions of ozone in Atlanta: Regulatory and epidemiologic implications. J. Air Waste
Manag. Assoc. 1998, 48, 418–426.

15. Jerrett, M.; Arain, A.; Kanaroglou, P.; Beckerman, B.; Potoglou, D.; Sahsuvaroglu, T.;
Morrison, J.; Giovis, C. A review and evaluation of intraurban air pollution exposure models.
J. Expo. Anal. Environ. Epidemiol. 2005, 15, 185–204.

16. Maheswaran, R.; Elliott, P. Stroke mortality associated with living near main roads in England
and wales: A geographical study. Stroke 2003, 34, 2776–2780.

17. Brender, J.D.; Zhan, F.B.; Langlois, P.H.; Suarez, L.; Scheuerle, A. Residential proximity to
waste sites and industrial facilities and chromosomal anomalies in offspring. Int. J. Hyg. Environ.
Health 2008, 211, 50–58.

18. Rogers, J.F.; Thompson, S.J.; Addy, C.L.; McKeown, R.E.; Cowen, D.J.; Decouflé, P. Association
of very low birth weight with exposures to environmental sulfur dioxide and total suspended
particulates. Am. J. Epidemiol. 2000, 151, 602–613.

19. Bellander, T.; Berglind, N.; Gustavsson, P.; Jonson, T.; Nyberg, F.; Pershagen, G.; Järup, L.
Using geographic information systems to assess individual historical exposure to air pollution
from traffic and house heating in Stockholm. Environ. Health Perspect. 2001, 109, 633–639.

20. de Mesnard, L. Pollution models and inverse distance weighting: Some critical remarks. Comput.
Geosci. 2013, 52, 459–469.

21. Shepard, D. A two-dimensional interpolation function for irregularly spaced data. In Proceedings
of the 23nd National Conference ACM, Las Vegas, NV, USA, 27–29 August 1968; ACM: New
York, USA, 1968; pp. 517–524.

22. Krige, D.G. A Statistical Approach to Some Mine Valuations and Allied Problems at the
Witwatersrand. Master’s Thesis, University of Witwatersrand, Johannesburg, South Africa, 1951.

23. Zienkiewics, O.C.; Taylor, R.L. Finite Element Method, Volume 1, The Basis; Butterworth
Heinemann: London, UK, 2000.

24. de Boor, C. A Practical Guide to Splines; Springer: Berlin/Heidelberg, Germany, 2001;
Volume 27.

25. Zurflueh, E.G. Applications of two-dimensional linear wavelength filtering. Geophysics 1967,
32, 1015–1035.

26. Tobler, W.R. A computer movie simulating urban growth in the Detroit region. Econ. Geogr.
1970, 46, 234–240.

27. Murphy, R.; Curriero, F.; Ball, W. Comparison of spatial interpolation methods for water quality
evaluation in the Chesapeake Bay. J. Environ. Eng. 2010, 136, 160–171.

28. Rahman, H.; Alireza, K.; Reza, G. Application of artificial neural network, kriging, and inverse
distance weighting models for estimation of scour depth around bridge pier with bed sill. J. Softw.
Eng. Appl. 2010, 3, 944–964.

29. Eldrandaly, K.A.; Abu-Zaid, M.S. Comparison of six GIS-based spatial interpolation methods for
estimating air temperature in Western Saudi Arabia. J. Environ. Inf. 2011, 18, 38–45.

Int. J. Environ. Res. Public Health 2014, 11 9139

30. Xie, Y.; Chen, T.; Lei, M.; Yang, J.; Guo, Q.; Song, B.; Zhou, X. Spatial distribution of soil heavy
metal pollution estimated by different interpolation methods: Accuracy and uncertainty analysis.
Chemosphere 2011, 82, 468–476.

31. Ninyerola, M.; Pons, X.; Roure, J.M. Objective air temperature mapping for the Iberian Peninsula
using spatial interpolation and GIS. Int. J. Clim. 2007, 27, 1231–1242.

32. Luo, W.; Taylor, M.C.; Parker, S.R. A comparison of spatial interpolation methods to estimate
continuous wind speed surfaces using irregularly distributed data from England and Wales. Int.
J. Clim. 2008, 28, 947–959.

33. Miller, E.J. Towards a 4D GIS: Four-dimensional Interpolation Utilizing Kriging. In Innovations
in GIS 4: Selected Papers from the Fourth National Conference on GIS Research U.K, Ch. 13;
Taylor & Francis: London, UK, 1997; pp. 181–197.

34. Li, L.; Revesz, P. A Comparison of Spatio-Temporal Interpolation Methods. In Proceedings of
the Second International Conference on GIScience 2002, Boulder, CO, USA, 25–28 September
2002; Springer: Berlin/Heidelberg, Germany, 2002; Volume 2478, pp. 145–160.

35. Li, L.; Li, Y.; Piltner, R. A New Shape Function Based Spatiotemporal Interpolation Method.
In Proceedings of the First International Symposium on Constraint Databases 2004, Paris, France,
12–13 June 2004; Springer: Berlin/Heidelberg, Germany, 2004; Volume 3074, pp. 25–39.

36. Revesz, P.; Wu, S. Spatiotemporal reasoning about epidemiological data. Artif. Intell. Med.
2006, 38, 157–170.

37. Li, L. Constraint Databases and Data Interpolation. In Encyclopedia of Geographic Information
System; Shekhar, S., Xiong, H., Eds.; Springer: Berlin/Heidelberg, Germany, 2008; pp. 144–153.

38. Hussain, I.; Spöck, G.; Pilz, J.; Yu, H.L. Spatio-temporal interpolation of precipitation during
monsoon periods in Pakistan. Adv. Water Resour. 2010, 33, 880–886.

39. Yu, H.L.; Wang, C.H. Quantile-based Bayesian maximum entropy approach for spatiotemporal
modeling of ambient air quality levels. Environ. Sci. Technol. 2013, 47, 1416–1424.

40. Li, L.; Revesz, P. Interpolation methods for spatio-temporal geographic data. J. Comput. Environ.
Urban Syst. 2004, 28, 201–227.

41. Liao, D.; Peuquet, D.J.; Duan, Y.; Whitsel, E.A.; Dou, J.; Smith, R.L.; Lin, H.M.; Chen, J.C.;
Heiss, G. GIS Approaches for the estimation of residential-level ambient PM concentrations.
Environ. Health Perspect. 2006, 114, 1374–1380.

42. Li, L.; Zhang, X.; Holt, J.B.; Tian, J.; Piltner, R. Estimating population exposure to fine particulate
matter in the conterminous U.S. using shape function-based spatiotemporal interpolation method:
A county level analysis. GSTF: Int. J. Comput. 2012, 1, 24–30.

43. Li, L. Spatiotemporal Interpolation Methods in GIS—Exploring Data for Decision Making; VDM
Verlag Dr. Müller: Saarbrücken, Germany, 2009.

44. Revesz, P. Introduction to Databases: From Biological to Spatio-Temporal; Springer: New York,
NY, USA, 2010.

45. Li, L.; Zhang, X.; Piltner, R. A Spatiotemporal Database for Ozone in the Conterminous U.S.
In Proceedings of the IEEE Thirteenth International Symposium on Temporal Representation and
Reasoning, Budapest, Hungary, 15–17 June 2006; pp. 168–176.

Int. J. Environ. Res. Public Health 2014, 11 9140

46. Li, L.; Zhang, X.; Piltner, R. An application of the shape function based spatiotemporal
interpolation method on ozone and population exposure in the contiguous U.S. J. Environ. Inf.
2008, 12, 120–128.

47. Mueller, T.G.; Pusuluri, N.B.; Mathias, K.K.; Cornelius, P.L.; Barnhisel, R.I.; Shearer, S.A. Map
Quality for ordinary kriging and inverse distance weighted interpolation. Soil Sci. Soc. Am. J.
2004, 68, 2042–2047.

48. Li, J.; Heap, A.D. A review of comparative studies of spatial interpolation methods in
environmental sciences: Performance and impact factors. Ecol. Inf. 2011, 6, 228–241.

49. Akhtari, R.; Morid, S.; Mahdian, M.H.; Smakhtin, V. Assessment of areal interpolation methods
for spatial analysis of SPI and EDI drought indices. Int. J. Clim. 2009, 29, 135–145.

50. Lu, G.Y.; Wong, D.W. An adaptive inverse-distance weighting spatial interpolation technique.
Comput. Geosci. 2008, 34, 1044–1055.

51. Hayhoe, H.N.; Lapen, D.R.; Andrews, C.J. Using weather indices to predict survival of winter
wheat in a cool temperate environment. Int. J. Biometeorol. 2003, 47, 62–72.

52. Kravchenko, A.; Bullock, D.G. A comparative study of interpolation methods for mapping soil
properties. Agron. J. 1999, 91, 393–400.

53. Weber, J.; Adamek, H.E.; Riemann, J.F. Extracorporeal piezoelectric lithotripsy for retained bile
duct stones. Endoscopy 1992, 24, 239–243.

54. Childs, C. Interpolating surfaces in ArcGIS spatial analyst. ArcUser, 2004. Available onine:
http://webapps.fundp.ac.be/geotp/SIG/interpolating.pdf (accessed on 1 September 2014).

55. Hoek, G.; Fischer, P.; Van Den Brandt, P.; Goldbohm, S.; Brunekreef, B. Estimation of long-term
average exposure to outdoor air pollution for a cohort study on mortality. J. Expo. Anal. Environ.
Epidemiol. 2001, 11, 459–469.

56. Bell, M.L. The use of ambient air quality modeling to estimate individual and population exposure
for human health research: A case study of ozone in the Northern Georgia Region of the United
States. Environ. Int. 2006, 32, 586–593.

57. Kan, H.; Heiss, G.; Rose, K.M.; Whitsel, E.; Lurmann, F.; London, S.J. Traffic exposure and lung
function in adults: The atherosclerosis risk in communities study. Thorax 2007, 62, 873–879.

58. Brauer, M.; Lencar, C.; Tamburic, L.; Koehoorn, M.; Demers, P.; Karr, C. A cohort study
of traffic-related air pollution impacts on birth outcomes. Environ. Health Perspect. 2008,
116, 680–686.

59. Wikipedia. Census Block Group. 2013. Available online: http:\\en.wikipedia.org\wiki\
Census_block_group (accessed on 1 September 2014).

60. Clemons, W.; Grecol, M.; Losser, T.; Yorke, C. Monitoring Pollution Trend in the Course of
the Year Using Inverse Distance Weighting Spatio-Temporal Interpolation. Technical Report at
Department of Computer Sciences; Georgia Southern University: Statesboro, GA, USA, 2013.

61. Fasshauer, G.E. Meshfree Approximation Methods with MATLAB; World Scientific Publishing:
Singapore, 2007.

62. Wendland, H. Scattered Data Approximation; Cambridge University Press: Cambridge, UK,
2005.

63. Kurniawan, B. Java 7: A Beginner’s Tutorial, 3rd ed.; BrainySoftware: Quebec, Canada, 2011.

Int. J. Environ. Res. Public Health 2014, 11 9141

64. Bentley, J.L. Multidimensional binary search trees used for associative searching. Commun. ACM
1975, 18, 509–517.

65. Heineman, G.; Pollice, G.; Selkow, S. Algorithms in a Nutshell; O’Reilly Media: Sebastopol, CA,
USA, 2008.

66. Friedman, J.H.; Bentley, J.L.; Finkel, R.A. An Algorithm for finding best matches in logarithmic
expected time. ACM Trans. Math. Softw. 1977, 3, 209–226.

67. Refaeilzadeh, P.; Tang, L.; Liu, H. Cross Validation. In Encyclopedia of Database Systems;
Özsu, M.T., Liu, L., Eds.; Springer: Berlin/Heidelberg, Germany, 2009.

68. Vural, R.A.; Özyilmaz, L.; Yildirim, T. A comparative study on computerised diagnostic
performance of hepatitis disease using ANNs. In Proceedings of the 2006 International
Conference on Intelligent Computing, Kunming, China, 16–19 August 2006; pp. 1177–1182.

c⃝ 2014 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article
distributed under the terms and conditions of the Creative Commons Attribution license
(http://creativecommons.org/licenses/by/3.0/).

	Fast Inverse Distance Weighting-Based Spatiotemporal Interpolation: A Web-Based Application of Interpolating Daily Fine Particulate Matter PM2.5 in the Contiguous U.S. Using Parallel Programming and k-d Tree
	Recommended Citation

	Introduction
	Background
	Literature Review on Interpolation in GIS

	Methods
	Experimental PM2.5 Data
	IDW-Based Spatiotemporal Interpolation Method Using the Extension Approach
	Original IDW-Based Spatiotemporal Interpolation Method Using the Extension Approach
	Improved IDW-Based Spatiotemporal Interpolation Method Using the Extension Approach
	Discussion of the Methods

	Applying Parallel Computing Techniques
	Motivation of Using Parallel Computing
	Implementation of Parallel Computing

	k-d Tree Data Structure
	Motivation of Using k-d Tree
	Properties of a k-d Tree
	Constructing a k-d Tree
	Searching a k-d Tree
	Nearest Neighbor Search Algorithm using k-d Tree to Find One Nearest Neighbor
	Adapted Neighbor Search Algorithm Using a k-d Tree to Find Multiple Nearest Neighbors

	Cross-Validation
	K-Fold Cross-Validation Method
	Leave-One-Out Cross-Validation Method
	Error Statistics

	Results
	Computational Performance Improvement by Using Parallel Computing
	Computational Performance Improvement of by Using k-d Tree
	Leave-One-Out Cross-Validation Results for the Original IDW-Based Method
	Cross-Validation Results for the Improved IDW-Based Method
	Leave-One-Out Cross-Validation Results
	Ten-Fold Cross-Validation Results
	Comparison of Leave-One-Out and 10-Fold Cross-Validation Results

	A Web-Based Spatiotemporal IDW Interpolation Application
	Interpolation and Cross-Validation
	Visualization and Animation

	Conclusions and Future Work

