Families of Weighted Sum Formulas for Multiple Zeta Values

Li Guo
Rutgers University

Peng Lei
Lanzhou University

Jianqiang Zhao
Georgia Southern University, zhaoj8888@gmail.com

Follow this and additional works at: https://digitalcommons.georgiasouthern.edu/math-sci-facpubs

Part of the Mathematics Commons

Recommended Citation
https://digitalcommons.georgiasouthern.edu/math-sci-facpubs/415

This article is brought to you for free and open access by the Mathematical Sciences, Department of at Digital Commons@Georgia Southern. It has been accepted for inclusion in Mathematical Sciences Faculty Publications by an authorized administrator of Digital Commons@Georgia Southern. For more information, please contact digitalcommons@georgiasouthern.edu.
FAMILIES OF WEIGHTED SUM FORMULAS FOR
MULTIPLE ZETA VALUES

LI GUO, PENG LEI, AND JIANQIANG ZHAO

Abstract. Euler’s sum formula and its multi-variable and weighted generalizations form a large class of the identities of multiple zeta values. In this paper we prove a family of identities involving Bernoulli numbers and apply them to obtain infinitely many weighted sum formulas for double zeta values and triple zeta values where the weight coefficients are given by symmetric polynomials.

Contents

1. Introduction 1
2. Weighted sum of products of Bernoulli numbers 3
3. Weighted sum formulas for double zeta values 8
4. Weighted sum formulas for triple zeta values 15
References 26

1. Introduction

Multiple zeta functions are multiple variable generalizations of the Riemann zeta function. For fixed positive integer d and d-tuple of complex numbers $s = (s_1, \ldots, s_d)$, the multiple zeta function is defined by

$$
\zeta(s) = \sum_{k_1 > \cdots > k_d > 0} k_1^{-s_1} \cdots k_d^{-s_d}
$$

(1)

where s satisfies $\text{Re}(s_1 + \cdots + s_j) > j$ for all $j = 1, \ldots, d$. The number d is called the depth (or length) and $s_1 + \cdots + s_d$ the weight, denoted by $|s|$. Their convergent special values at positive integers are called multiple zeta values. These values can be traced back to a series of correspondences between Leonhard Euler and Christian Goldbach [6]. On the Christmas Eve of 1742, with different notation Goldbach wrote down some special cases of the following infinite sum on a letter to Euler:

$$
\sum_{a \geq b \geq 1} \frac{1}{a^m b^n},
$$

2010 Mathematics Subject Classification. 11M32, and 11B68.
where \(m \) and \(n \) are positive integers. Using our notation this is \(\zeta(m, n) + \zeta(m + n) \) where \(\zeta(m, n) \) is a double zeta value (DZV for short). Later Euler discovered the following sum formula
\[
\sum_{k=2}^{n-1} \zeta(k, n - k) = \zeta(n), \quad n \geq 3,
\]
and decomposition formula
\[
2\zeta(n, 1) = n\zeta(n + 1) - \sum_{i=1}^{n-2} \zeta(n - i)\zeta(i + 1), \quad n \geq 2.
\]

There are many generalizations and variations of the sum formula in the literature. Ohno and Zudilin [8] proved a weighted form of Euler’s sum formula
\[
\sum_{k=2}^{w-1} 2^k \zeta(k, w - k) = (w + 1)\zeta(w), \quad w \geq 3.
\]
Later this was generalized by Guo and Xie [4] to arbitrary depths. During their study of DZVs and modular forms Gangl et al. [3] made the following discovery: For all \(n \geq 2 \) we have
\[
\sum_{k=1}^{n-1} \zeta(2k, 2n - 2k) = \frac{3}{4} \zeta(2n),
\]
\[
\sum_{k=1}^{n-1} \zeta(2k + 1, 2n - 2k - 1) = \frac{1}{4} \zeta(2n).
\]
Recently, Hoffman [5] extended Eq. (5) to arbitrary depths. Of course these can also be regarded as weighted sum formulas. Some more complicated identities in depth two can be found in [7]
\[
\sum_{k=1}^{n-1} (4^k + 4^{n-k})\zeta(2k, 2n - 2k) = \left(n + \frac{4}{3} + \frac{4^n}{6}\right)\zeta(2n),
\]
\[
\sum_{k=2}^{n-2} (2k - 1)(2n - 2k - 1)\zeta(2k, 2n - 2k) = \frac{3}{4}(n - 3)\zeta(2n).
\]
Nakamura’s idea to prove Eq. (8) is to show the following identity of Bernoulli numbers:
\[
6 \sum_{i,j \geq 4, i+j=k} (i-1)(j-1)B_iB_j \binom{k}{i} = -(k-1)(k^2 - 5k - 6)B_k,
\]
where \(B_j \) is a Bernoulli number with generating function
\[
\frac{t}{e^t - 1} = \sum_{j=0}^{\infty} B_j \frac{t^j}{j!}.
\]
Eq. (9) quickly leads to
\[6 \sum_{k=2}^{n-2} (2k - 1)(2n - 2k - 1) \zeta(2k) \zeta(2n - 2k) = (n - 3)(4n^2 - 1) \zeta(2n) \] (10)
by Euler’s famous evaluation
\[\zeta(2n) = -\frac{B_{2n}}{2(2n)!} (2\pi i)^{2n}, \quad \text{and} \quad \zeta(1 - 2n) = -\frac{B_{2n}}{2n}. \] (11)

The identity in Eq. (9) relating Bernoulli numbers have been obtained by a few diverse methods. Rademacher [9, p. 121] derived it as a consequence of an identity among Eisenstein series of different weights. Shimura essentially did the same in his book [11, (11.10)]. Eie [1] proved it using the zeta function associated with some polynomials. We use his method in this paper to obtain infinitely many families of Bernoulli number identities similar to Eq. (9) in Section 2. These identities lead to infinitely many different weighted sum formulas for double and triple zeta values with symmetric polynomial coefficients. We will consider the case of double zeta values in Section 3 and the case of triple zeta values in Section 4. We end the paper with a conjecture for the general case.

2. Weighted sum of products of Bernoulli numbers

In this section we shall prove a sum formula for products \(B_{2j}B_{2k} \) for fixed \(j + k \) with some weight coefficients. This in turn will lead to a sum formula for products \(\zeta(2j)\zeta(2k) \) with weight coefficients given by arbitrary polynomials in \(j \) and \(k \). First we define a zeta function that will be useful in both depth two and depth three cases:
\[Z_2(s; r_1, r_2) = \sum_{m_1, m_2=1}^{\infty} m_1^{r_1} m_2^{r_2}(m_1 + m_2)^{-s}. \]

The basic idea of Eie in [1] [2] is to compute the special value of this function when \(s \) is some appropriate negative integer using two different methods. By comparing the two expressions one can derive an identity of Bernoulli numbers which yields the desired identity of multiple zeta values.

First we want to find a useful expression of \(Z_2(s; r_1, r_2) \). We have
\[
Z_2(s; r_1, r_2) = \sum_{m=1}^{\infty} \sum_{m_1=1}^{m-1} m_1^{r_1}(m - m_1)^{r_2} m^{-s} \\
= \sum_{m=1}^{\infty} \sum_{m_1=1}^{m-1} m_1^{r_1} \sum_{i=0}^{r_2} \binom{r_2}{i} (-1)^i m_2^{-i} m_1^i m^{-s} \\
= \sum_{m=1}^{\infty} \sum_{i=0}^{r_2} (-1)^i \binom{r_2}{i} \sum_{k=0}^{r_1+i} \binom{r_1+i+1}{k} (-1)^k B_k \cdot m_1^{r_1+i+1-k} - m_1^{r_1+i} \cdot m_2^{-i-s}
\]
Lemma 2.2. Let f where $f_k(s; r_1, r_2) = \zeta(s + k - r_1 - r_2 - 1)$. To simplify this further we need the following combinatorial lemmas.

Lemma 2.1. Let k, r_1, and r_2 be nonnegative integers. Then

$$\sum_{i=0}^{r_2} (-1)^i \binom{r_2}{i} \binom{r_1 + i}{k - 1} = (-1)^{r_2} \binom{r_1 + 1}{k - r_2 - 1}.$$

Proof. We have

$$\sum_{k=1}^{r_1 + r_2 + 1} \sum_{i=0}^{r_2} (-1)^i \binom{r_2}{i} \binom{r_1 + i}{k - 1} x^k$$

$$= \sum_{i=0}^{r_2} (-1)^i \binom{r_2}{i} \sum_{k=0}^{r_1 + r_2} \binom{r_1 + i}{k} x^k + 1 = \sum_{i=0}^{r_2} (-1)^i \binom{r_2}{i} x(1 + x)^{r_1 + i}$$

$$= x(1 + x)^{r_1}(1 - (1 + x))^{r_2} = \sum_{l=0}^{r_1} \binom{r_1}{l} (-1)^r x^{r_2 + l + 1} = \sum_{k=0}^{r_1 + r_2 + 1} (-1)^{r_2} \binom{r_1}{k - r_2 - 1} x^k.$$

Comparing the coefficients we obtain the lemma immediately. \qed

Lemma 2.2. Let r_1 and r_2 be two nonnegative integers. Then

$$\sum_{i=0}^{r_2} (-1)^i \binom{r_2}{i} \frac{1}{r_1 + i + 1} = \frac{r_1!r_2!}{(r_1 + r_2 + 1)!}.$$

Proof. Define

$$F(x) = \sum_{i=0}^{r_2} (-1)^i \binom{r_2}{i} \frac{x^{r_1 + i + 1}}{r_1 + i + 1}.$$

Then

$$F'(x) = \sum_{i=0}^{r_2} (-1)^i \binom{r_2}{i} x^{r_1 + i} = x^{r_1}(1 - x)^{r_2}.$$

Thus using the beta function $B(a, b) = \int_0^1 x^{a-1}(1 - x)^{b-1} \, dx = \Gamma(a)\Gamma(b)/\Gamma(a + b)$ we have

$$\sum_{i=0}^{r_2} (-1)^i \binom{r_2}{i} \frac{1}{r_1 + i + 1} = \int_0^1 x^{r_1}(1 - x)^{r_2} \, dx = B(r_1 + 1, r_2 + 1) = \frac{r_1!r_2!}{(r_1 + r_2 + 1)!}$$

as desired. \qed

Given any function $f(x, y)$ we define

$$\text{Cyc}_{x, y} f(x, y) = f(x, y) + f(y, x).$$
Proposition 2.3. For all nonnegative integers \(r_1 \) and \(r_2 \) we have

\[
Z_2(s; r_1, r_2) = \frac{r_1!r_2!}{(r_1 + r_2 + 1)!} f_0(s; r_1, r_2) + \text{Cyc} (-1)^{r_1} \sum_{k=r_1+1}^{r_1+r_2+1} \frac{r_2}{k-r_1-1} \beta_k f_k(s; r_1, r_2),
\]

where \(\beta_k = B_k/k \).

Proof. By Eq. (12) we get

\[
Z_2(s; r_1, r_2) = \sum_{i=0}^{r_2} (-1)^i \binom{r_2}{i} \sum_{k=0}^{r_1+r_2+1} \binom{r_1+i+1}{k} \frac{(-1)^kB_k}{r_1+i+1} f_k(s; r_1, r_2)
\]

\[
+ \sum_{i=0}^{r_2} (-1)^{r_1} \binom{r_2}{i} \frac{B_{r_1+i+1}}{r_1+i+1} f_{r_1+i+1}(s; r_1, r_2) - \delta_{r_2,0} \zeta(s-r_1-r_2)
\]

\[
= \sum_{i=0}^{r_2} (-1)^i \binom{r_2}{i} \sum_{k=1}^{r_1+r_2+1} \binom{r_1+i}{k-1} \frac{1}{k-1} \beta_k f_k(s; r_1, r_2) - \delta_{r_2,0} \zeta(s-r_1-r_2)
\]

Observe that \((-1)^k \beta_k = \beta_k\) unless \(k = 1 \), and this term occurs if and only if \(r_2 = 0 \). Further \(\beta_1 = -\beta_1 - 1 \). So by combining the last two parts of the above equation, we can get the result of the proposition. \(\square \)

In order to find the weighted sum formulas for DZVs we first consider the corresponding result for Bernoulli numbers.

Theorem 2.4. For all nonnegative integers \(r_1, r_2 \) and \(n \geq r_1 + r_2 + 2 \) we have

\[
\sum_{k=1}^{2n-1} \frac{B_k}{k!} \frac{B_{2n-k}}{(2n-k)!} \prod_{a=1}^{r_1}(k-a) \prod_{b=1}^{r_2}(2n-k-b)
\]

\[
= \sum_{k=r_1+1}^{2n-r_2-1} \frac{B_k}{k!} \frac{B_{2n-k}}{(2n-k)!} \prod_{a=1}^{r_1}(k-a) \prod_{b=1}^{r_2}(2n-k-b)
\]

\[
= -r_1!r_2! \left(\binom{2n-1}{r_1+r_2+1} + \text{Cyc} (-1)^{r_2} \binom{2n-1}{r_1} \right) \frac{B_{2n}}{(2n)!}
\]

\[
- r_1!r_2! \text{Cyc} (-1)^{r_1} \sum_{k=r_1+1}^{r_1+r_2+1} \binom{2n-1-k}{r_1+r_2+1-k} \frac{1}{k!} \frac{B_k}{(2n-k)!}
\]
Applying the operator J

By comparing this with Eq. (14) we have

\[Z_2(s; r_1, r_2) = -\frac{r_1!r_2!\beta_{2n}}{(r_1 + r_2 + 1)!} \sum_{k=r_1+1}^{r_1+r_2+1} \left(\begin{array}{c} r_2 \\ k - r_1 - 1 \end{array} \right) \beta_k \beta_{2n-k}. \quad (13) \]

On the other hand Eie [1, 2] showed that functions like $Z_e(s)$ have analytic continuations over the whole complex plane and further they are defined at negative integers. In fact our expressions in (13) shows clearly that this can be done using the Riemann zeta function. More importantly, Eie showed that these special values at negative integers can also be computed using some integrals over clearly specified simplices. In our situation Eie’s theory implies that

\[Z_2(s; r_1, r_2) = J^2 \left(x^{r_1} y^{r_2} (x + y)^{-s} \right) + \text{Cyc} \cdot J^1 \left(\int_0^1 x^{r_1} y^{r_2} (x + y)^{-s} \, dy \right), \quad (14) \]

where for positive integers a_j ($j = 1, \ldots, m$)

\[J^m(x^{a_1} \ldots x^{a_m}) = \prod_{j=1}^{m} (-1)^{a_j} \beta_{a_j+1}. \quad (15) \]

For the integral we may use substitution $y = -xt$ to get

\[\int_0^1 x^{r_1} y^{r_2} (x + y)^{2n-r_1-r_2-2} \, dy = (-1)^{r_2+1} x^{2n+1} \int_0^1 t^{r_2} (1-t)^{2n-r_1-r_2-2} \, dt \]

\[= (-1)^{r_2+1} x^{2n+1} \frac{r_2!(2n-r_1-r_2-2)!}{(2n-r_1-1)!}. \quad (16) \]

Applying the operator J we get

\[Z_2(s; r_1, r_2) = \sum_{a+b=-s} \frac{(-s)!}{a!b!} \beta_{a+r_1+1} \beta_{b+r_2+1} + \text{Cyc} \cdot \frac{(-1)^{r_2} r_2! (-s)!}{(2n-r_1-1)!} \beta_{2n}. \quad (17) \]

By comparing this with Eq. (14) we have

\[\sum_{k=r_1+1}^{2n-r_2-1} \frac{(2n-r_1-r_2-2)!}{(k-r_1-1)!(2n-k-r_2-1)!} B_k \frac{B_{2n-k}}{k} \frac{B_{2n}}{2n} \]

\[= \left(\frac{-r_1!r_2!}{(r_1+r_2+1)!} - \text{Cyc} \cdot \frac{(-1)^{r_2} r_2!(2n-r_1-r_2-2)!}{(2n-r_1-1)!} \right) \frac{B_{2n}}{2n} \]

\[- \text{Cyc} \cdot \frac{(-1)^{r_1} r_2}{r_1+r_2+1} \sum_{k=r_1+1}^{r_1+r_2+1} \left(\begin{array}{c} r_2 \\ k - r_1 - 1 \end{array} \right) B_k \frac{B_{2n-k}}{k} \frac{B_{2n}}{2n} \]

The theorem follows immediately. \hfill \Box

Corollary 2.5. For all nonnegative integers r_1, r_2 and $n \geq r_1 + r_2 + 2$ we have

\[\sum_{k=\left[(r_1+r_2)/2\right]+1}^{n-(r_1+r_2)/2-1} \frac{B_{2k}}{(2k)!} \frac{B_{2j}}{(2j)!} \frac{B_{2j}}{r_1} \left(\begin{array}{c} 2k-1 \\ r_1 \end{array} \right) \left(\begin{array}{c} 2j-1 \\ r_2 \end{array} \right) \quad (here \ j = n-k) \]
Let \[\text{Theorem 2.7.} \]

\[\frac{B_{2n}}{(2n)!} \]

\[\text{we see easily that} \]

\[\text{Notice that in the last summation if} \ r_1 \ \text{is odd and} \ k = (r_1 + 1)/2 \ \text{then the corresponding term happens to be zero. Thus we can improve the lower limit of} \ k \ \text{from} \ \lceil (r_1 + 1)/2 \rceil \ \text{to} \ \lceil r_1/2 \rceil + 1. \text{This finishes the proof of the corollary.} \]

By Eq. \ref{eq:11} and Corollary \ref{cor:2.5} we can get the following Corollary

Corollary 2.6. For all nonnegative integers \(r_1, r_2 \) and \(n \geq r_1 + r_2 + 2 \) we have

\[\sum_{k = \lceil (r_1 + r_2)/2 \rceil + 1}^{n - \lceil (r_1 + r_2)/2 \rceil - 1} \left(\begin{array}{c} 2k - 1 \\ r_1 \\ \end{array} \right) \left(\begin{array}{c} 2(n - k - 1) \\ r_2 \\ \end{array} \right) \zeta(2(n - k)) \zeta(2k) \]

\[= \frac{1}{2} \left(\begin{array}{c} 2n - 1 \\ r_1 + r_2 + 1 \\ \end{array} \right) + \text{Cyc}_{r_1, r_2} (-1)^{r_2} \left(\begin{array}{c} 2n - 1 \\ r_1 \\ \end{array} \right) \zeta(2n) \]

\[- \text{Cyc}_{r_1, r_2 = \lceil r_1/2 \rceil + 1}^{|(r_1 + r_2 + 1)/2|} \left(\begin{array}{c} 2k - 1 \\ r_1 \\ \end{array} \right) \left(\begin{array}{c} 2(n - k) - 1 \\ r_2 \\ \end{array} \right) \zeta(2(n - k)) \zeta(2k). \]

In the literature there are many different types of sum formulas for DZV. The following statement is a kind of weighted sum formula for a product of two Riemann zeta values with the weight coefficients given by arbitrary polynomials. To derive sum formulas for DZV one has to symmetrize the coefficient which will be done in the next section.

Theorem 2.7. Let \(F(x, y) \in \mathbb{Q}[x, y] \) be a polynomial of degree \(d \). Then for every positive integer \(n \geq d + 2 \) we have

\[\sum_{j + k = n} F(j, k) \zeta(2j) \zeta(2k) = \sum_{k=0}^{\lceil (d+1)/2 \rceil} K_{F,k}(n) \zeta(2k) \zeta(2n - 2k), \]
where $K_{f,k}(x)$ is a polynomial in x depending only on F and k whose degree is at most $d + 1$.

Proof. It is well-known that for any nonnegative integers $m \geq r$ the Stirling numbers of the second kind $S(m, r)$ are all rational numbers which can be defined by

$$x^m = \sum_{r=0}^{m} r!S(m, r)\left(\frac{x}{r}\right).$$ \hfill (18)

Thus for any nonnegative integers m_1 and m_2 we have

$$j^{m_1}k^{m_2}\zeta(2j)\zeta(2k) = \frac{1}{2^{m_1+m_2}} \sum_{r_1=0}^{m_1} \sum_{r_2=0}^{m_2} r_1!r_2!S(m_1, r_1)S(m_2, r_2) \left(\binom{2j-1}{r_1} + \binom{2j-1}{r_1-1}\right) \left(\binom{2k-1}{r_2} + \binom{2k-1}{r_2-1}\right) \zeta(2j)\zeta(2k).$$

The theorem now follows from Corollary 2.6. \hfill \square

Example 2.8. We can obtain the following weighted sum formulas applying Corollary 2.6:

$$\sum_{j+k=n} j\zeta(2l)\zeta(2k) = \frac{n(2n+1)}{4} \zeta(2n),$$ \hfill (19)

$$\sum_{j+k=n} j^2\zeta(2l)\zeta(2k) = \frac{n(2n+1)(4n+1)}{24} \zeta(2n) - \frac{2n-3}{2} \zeta(2)\zeta(2n-2),$$

$$\sum_{j+k=n} j^3\zeta(2l)\zeta(2k) = \frac{n^2(2n+1)^2}{16} \zeta(2n) - \frac{3n(2n-3)}{4} \zeta(2)\zeta(2n-2),$$

$$\sum_{j+k=n} j^4\zeta(2l)\zeta(2k) = \frac{n(2n+1)(4n+1)(12n^2+6n-1)}{480} \zeta(2n)$$

$$- \frac{(2n-3)(8n^2-6n+5)}{8} \zeta(2)\zeta(2n-2) - \frac{3(2n-5)}{2} \zeta(4)\zeta(2n-4).$$ \hfill (20)

3. Weighted sum formulas for double zeta values

In this section we apply results from the last section to give weighted sum formula for DZVs $\zeta(2j, 2k)$ for fixed $j+k$ when the weight factors are arbitrary symmetric polynomials in j and k. First, by setting $r_1 = r_2$ in Corollary 2.5 we obtain immediately

Proposition 3.1. For all nonnegative integers r and $n \geq 2r + 2$ we have

$$\sum_{k=r+1}^{n-r-1} \frac{(2n - 2r - 2)!}{(2k-r-1)!(2n-2k-r-1)!}\frac{B_{2k}}{2k}\frac{B_{2n-2k}}{2n-2k}$$

$$\quad (2k-r-1)! (2n-2k-r-1)!$$
Example 3.2. Taking \(r = 1 \) we recover [1] Proposition 1] (notice it has a typo: \((2n - 2)!\) on the left numerator should be \((2n - 4)!\)). Taking \(r = 2 \) we recover [2] Proposition 4.2.2]. Taking \(r = 3 \) in Proposition 3.3 we get

\[
\sum_{k=\lceil r/2 \rceil + 1}^{n-4} \frac{(2n - 8)!}{(2k - 4)!(2n - 2k - 4)!} \frac{B_{2k} B_{2n-2k}}{2k \cdot 2n - 2k} = -\frac{(n - 6)(2n + 1)(2n^2 - 11n + 35)}{140(n - 2)(n - 3)(2n - 5)(2n - 7)} \frac{B_{2n}}{2n} - \frac{2n - 11}{6} B_6 B_{2n-6}, \quad n \geq 8.
\]

By Eq. (11) and Proposition 3.1 we obtain

Corollary 3.3. For all nonnegative integers \(r \) and \(n \geq 2r + 2 \) we have

\[
\sum_{k=r+1}^{n-r-1} \zeta(2k) \zeta(2n - 2k) \prod_{\alpha=1}^{r} \left\{(2k - \alpha)(2n - 2k - \alpha)\right\}
= \left(-1\right)^r r! \frac{\left(\frac{r!}{2(2r + 1)!}\right)^{2r+1}}{\prod_{\beta=r+1}^{2r+1} (2n - \beta)} \zeta(2n) \prod_{\alpha=1}^{r} (2n - \alpha) \tag{21}
\]

\[
- \sum_{k=\lceil r/2 \rceil + 1}^{r} \prod_{\alpha=1}^{r} (2k - \alpha) \prod_{\beta=2k+1}^{2r+1} (2n - \beta) \left\{\frac{2(-1)^r r!}{(2r - 2k + 1)!} + \frac{2(2n - 2r - 2)!}{(2n - 2k - r - 1)!}\right\} \zeta(2k) \zeta(2n - 2k).
\]

Example 3.4. When \(r = 0 \) we get [7] (2.4)]. When \(r = 1 \) we recover the formula in Eq. (11).

When \(r = 2 \) we find

\[
\sum_{j,k\geq 3,j+k=n}(2j - 1)(2j - 2)(2k - 1)(2k - 2)\zeta(2j)\zeta(2k)
= \frac{1}{15}(n - 1)(4n^2 - 1)(2n^2 - 13n + 30)\zeta(2n) - 24(n - 2)(2n - 5)\zeta(4)\zeta(2n - 4), \quad n \geq 4.
\]

When \(r = 3 \) we get

\[
\sum_{j,k\geq 4,j+k=n}(2j - 1)(2j - 2)(2j - 3)(2k - 1)(2k - 2)(2k - 3)\zeta(2j)\zeta(2k)
= \frac{1}{35}(n - 6)(2n - 3)(n - 1)(4n^2 - 1)(2n^2 - 11n + 35)\zeta(2n)
- 240(2n - 11)(n - 3)(2n - 7)\zeta(6)\zeta(2n - 6), \quad n \geq 6.
\]

When \(r = 4 \) we have

\[
\sum_{j,k\geq 5,j+k=n}\zeta(2j)\zeta(2k) \prod_{\alpha=1}^{4} \left\{(2j - \alpha)(2k - \alpha)\right\}
\]
\[
= \frac{4}{315} (n - 2)(2n - 3)(n - 1)(4n^2 - 1)(4n^4 - 72n^3 + 521n^2 - 1923n + 3780)\zeta(2n)
- 960(n - 3)(n - 4)(2n - 7)(2n - 9)\zeta(6)\zeta(2n - 6)
- 6720(n - 4)(2n - 9)(2n^2 - 25n + 81)\zeta(8)\zeta(2n - 8), \quad n \geq 8.
\]

To prepare for the next theorem concerning DZVs we need the following combinatorial statement.

Lemma 3.5. Let \(r \) be a nonnegative integer and let \(n \) be an integer variable such that \(n \geq 2r + 1 \). Then as a polynomial in \(n \)
\[
\varphi_r(n) = \binom{2n - 1}{2r + 1} - 2 \sum_{k=r+1}^{n-r-1} \binom{2k - 1}{r} \binom{2n - 2k - 1}{r}
= (-1)^r \binom{n - 1}{r} + 4 \sum_{k=1}^{r} \binom{2k - 1}{r} \binom{2n - 2k - 1}{r}
\] (22)
has degree less than or equal to \(r \).

Proof. First we prove that for all integer \(m > 2r \)
\[
\binom{m + 1}{2r + 1} = \sum_{k=0}^{m} \binom{k}{r} \binom{m - k}{r}.
\] (23)

Let \(S \) be a set of \(m + 1 \) distinct points on a horizontal line. It is not hard to see there is a one to one correspondence between the following two operations: (i) choose \(2r + 1 \) points from \(S \) whose middle point is denoted by \(P \); (ii) choose a point \(P \in S \) and then choose \(r \) points from the \(k \) points to the left of \(P \) and \(r \) points to the right of \(P \). The two sides of (23) clearly give the number of choices in (i) and (ii), respectively.

Second, we see that for all \(m > 2r \), under the substitution \(k \to m - k \), we have
\[
f(m, r) := \sum_{k=0}^{m} (-1)^k \binom{k}{r} \binom{m - k}{r} = (-1)^m f(m, r).
\]

Therefore \(f(m, r) = 0 \) for \(m \) odd. We now prove that if \(m = 2n \) is even then
\[
f(2n, r) := \sum_{k=0}^{2n} (-1)^k \binom{k}{r} \binom{2n - k}{r} = (-1)^r \binom{n}{r}
\] (24)
by induction on \(m + r \). Clearly \(f(m, 0) = 1 \). Now for all \(r > 0 \) we have
\[
\binom{k}{r} = \binom{k - 1}{r} + \binom{k - 1}{r - 1}, \quad \binom{m - k}{r} = \binom{m - k - 1}{r} + \binom{m - k - 1}{r - 1}.
\]
Therefore by definition
\[
f(m, r) = \sum_{k=0}^{m} (-1)^k \binom{k - 1}{r} \binom{m - k - 1}{r} + \sum_{k=0}^{m} (-1)^k \binom{k - 1}{r - 1} \binom{m - k - 1}{r}
\]
\[+ \sum_{k=0}^{m} (-1)^k \binom{k-1}{r} \binom{m-k-1}{r-1} + \sum_{k=0}^{m} (-1)^k \binom{k-1}{r-1} \binom{m-k-1}{r} \]

\[= - f(m-2, r) - f(m-2, r-1) + 2 \sum_{k=0}^{m} (-1)^k \binom{k-1}{r} \binom{m-k-1}{r-1}. \]

since the middle two sums are the same by the substitution \(k \to m - k \). It is easy to see that

\[\binom{k-1}{r} = \sum_{j=1}^{k-r} \binom{k-j-1}{r-1}. \]

Therefore by induction we get

\[f(2n, r) = - f(2n-2, r) - f(2n-2, r-1) + 2 \sum_{k=0}^{2n} \sum_{j=1}^{k-r} (-1)^j \binom{k-j-1}{r-1} \binom{2n-k-1}{r-1} \]

\[= (-1)^r \binom{n-1}{r-1} - (-1)^r \binom{n-1}{r} + 2 \sum_{j=1}^{2n} \sum_{k=j+r}^{2n} (-1)^k \binom{k-j-1}{r-1} \binom{2n-k-1}{r-1} \]

\[= (-1)^r \binom{n-1}{r-1} - (-1)^r \binom{n-1}{r} - 2 \sum_{j=1}^{2n} (-1)^j f(2n-2-j, r-1). \]

Noticing \(f(2n-2-j, r-1) = 0 \) for odd \(j \) we get by induction

\[f(2n, r) = (-1)^r \binom{n-1}{r-1} - (-1)^r \binom{n-1}{r} + 2(-1)^r \sum_{j=1}^{n-1} \binom{n-1-j}{r-1} \]

\[= (-1)^r \binom{n-1}{r-1} + (-1)^r \binom{n-1}{r} \]

\[= (-1)^r \binom{n}{r}. \]

Combining (23) and (24) we see that

\[\binom{2n-1}{2r+1} - 2 \sum_{k=0}^{n} \binom{2k-1}{r} \binom{2n-2k-1}{r} \]

\[= \binom{2n-1}{2r+1} - \sum_{k=0}^{2n-2} \binom{k}{r} \binom{2n-2-k}{r} (1 - (-1)^k) = (-1)^r \binom{n-1}{r}. \]

This yields the lemma quickly. \(\square \)

Theorem 3.6. For all positive integers \(r \) and \(n \geq 2r + 2 \) we have

\[\sum_{k=r+1}^{n-r-1} \zeta(2k, 2n-2k) \prod_{\alpha=1}^{r} \left\{ (2k-\alpha)(2n-2k-\alpha) \right\} = \sum_{k=0}^{r} c_{r,k}(n) \zeta(2k) \zeta(2n-2k), \]
where \(\zeta(0) = -1/2, c_{r,k}(x) \in \mathbb{Q}[x] \) depend only on \(r \) and \(k \) and have degrees less than or equal to \(r \). More precisely, \(c_{r,k} = 0 \) for \(1 \leq k \leq \lceil r/2 \rceil \),

\[c_{r,0}(n) = r!^2 \left(\frac{(-1)^r}{2} \binom{2n-1}{r} + \frac{1}{4} \varphi_r(n) \right), \]

where \(\varphi_r(n) \) is defined in Lemma 3.5 and for all \(k > \lceil r/2 \rceil \)

\[c_{r,k}(n) = -\prod_{\alpha=1}^{r} (2k - \alpha) \prod_{\beta=2k+1}^{2r+1} (2n - \beta) \left\{ \frac{(-1)^r r!}{(2r - 2k + 1)!} + \frac{(2n - 2r - 2)!}{(2n - 2k - r - 1)!} \right\}. \]

Proof. We have the stuffle relation

\[\zeta(2k)\zeta(2n-2k) = \zeta(2k; 2n-2k) + \zeta(2n-2k; 2k) + \zeta(2n). \]

Hence the theorem easily follows from Corollary 3.3 together with Lemma 3.5. \qed

Example 3.7. For all \(n \geq 4 \) we have

\[
\sum_{k=3}^{n-3} \zeta(2k, 2n-2k) \prod_{\alpha=1}^{2} \left\{ (2n - 2k - \alpha)(2k - \alpha) \right\} = \frac{1}{2} (57n^2 - 279n + 366)\zeta(2n) - 12(n - 2)(2n - 5)\zeta(4)\zeta(2n - 4). \quad (25)
\]

For all \(n \geq 6 \)

\[
\sum_{k=4}^{n-4} \zeta(2k, 2n-2k) \prod_{\alpha=1}^{3} \left\{ (2n - 2k - \alpha)(2k - \alpha) \right\} = \frac{1}{2} (1005n^3 - 12222n^2 + 48243n - 62946)\zeta(2n)
- 120(n - 11)(n - 3)(2n - 7)\zeta(6)\zeta(2n - 6). \quad (26)
\]

For all \(n \geq 8 \)

\[
\sum_{k=5}^{n-5} \zeta(2k, 2n-2k) \prod_{\alpha=1}^{4} \left\{ (2n - 2k - \alpha)(2k - \alpha) \right\} = \frac{1}{2} (31116n^4 - 631800n^3 + 4846020n^2 - 16543800n + 21168864)\zeta(2n)
- 480(n - 3)(n - 4)(2n - 7)(2n - 9)\zeta(6)\zeta(2n - 6)
- 3360(n - 4)(2n - 9)(2n^2 - 25n + 81)\zeta(8)\zeta(2n - 8). \quad (27)
\]

Another corollary is a result used by Shen and Cai [10, Lemma 5] which they derived by some complicated method using Bernoulli numbers. We can now prove this result rather quickly.
Corollary 3.8. We have for all \(n \geq 2 \)
\[
\sum_{k=1}^{n-1} k(n-k)\zeta(2k, 2n-2k) = \frac{n}{16} \zeta(2n) + \frac{2n-3}{4} \zeta(2)\zeta(2n-2). \tag{28}
\]

Proof. Let \(S \) be the left hand side of Eq. (28). By expanding \((2k-1)(2n-2k-1)\) in Eq. (28) we see that
\[
\sum_{k=1}^{n-1} (4k(n-k)-2n+1)\zeta(2k, 2n-2k)
= \frac{3}{4}(n-3)\zeta(2n) + (2n-3)(\zeta(2, 2n-2) + \zeta(2n-2, 2))
= \frac{3 - 5n}{4} \zeta(2n) + (2n-3)\zeta(2)\zeta(2n-2)
\]
By Eq. (28) we have
\[
4S = (2n-1) \sum_{k=1}^{n-1} \zeta(2k, 2n-2k) + \frac{3 - 5n}{4} \zeta(2n) + (2n-3)\zeta(2)\zeta(2n-2)
= \frac{n}{4} \zeta(2n) + (2n-3)\zeta(2)\zeta(2n-2)
\]
which yields the corollary at once. \(\square \)

Similarly we can replace the factor \(k(n-k) \) in Corollary 3.8 by \(k^r(n-k)^r \) for any positive integer \(r \). We can even generalize the factor to an arbitrary symmetric function of two variables evaluated at \(k \) and \(n-k \).

Lemma 3.9. Let \(n \) and \(r \) be two nonnegative integers such that \(n \geq r + 1 \). Then
\[
\sum_{k=1}^{n-1} k^r(n-k)^r\zeta(2k, 2n-2k) = \sum_{k=0}^{r} C_{r,k}(n)\zeta(2k)\zeta(2n-2k), \tag{29}
\]
where \(C_{r,k}(x) \in \mathbb{Q}[x] \) depend only on \(r \) and \(k \) and have degrees less or equal to \(r \).

Proof. Let
\[
g_r(x, y) = \prod_{\alpha=1}^{r} (x - \alpha)(y - \alpha).
\]
Define the following recursive sequence of polynomials:
\[
f_1(x) = x - 2n + 1, \quad f_{d+1}(x) = f_1(x)f_d(x - 2n + 1), \quad \forall d \geq 1.
\]
It is not hard to see that
\[
f_d(x) = \prod_{j=1}^{d} (x - 2jn + j) = \sum_{j=0}^{d} a_{d,j}(n)x^j, \tag{30}
\]
where \(a_{d,j}(n) = 1\) and all the coefficients \(a_{d,j}(n)\) are polynomials in \(n\) with integer coefficients of degree \(d - j\). Now we claim that for all \(d \geq 1\) and \(x + y = 2n\) we have

\[
g_d(x, y) = f_d(xy).
\] (31)

The case \(d = 1\) is obvious. By induction

\[
g_{r+1}(x, y) = (x - 1)(y - 1)g_r(x - 1, y - 1)
= (xy - 2n + 1) f_r((x - 1)(y - 1))
= (xy - 2n + 1) f_r(xy - 2n + 1)
= f_{r+1}(xy).
\]

Hence Eq. (31) is proved. Together with Eq. (30) this implies

\[
(JK)^r = g_r(J, K) - \sum_{i=0}^{r-1} a_{r,i}(n)(JK)^i
\]

for all even numbers \(J = 2j\) and \(K = 2k\) with \(J + K = 2n\). Therefore

\[
\sum_{J,K \ even, \ J+K=2n} (JK)^r \zeta(J) \zeta(K) = \sum_{J,K \ even, \ J+K=2n} g_r(J, K) \zeta(J) \zeta(K) - \sum_{i=0}^{r-1} a_{r,i}(n) \sum_{J,K \ even, \ J+K=2n} (JK)^i \zeta(J) \zeta(K)
\]

By an easy induction on \(r\) and the fact that \(\deg_n a_{r,j}(n) = r - j\) the lemma now follows from Theorem 3.6. Notice in particular that the difference in the summation range does not bring in any polynomial coefficients of degree less than or equal to \(r\). This completes the proof of the lemma.

□

Example 3.10. We have for all \(n \geq 2\)

\[
\sum_{k=1}^{n-1} k^2(n - k)^2 \zeta(2k, 2n - 2k) = \frac{3}{32} (3n - 2)(n - 1) \zeta(2n) - \frac{3}{4} \zeta(4) \zeta(2n - 4),
\] (32)

\[
\sum_{k=1}^{n-1} k^3(n - k)^3 \zeta(2k, 2n - 2k)
= -\frac{1}{256} n(2n^2 - 3) \zeta(2n) + \frac{1}{64} (2n - 3)(28n^2 - 48n + 21) \zeta(2) \zeta(2n - 2)
+ \frac{3}{16} (2n - 5)(2n^2 - 25n + 35) \zeta(4) \zeta(2n - 4) + \frac{45}{8} (2n - 7) \zeta(6) \zeta(2n - 6),
\] (33)

\[
\sum_{k=1}^{n-1} k^4(n - k)^4 \zeta(2k, 2n - 2k)
= -\frac{1}{1024} n(16n^2 - 17) \zeta(2n) + \frac{1}{256} (2n - 3)(6n - 5)(20n^2 - 36n + 17) \zeta(2) \zeta(2n - 2)
+ \frac{3}{64} (2n - 5)(40n^3 - 420n^2 + 1050n - 777) \zeta(4) \zeta(2n - 4)
\]
Proof. It is a well-known fact that any symmetric polynomial
where
Suppose
for some
for triple zeta values. Then we may apply the stuffle relations to derive the desired weighted products of Bernoulli numbers which leads to weighted sum formula for triple products of fixed

By the substitution

Theorem 3.11. Let \(F(x, y) = F(y, x) \in \mathbb{Q}[x, y] \) be a symmetric polynomial of degree \(r \). Suppose \(d = \text{deg}_x F(x, y) \). Then for every positive integer \(n \geq 2 \) we have

\[
\sum_{k=1}^{n-1} F(k, n-k) \zeta(2k, 2n-2k) = \sum_{k=0}^{\lfloor r/2 \rfloor} c_{F,k}(n) \zeta(2k) \zeta(2n-2k),
\]

where \(c_{F,k}(x) \in \mathbb{Q}[x] \) depends only on \(k \) and \(F \) and has degrees less than or equal to \(d \).

Proof. It is a well-known fact that any symmetric polynomial \(F(x, y) \in \mathbb{Q}[x, y] \) of degree \(r \) is a linear combination of symmetric binomials \(x^d y^{r-d} + x^{r-d} y^d \) for \(d = \lfloor r/2 \rfloor, \ldots, r \). Let \(\sigma_1 = x + y, \sigma_2 = xy \) and \(a = r - d \). By induction on the difference \(d - a \) it is easy to show that

\[
x^d y^a + x^a y^d = \sigma_1^{d-a} \sigma_2^a + \sum_{j=a+1}^{\lfloor r/2 \rfloor} c_j \sigma_1^{r-2j} \sigma_2^j
\]

for some \(c_j \in \mathbb{Z} \). Hence the theorem follows from Lemma 3.9 immediately. \(\square \)

4. Weighted sum formulas for triple zeta values

In this section we will derive weighted sum formula for triple zeta values \(\zeta(2i, 2j, 2k) \) for fixed \(i + j + k \) when the weight factors are arbitrary symmetric polynomials in \(i, j \) and \(k \). Similar to the double zeta case we will first consider weighted sum formula for triple products of Bernoulli numbers which leads to weighted sum formula for triple products of Riemann zeta values. Then we may apply the stuffle relations to derive the desired weighted sum formula for triple zeta values.

We begin with the following triple sum:

\[
Z_3(s; r_1, r_2, 0) = \sum_{m_1, m_2, m_3=1}^{\infty} m_1^{r_1} m_2^{r_2} (m_1 + m_2 + m_3)^{-s}.
\]

By the substitution \(m \to m - m_1 - m_2 \) we see easily that

\[
Z_3(s; r_1, r_2, 0) = \sum_{m=1}^{\infty} \sum_{m_1=1}^{m-1} \sum_{m_2=1}^{m-m_1-1} m_1^{r_1} m_2^{r_2} m^{-s} = \sum_{m=1}^{\infty} m^{-s} \sum_{m_1=1}^{m-1} \sum_{m_2=1}^{m-m_1-1} m_1^{r_1} m_2^{r_2}.
\]
\[
\sum_{m=1}^{\infty} m^{-s} \sum_{m_1=1}^{m-1} m_1^{r_1} \left(\sum_{k=0}^{r_2} \binom{r_2 + 1}{k} \frac{(-1)^k B_k}{r_2 + 1} (m - m_1)^{r_2+1-k} - (m - m_1)^{r_2} \right)
\]
\[
= \sum_{k=0}^{r_2} \binom{r_2 + 1}{k} \frac{(-1)^k B_k}{r_2 + 1} \sum_{m=1}^{\infty} m^{-s} \sum_{m_1=1}^{m-1} m_1^{r_1} (m - m_1)^{r_2+1-k} - Z_2(s; r_1, r_2)
\]
\[
= \sum_{k=0}^{r_2} \binom{r_2 + 1}{k} \frac{(-1)^k B_k}{r_2 + 1} Z_2(s; r_1, r_2 + 1 - k) - Z_2(s; r_1, r_2).
\]

By Proposition 2.3, the first sigma sum of the above equation equals
\[
\sum_{k=0}^{r_2} \binom{r_2 + 1}{k} \frac{(-1)^k B_k}{r_2 + 1} \tau(r_1, r_2 + 1 - k) \xi(s + k - r_1 - r_2 - 2)
\]
\[
+ \sum_{k=0}^{r_2} \binom{r_2 + 1}{k} \frac{(-1)^{r_1 + r_2 + 2 - k} B_{r_1 + r_2 + 2 - k}}{r_2 + 1} \sum_{l=r_2+2-k}^{r_1} \binom{r_1}{l} \frac{B_l}{l} \xi(s + k + l - r_1 - r_2 - 2)
\]
\[
+ \sum_{k=0}^{r_2} \binom{r_2 + 1}{k} \frac{(-1)^{r_1 + k} B_k}{r_2 + 1} \sum_{l=r_1+1}^{r_2} \binom{r_2}{l} \frac{B_{l+k} - l}{l} \xi(s + k + l - r_1 - r_2 - 2)
\]

For the first part of the above equation, breaking away the term for \(k = 0\) we get
\[
\sum_{k=0}^{r_2} \binom{r_2 + 1}{k} \frac{(-1)^k B_k}{r_2 + 1} \tau(r_1, r_2 + 1 - k) \xi(s + k - r_1 - r_2 - 2) = \frac{r_1!r_2!}{(r_1 + r_2 + 2)!} \xi(s - r_1 - r_2 - 2) + \sum_{k=1}^{r_2} \frac{(-1)^k r_1!r_2!}{(r_1 + r_2 - k + 2)! k!} \frac{B_k}{k} \xi(s - r_1 - r_2 + k - 2).
\]

For the second part of the equation,
\[
- \sum_{j=r_2+2}^{r_1+r_2+2} (-1)^j \sum_{k=1}^{r_2} \binom{r_2}{k} \frac{B_k}{k} \xi(s + j - r_1 - r_2 - 2)
\]
\[
- \sum_{j=r_2+2}^{r_1+r_2+2} (-1)^j \sum_{k=1}^{r_2} \binom{r_2}{k} \frac{B_k}{k} \xi(s + j - r_1 - r_2 - 2)
\]

For the third part of the equation,
\[
\sum_{j=r_1+1}^{r_1+r_2+2} (-1)^{j-1} \binom{r_2 + 1}{j} \frac{B_j}{j} \xi(s + j - r_1 - r_2 - 2)
\]
\[
+ \sum_{k=1}^{r_2} \sum_{j=r_1+1}^{r_1+r_2+2} (-1)^{j+k} \binom{r_2}{k} \frac{B_k}{k} \xi(s + j - r_1 - r_2 - 2)
\]

Setting \(s = r_1 + r_2 + 3 - 2n\) in the above equations and using Proposition 2.3 and Eq. (35), from Eq. (35) we can get
\[
Z_3(r_1 + r_2 + 3 - 2n; r_1, r_2, 0) + Z_2(r_1 + r_2 + 3 - 2n; r_1, r_2)
\]
\[
= - \frac{r_1!r_2!}{(r_1 + r_2 + 2)!} \frac{B_{2n}}{2n} - \sum_{k=1}^{r_2} \frac{(-1)^k r_1! r_2!}{(r_1 + r_2 - k + 2)! k!} \frac{B_k}{k} \frac{B_{2n-k}}{2n-k}
\]
For the integral in (39) we use (15) to get
\[\sum_{k=0}^{r_2} \sum_{j=r_2+2}^{r_1+r_2+2} \frac{(-1)^{r_2}}{r_2+1} \binom{r_2+1}{j} \binom{r_1}{j-r_2-2} \frac{B_k B_{j-k} B_{2n-j}}{j-k 2n-j} \]
\[- \sum_{k=0}^{r_2} \sum_{j=r_1+1+k}^{r_1+r_2+2} \frac{(-1)^{r_1+k}}{r_2+1} \binom{r_2+1}{k} \binom{r_2+1-k}{j-k-r_1-1} \frac{B_k B_{j-k} B_{2n-j}}{j-k 2n-j} \]

On the other hand, we can compute the value of \(Z_3(s; r_1, r_2, r_3) \) using some integrals:
\[
Z_3(s; r_1, r_2, r_3) = J^3 \left(x_1^{r_1} x_2^{r_2} x_3^{r_3} (x_1 + x_2 + x_3)^{-s} \right)
+ \sum_{\text{cyc}(r_1, r_2, r_3)} J^2 \left(\int_0^{x_1-x_2} x_1^{r_1} x_2^{r_2} x_3^{r_3} (x_1 + x_2 + x_3)^{-s} dx_3 \right)
+ \sum_{\text{cyc}(r_1, r_2, r_3)} J^1 \left(\int_0^{x_1-x_2} \int_0^{x_1-x_2} x_1^{r_1} x_2^{r_2} x_3^{r_3} (x_1 + x_2 + x_3)^{-s} dx_3 dx_2 \right).
\]

For \(J^3 \) we use (15) to get
\[
J^3 \left(\sum_{i+j+k=-s} \binom{-s}{i, j, k} x_1^{r_1+i} x_2^{r_2+j} x_3^{r_3+k} \right)
= \sum_{i+j+k=-s} \binom{-s}{i, j, k} (-1)^{r_1+r_2+r_3-s} \beta_{r_1+i+1} \beta_{r_2+j+1} \beta_{r_3+k+1}.\]

For the integral in \(J^2 \) we use the substitution \(x_3 = -(x_1 + x_2) t \) and Eq. (15) to get
\[
J^2 \left(\int_0^{x_1-x_2} x_1^{r_1} x_2^{r_2} x_3^{r_3} (x_1 + x_2 + x_3)^{-s} dx_3 \right)
= J^2 \left(\int_0^1 x_1^{r_1} x_2^{r_2} (-x_1 - x_2)^{r_3} t^{r_3} (x_1 + x_2)^{-s} (1-t)^{-s} (-x_1 - x_2) dt \right)
= J^2 \left((-1)^{r_3+1} x_1^{r_1} x_2^{r_2} (x_1 + x_2)^{r_3+1-s} \int_0^1 t^{r_3} (1-t)^{-s} dt \right)
= J^2 \left(x_1^{r_1} x_2^{r_2} (x_1 + x_2)^{r_3+1-s} \right) (-1)^{r_3+1} \tau(r_3, -s)
= \sum_{i+j=r_3+1-s} \binom{r_3+1-s}{i, j} (-1)^{r_1+r_2-s} \beta_{r_1+i+1} \beta_{r_2+j+1} \tau(r_3, -s).
\]

So
\[
J^2 \left(\int_0^{x_1-x_3} x_1^{r_1} x_2^{r_2} x_3^{r_3} (x_1 + x_2 + x_3)^{-s} dx_3 \right)
= \sum_{i+j=r_2+1-s} \binom{r_2+1-s}{i, j} (-1)^{r_1+r_3-s} \beta_{r_1+i+1} \beta_{r_3+j+1} \tau(r_2, -s),
\]
and
\[
J^2 \left(\int_0^{x_2-x_3} x_1^{r_1} x_2^{r_2} x_3^{r_3} (x_1 + x_2 + x_3)^{-s} dx_2 \right)
= \sum_{i+j=r_1+1-s} \binom{r_1+1-s}{i, j} (-1)^{r_2+r_3-s} \beta_{r_2+i+1} \beta_{r_3+j+1} \tau(r_1, -s).
\]
\[
\sum_{i+j=r_1+1-s} (r_1 + 1 - s) \beta_{r_2+i+1}\beta_{r_3+j+1} \tau(r_1, -s).
\]

For the integral in \(J^1 \) we use substitution \(x_3 = -(x_1 + x_2)t_1 \), and (16) to get

\[
J^1 \left(\int_0^{-x_1} \int_0^{-x_1-x_2} x_1 x_2 x_3 (x_1 + x_2 + x_3)^{-s} dx_3 dx_2 \right)
= J^1 \left(\int_0^{-x_1} \left(-1 \right)^{r_3+1} x_1 x_2 (x_1 + x_2)^{r_3+1-s} dx_2 \int_0^1 t^{r_3} (1 - t)^{-s} dt_1 \right)
= (-1)^{r_1-s+r_3+1} \tau(r_2, -s + r_3 + 1) \beta_{r_1+r_2-s+r_3+1} (-1)^{r_3+1} \tau(r_3, -s)
= (-1)^{r_1-s} \tau(r_2, -s + r_3 + 1) \tau(r_3, -s) \beta_{r_1+r_2+r_3-s+3}
= (-1)^{r_1-s} \frac{r_2! r_3! (-s)!}{(r_2 + r_3 - s + 2)!} \beta_{r_1+r_2+r_3-s+3}.
\]

Combining the above equations by setting \(r_3 = 0, s = r_1 + r_2 + 3 - 2n \) we find

\[
Z_3(r_1 + r_2 + 3 - 2n; r_1, r_2, 0)
= - \sum_{i+j+k=2n-3-r_1-r_2} \beta_{r_1+i+1}\beta_{r_2+j+1}\beta_{k+1}
- \sum_{i+j=2n-2-r_1-r_2} \beta_{r_1+i+1}\beta_{r_2+j+1}\tau(0, 2n - 3 - r_1 - r_2)
- \text{Cyc} (-1)^{r_2} \sum_{i+j=2n-2-r_1} \beta_{r_1+i+1}\beta_{r_2+j+1}\tau(r_2, 2n - 3 - r_1 - r_2)
+ (-1)^{-s} \frac{r_1! r_2! (-s)!}{(r_1 + r_2 - s + 2)!} \beta_{2n} + \text{Cyc} (-1)^{r_1-s} \frac{r_2! r_3! (-s)!}{(r_2 + r_3 - s + 2)!} \beta_{2n}
= - \sum_{i+j+k=2n-3-r_1-r_2} \beta_{r_1+i+1}\beta_{r_2+j+1}\beta_{k+1}
- \frac{1}{2n - 2 - r_1 - r_2} \sum_{i+j=2n-2-r_1-r_2} \beta_{r_1+i+1}\beta_{r_2+j+1}\beta_{r_1+i+1}\beta_{r_2+j+1}\beta_{r_1+i+1}\beta_{r_2+j+1}
- \text{Cyc} \frac{(-1)^{r_2} r_2!(2n - 3 - r_1 - r_2)!}{(2n - 2 - r_1)!}
- \sum_{i+j=2n-2-r_1} \frac{1}{2n - 2 - r_1} \beta_{r_1+i+1}\beta_{r_2+j+1}\beta_{r_1+i+1}\beta_{r_2+j+1}\beta_{r_1+i+1}\beta_{r_2+j+1}
- \text{Cyc} \frac{(-1)^{r_2} r_2!(2n - 3 - r_1 - r_2)!}{(2n - 1)!}
\]

By comparing this with Eq. 39 we obtain

\[
(2n - 3 - r_1 - r_2)! \sum_{i+j+k=2n} \frac{B_i B_j B_k}{i! j! k!} \left\{ \prod_{a=1}^{r_1} (i - a) \prod_{b=1}^{r_2} (j - b) \right\}
\]
Theorem 4.1. Using Theorem 2.4 and (40) we can obtain the next result.

\[+ (2n - 3 - r_1 - r_2)! \sum_{i+j=2n \atop i,j \geq 1} B_i B_j \left\{ \prod_{a=1}^{r_1} (i-a) \prod_{b=1}^{r_2} (j-b) \right\} \]

\[+ \text{Cyc} \left. (-1)^{r_1} r_1! (2n - 3 - r_1 - r_2)! \sum_{i+j=2n \atop i,j \geq 1} B_i B_j \left\{ \prod_{a=1}^{r_1} (i-a) \right\} \right|_{r_1, r_2} \]

\[+ \left((-1)^{r_1+r_2} r_1! r_2! (2n - 3 - r_1 - r_2)! \right) \left(B_{2n-1} - \frac{1}{2n-1} B_{2n-2} \right) \]

By Proposition 2.3 we have

\[Z_2(r_1 + r_2 + 3 - 2n; r_1, r_2) = -\text{Cyc} \left. (-1)^{r_1} \sum_{r_1, r_2} \frac{r_1 + r_2 + 1}{2n - r_1 - 1} \beta_k \beta_{2n-k-1} \right|_{r_1, r_2} \]

\[= \left(\delta_{r_1,0} + \delta_{r_2,0} \right) \frac{B_{2n-2}}{4n-4}, \quad (40) \]

Using Theorem 2.4 and (40) we can obtain the next result.

Theorem 4.1. For any nonnegative integers \(r_1 \) and \(r_2 \) and positive integer \(n \geq r_1 + r_2 = 2 \) we have

\[\frac{1}{r_1! r_2!} \sum_{i+j+k=2n \atop i,j,k \geq 1} B_i B_j B_k \left\{ \prod_{a=1}^{r_1} (i-a) \prod_{b=1}^{r_2} (j-b) \right\} \]

\[= \text{Cyc} \left. \left((-1)^{r_1+r_2} B_{r_1+1} B_{2n-r_1-1} \right) \left. \left(\frac{2n - 3}{(2n - r_1 - 1)!} \right)^2 \right|_{r_1, r_2} \right) \]

\[+ \left(\left(\frac{2n}{r_1 + r_2 + 2} \right) + C_{\text{Cyc}} \left(-1 \right)^{r_2} \frac{2n}{r_1 + 1} + (-1)^{r_1 + r_2} \right) \frac{B_{2n}}{(2n)!} \]

\[+ \text{Cyc} \left. (-1)^{r_1} \sum_{k=r_1+1}^{r_1+r_2+1} \frac{2n - k}{r_1} \frac{B_k}{(2n-k)!} \right|_{r_1, r_2} \]

\[+ \text{Cyc} \left. (-1)^{r_2} \sum_{k=r_1+1}^{r_1+r_2} \frac{2n - 1 - k}{r_1 + 1 - k} B_k \right|_{r_1, r_2} \]

\[B_{2n-k} \]
\[+ \sum_{k=1}^{r_2} (-1)^k \begin{pmatrix} 2n - 1 - k \\ r_1 + r_2 + 2 - k \end{pmatrix} B_k \frac{B_{2n-k}}{k!(2n-k)!} - \sum_{k=0}^{r_2} \sum_{j=r_2+2}^{r_1+r_2+1} (-1)^{r_2} \begin{pmatrix} j - 1 - k \\ r_2 + 1 - k \end{pmatrix} \frac{B_k B_{j-k} B_{2n-j}}{k!(j-k)!(2n-j)!} + \sum_{k=0}^{r_2} \sum_{j=r_1+1+k}^{r_1+r_2+1} (-1)^{r_1+k} \begin{pmatrix} j - 1 - k \\ r_1 + r_2 + 2 - k \end{pmatrix} \frac{B_k B_{j-k} B_{2n-j}}{k!(j-k)!(2n-j)!} - \sum_{k=0}^{r_2} \sum_{j=r_1+1+k}^{r_1+r_2+1} (-1)^{r_1+k} \begin{pmatrix} j - 1 - k \\ r_1 + r_2 + 2 - k \end{pmatrix} \frac{B_k B_{j-k} B_{2n-j}}{k!(j-k)!(2n-j)!}.\]

Proof. We only need to show that all the terms with \(j = r_1 + r_2 + 2\) cancel out. Indeed, for such a term to be nonzero both \(k\) and \(r_1 + r_2\) must be even. Hence the the sign \((-1)^{r_2}\) in the penultimate sum and the sign \((-1)^{r_1+k}\) in the last sum are the same. Moreover

\[\begin{pmatrix} j - 1 - k \\ r_2 + 1 - k \end{pmatrix} = \begin{pmatrix} j - 1 - k \\ r_1 \end{pmatrix}\]

when \(j = r_1 + r_2 + 2\). Therefore all these terms cancel out. \(\square\)

Example 4.2. Set \(\sum = \sum_{i,j,k=2}^{r_1+r_2+2} \). For small \(r_1\) and \(r_2\) we may use Theorem 4.1 for \(n \geq r_1 + r_2 + 2\) and direct computation for small \(n\) to verify the following identities which are valid for all \(n \geq 2\):

\[\sum_{i} B_i B_j B_k \frac{B_{2n}}{i! j! k!} = \begin{pmatrix} 2n + 2 \\ 2 \end{pmatrix} B_{2n} \frac{B_{2n}}{(2n)!} + \frac{B_{2n-2}}{(2n-2)!},\]

\[\sum_{i} B_i B_j B_k \frac{B_{2n}}{i! j! k!} = \begin{pmatrix} 2n + 2 \\ 3 \end{pmatrix} B_{2n} \frac{B_{2n}}{(2n)!} + \frac{2n}{3} \frac{B_{2n-2}}{(2n-2)!},\]

\[\sum_{ij} B_i B_j B_k \frac{B_{2n}}{i! j! k!} = \begin{pmatrix} 2n + 2 \\ 4 \end{pmatrix} B_{2n} \frac{B_{2n}}{(2n)!} - \frac{2n^2 - 19n + 12}{12} \frac{B_{2n-2}}{(2n-2)!},\]

\[\sum_{i^2 j} B_i B_j B_k \frac{B_{2n}}{i! j! k!} = \begin{pmatrix} 4n + 1 \\ 5 \end{pmatrix} \begin{pmatrix} 2n + 2 \\ 4 \end{pmatrix} B_{2n} \frac{B_{2n}}{(2n)!} + \frac{10n^2 - 11n + 6}{12} \frac{B_{2n-2}}{(2n-2)!} - \frac{2n - 5}{60} \frac{B_{2n-4}}{(2n-4)!},\]

\[\sum_{ijk} B_i B_j B_k \frac{B_{2n}}{i! j! k!} = \begin{pmatrix} 2n + 2 \\ 5 \end{pmatrix} B_{2n} \frac{B_{2n}}{(2n)!} - \frac{2n^3 - 9n^2 + n + 6}{6} \frac{B_{2n-2}}{(2n-2)!} + \frac{2n - 5}{30} \frac{B_{2n-4}}{(2n-4)!},\]

\[\sum_{i^3 j} B_i B_j B_k \frac{B_{2n}}{i! j! k!} = \begin{pmatrix} 12n^2 + 12n + 1 \\ 10 \end{pmatrix} \begin{pmatrix} 2n + 2 \\ 3 \end{pmatrix} B_{2n} \frac{B_{2n}}{(2n)!} + \frac{20n^3 - 48n^2 + 35n - 6}{6} \frac{B_{2n-2}}{(2n-2)!} + \frac{2n - 5}{30} \frac{B_{2n-4}}{(2n-4)!},\]

\[\sum_{i^2 j^2} B_i B_j B_k \frac{B_{2n}}{i! j! k!} = \begin{pmatrix} 8n^2 + 4n + 3 \\ 15 \end{pmatrix} \begin{pmatrix} 2n + 2 \\ 4 \end{pmatrix} B_{2n} \frac{B_{2n}}{(2n)!} + \frac{8n^4 - 72n^3 + 232n^2 - 261n + 108}{36} \frac{B_{2n-2}}{(2n-2)!} - \frac{(7n + 3)(2n - 5)}{180} \frac{B_{2n-4}}{(2n-4)!},\]

\[\sum_{i^3 j} B_i B_j B_k \frac{B_{2n}}{i! j! k!} = \begin{pmatrix} 4n^2 + 2n - 1 \\ 5 \end{pmatrix} \begin{pmatrix} 2n + 2 \\ 4 \end{pmatrix} B_{2n} \frac{B_{2n}}{(2n)!}.\]
by observing that

\[\sum_{i,j,k} B_i B_j B_k = \frac{(8n^2 + 8n - 1)(2n + 1)}{10} \left(\frac{2n + 2}{3} \right) B_{2n} \]

\[+ \frac{40n^4 - 128n^3 + 168n^2 - 119n + 36}{6} B_{2n-2} \]

\[+ \frac{32n^3 - 98n^2 + 107n - 36}{12} \frac{B_{2n-2}}{(2n-2)!} \]

\[- \frac{(n - 1)(2n - 5)}{60} \frac{B_{2n-4}}{(2n-4)!} \]

For all \(n \geq 3 \) we have

\[\sum_{i,j,k} B_i B_j B_k = \frac{(8n^2 + 8n + 1)(4n^2 + 4n - 1)}{14} \left(\frac{2n + 2}{3} \right) B_{2n} \]

\[+ \frac{80n^5 - 320n^4 + 560n^3 - 520n^2 + 219n - 30}{6} B_{2n-2} \]

\[+ \frac{40n^4 - 128n^3 + 168n^2 - 119n + 36}{6} B_{2n-4} \]

\[+ \frac{(2n - 5)(2n^2 - 6n + 7)}{6} B_{2n-6} \]

\[\text{Theorem 4.3. Let } F(x, y, z) \in \mathbb{Q}[x, y, z] \text{ be a polynomial of degree } d. \text{ Then for every positive integer } n \geq d + 2 \text{ we have} \]

\[\sum_{i+j+k=n}^{i\neq j\neq k} F(i, j, k) = \sum_{k=0}^{\lfloor (d+1)/2 \rfloor} K_{F,k}(n) \zeta(2k) \zeta(2n - 2k), \quad (41) \]

where \(K_{F,k}(x) \) is a polynomial in \(x \) depending only on \(F \) and \(k \) which can be explicitly given using Theorem 4.1. Moreover, \(\deg K_{F,0}(x) = d + 2 \) and \(\deg K_{F,k}(x) \leq d \) for all \(k \geq 1 \).

Proof. We can apply Euler’s identity in Eq. (11) to Theorem 4.1 to derive a weighted sum formula for the triple product of Riemann zeta values. Then we may use Eq. (18) to change the weight factors to any monomial of the form \(i^{r_1} j^{r_2} \). Finally we can deduce the theorem by observing that \(i^{r_1} j^{r_2} k^{r_3} = i^{r_1} j^{r_2} (n - i - j)^{r_3} \). \(\square \)

Example 4.4. Setting \(\sum = \sum_{i+j+k=n}^{i\neq j\neq k} \) we have

\[\sum \zeta(2i) \zeta(2j) \zeta(2k) = \frac{(n + 1)(2n + 1)}{4} \zeta(2n) - \frac{3}{2} \zeta(2n - 2) \zeta(2), \quad (42) \]

\[\sum i \zeta(2i) \zeta(2j) \zeta(2k) = \frac{n(n + 1)(2n + 1)}{12} \zeta(2n) - \frac{n}{2} \zeta(2n - 2) \zeta(2), \]

\[\sum ij \zeta(2i) \zeta(2j) \zeta(2k) = \frac{n(4n^2 - 1)(n + 1)}{96} \zeta(2n) + \frac{(2n - 1)(n - 3)}{8} \zeta(2n - 2) \zeta(2), \quad (43) \]

\[\sum i^2 j \zeta(2i) \zeta(2j) \zeta(2k) = \frac{n(4n + 1)(4n^2 - 1)(n + 1)}{960} \zeta(2n) + \frac{(2n - 1)(n - 3)}{16} \zeta(2n - 2) \zeta(2) + \frac{3(2n - 5)}{4} \zeta(2n - 4) \zeta(4), \]
Theorem 4.5. Let $F(x, y, z) \in \mathbb{Q}[x, y, z]$ be a symmetric polynomial of degree d. Then for every positive integer $n \geq d + 2$ we have

$$\sum_{i+j+k=n} F(i, j, k)\zeta(2i, 2j, 2k) = \sum_{k=0}^{\lfloor (d+1)/2 \rfloor} C_{F,k}(n)\zeta(2k)\zeta(2n-2k),$$

where $C_{F,k}(x)$ is a polynomial in x depending only on F and k with $\text{deg} \ C_{F,k}(x) \leq d + 2$ for all $k \geq 0$.

Proof. Let S_3 be the permutation group of $\{1, 2, 3\}$. For any function $f(x_1, x_2, x_3)$ of three variables we set

$$\text{Sym}_{x_1, x_2, x_3} f(x_1, x_2, x_3) = \sum_{\sigma \in S_3} f(x_{\sigma(1)}, x_{\sigma(2)}, x_{\sigma(3)}).$$

If $i + j + k = n$ then by the stuffle relation we have

$$2\zeta(2i)\zeta(2j)\zeta(2k) = 2\text{Sym}_{i,j,k} \zeta(2i, 2j, 2k) + \text{Sym}_{i,j,k} \zeta(2i + 2j)\zeta(2k) - 4\zeta(2n).$$

Therefore by setting $\sum = \sum_{i+j+k=n}^{i,j,k}$ we get

$$\sum_{i,j,k} F(i, j, k)\zeta(2i)\zeta(2j)\zeta(2k) = 6 \sum F(i, j, k)\zeta(2i, 2j, 2k)$$

$$+ 3 \sum F(i, j, k)\zeta(2i + 2j)\zeta(2k) - 2 \sum F(i, j, k)\zeta(2n).$$

An easy computation shows that

$$\sum_{i=1}^{n-1} l^{-1} \sum_{i=1}^{n-1} i^a j^b \zeta(2i, 2j)\zeta(2k) = \sum_{l=1}^{n-1} f(l)\zeta(2l)\zeta(2n-2l),$$

$$\sum_{l=1}^{n-1} l^{-1} \sum_{i=1}^{n-1} i^a j^b \zeta(2i, 2j)\zeta(2k) = \sum_{l=1}^{n-1} g(l, n)\zeta(2l)\zeta(2n-2l),$$

$$\sum_{l=1}^{n-1} l^{-1} \sum_{i=1}^{n-1} i^a j^b \zeta(2n) = \sum_{l=1}^{n-1} f(l)\zeta(2n) = h(n)\zeta(2n),$$

where $f(x), g(x, y), h(x) \in \mathbb{Q}[x, y]$ are polynomials of degree at most $a + b + 1$, $a + b + 1$ and $a + b + 2$, respectively. Hence the theorem follows from Theorem 2.7 quickly.

Example 4.6. Let $e_m(x, y, z)$ be the m-th elementary symmetric polynomial of x, y, z. Setting $\sum_{i+j+k=n}^{i,j,k}$ we have

$$\sum \zeta(2i, 2j, 2k) = \frac{5}{8}\zeta(2n) - \frac{1}{4}\zeta(2)\zeta(2n-2),$$

(45)
For Eq. (46) we note that $\text{Sym} b_i,j,k$ can be proved using the same idea. First we have for all nonnegative integers a, b

\[\sum_{i,j,k} (ij + jk + ki) \zeta(2i, 2j, 2k) = \frac{5n}{64} \zeta(2n) + \frac{4n - 9}{16} \zeta(2) \zeta(2n - 2), \] (46)

\[\sum (i^2 + j^2 + k^2) \zeta(2i, 2j, 2k) = \frac{5n(4n - 1)}{32} \zeta(2n) - \frac{2n^2 + 4n - 9}{8} \zeta(2) \zeta(2n - 2), \] (47)

\[\sum \left(\text{Sym} i^2,j \right) \zeta(2i, 2j, 2k) = \frac{n(10n - 3)}{128} \zeta(2n) + \frac{8n^2 - 18n + 3}{32} \zeta(2) \zeta(2n - 2) \]

\[- \frac{3(2n - 5)}{8} \zeta(4) \zeta(2n - 4), \] (48)

\[\sum (i^3 + j^3 + k^3) \zeta(2i, 2j, 2k) = \frac{n(80n^2 - 30n + 3)}{128} \zeta(2n) + \frac{3(2n - 5)}{8} \zeta(4) \zeta(2n - 4) \]

\[- \frac{8n^3 + 24n^2 - 54n + 3}{32} \zeta(2) \zeta(2n - 2), \] (49)

\[\sum ijk \zeta(2i, 2j, 2k) = \frac{n}{128} \zeta(2n) + \frac{1}{32} \zeta(2) \zeta(2n - 2) + \frac{2n - 5}{8} \zeta(4) \zeta(2n - 4). \] (50)

We remark that Eq. (45) is a result of Shen and Cai [10]. We now prove Eq. (46). The others can be proved using the same idea. First we have for all nonnegative integers a and b

\[\sum i^a j^b \zeta(2i) \zeta(2j) \zeta(2k) = \sum_{i,j,k} \text{Sym} i^a j^b \zeta(2i, 2j, 2k) + \sum \sum i^a j^b \zeta(2i + 2j) \zeta(2k) \]

\[+ \sum \sum i^a j^b \zeta(2i + 2j) \zeta(2k) + \sum \sum i^b k^a \zeta(2i + 2j) \zeta(2k) - 2 \sum \sum i^a j^b \zeta(2n). \] (51)

For Eq. (46) we note that $\text{Sym} ij = 2e_2(i, j, k)$ so we need the following:

\[\sum_{i,j,k} ij \zeta(2i + 2j) \zeta(2k) = \sum_{i=1}^{n-1} \sum_{l=1}^{l-1} i(l - i) \zeta(2l) \zeta(2n - 2l) = \frac{1}{6} \sum_{l+k=n} (i^3 - l) \zeta(2l) \zeta(2k), \]

\[\sum_{i=1}^{n-1} \sum_{l=1}^{l-1} i(n - l) \zeta(2l) \zeta(2n - 2l) = \frac{1}{2} \sum_{l+k=n} ((n + 1)l^2 - l^3 - nl) \zeta(2l) \zeta(2k), \]

\[\sum i \zeta(2n) = \sum_{i=1}^{n-1} \sum_{l=1}^{l-1} i(n - l) \zeta(2n) = \binom{n+1}{4} \zeta(2n). \]

Similarly, by using Eq. (51) and the symmetric function

\[\text{Sym} i^2,j \zeta = e_1(i, j, k)e_2(i, j, k) - 3e_3(i, j, k), \]

we see that to show Eqs. (48) and (49) we need the following:

\[\sum_{i=1}^{l-1} i^2(l - i) = \frac{1}{12} (l^4 - l^2), \]

\[\sum_{i=1}^{l-1} i^3 = \frac{1}{4} (l^4 - l^2), \]
Finally, when the weight factors have degree five we have

\[
\sum_{i=1}^{l-1} i^2(n-l) = \frac{1}{6} l(l-1)(2l-1)(n-l) = \frac{1}{6} \left((2n+3)l^3 - (3n+1)l^2 + nl - 2l^4 \right),
\]

\[
\sum_{i=1}^{l-1} (n-l)^3 = l^4 - (3n+1)l^3 + 3(n^2 + n)l^2 - (n^3 + 3n^2)l + n^3,
\]

\[
\sum_{i=1}^{l-1} i(n-l)^2 = \frac{1}{2} l(l-1)(n-l)^2 = \frac{1}{2} \left(l^4 - (2n+1)l^3 + (n^2 + 2n)l^2 - n^2l \right),
\]

\[
\sum_{i=1}^{l-1} i^2j = \frac{1}{12} \sum_{l=1}^{n-1} (l^2 - l^2) = \frac{2n-1}{5} \left(\frac{n+1}{4} \right), \quad \sum_{i=1}^{l-1} i^3 = \frac{3(2n-1)}{5} \left(\frac{n+1}{4} \right).
\]

Using Eqs. (19)-(20), (43) and (51) we can get Eqs. (46), (48) and (49).

Now multiplying \((i + j + k)^2 = n^2\) on Eq. (15) and comparing with Eq. (40) we can prove Eq. (47) easily. Similarly, by multiplying \((i + j + k)^2 = n^3\) on Eq. (15) we can readily deduce Eq. (50) from Eqs. (48) and (49).

Exactly the same ideas lead to the following:

\[
\sum (i^2j + j^2k + k^2ij) \zeta(2i, 2j, 2k) = \frac{n^2}{128} \zeta(2n) - \frac{n}{32} \zeta(2) \zeta(2n - 2) + \frac{n(2n-5)}{8} \zeta(4) \zeta(2n - 4),
\]

\[
\sum (i^2j^2 + j^2k^2 + k^2i^2) \zeta(2i, 2j, 2k) = -\frac{n(2n-5)}{256} \zeta(2n) + \frac{3(12n^2 - 30n + 17)}{64} \zeta(2) \zeta(2n - 2) - \frac{4n^2 + 20n - 75}{16} \zeta(4) \zeta(2n - 4),
\]

\[
\sum \left(\text{Sym}_{i,j,k} i^3j \right) \zeta(2i, 2j, 2k) = \frac{n(10n^2 - 3n - 5)}{128} \zeta(2n) + \frac{8n^3 - 54n^2 + 95n - 51}{32} \zeta(2) \zeta(2n - 2) - \frac{3(2n^2 - 15n + 25)}{8} \zeta(4) \zeta(2n - 4),
\]

\[
\sum (i^4 + j^4 + k^4) \zeta(2i, 2j, 2k) = \frac{n(80n^3 - 40n^2 + 6n + 5)}{128} \zeta(2n) - \frac{8n^4 + 32n^3 - 108n^2 + 98n - 51}{32} \zeta(2) \zeta(2n - 2) + \frac{3(4n^2 - 20n + 25)}{8} \zeta(4) \zeta(2n - 4).
\]

Moreover, one checks easily that a suitable linear combination of the four identities above yields Eq. (45) multiplied by \((i + j + k)^4 = n^4\) because

\[
(i + j + k)^4 = \text{Sym}_{i,j,k} \left(i^4 + 4i^3j + 6i^2j^2 + 12ij^3k \right).
\]

Finally, when the weight factors have degree five we have

\[
\sum \left(\text{Sym}_{i,j,k} i^2j^2k \right) \zeta(2i, 2j, 2k) = \frac{n}{256} \zeta(2n) + \frac{2n^2 - 6n + 3}{64} \zeta(2) \zeta(2n - 2) + \frac{(5n - 9)(2n - 5)}{16} \zeta(4) \zeta(2n - 4) - \frac{3(2n - 7)}{8} \zeta(6) \zeta(2n - 6),
\]

\[
\sum \left(\text{Sym}_{i,j,k} i^3jk \right) \zeta(2i, 2j, 2k) = \frac{n(n - 1)(n + 1)}{128} \zeta(2n) - \frac{3(n - 1)^2}{32} \zeta(2) \zeta(2n - 2).
\]
and F_r where $r > 0$. When

We may check the consistency by using the identity

$$
\sum (\text{Sym } i^3 j^2) \zeta(2i, 2j, 2k) = -\frac{n(2n^2 + 1 - 5n)}{256} \zeta(2n) + \frac{3(2n - 7)}{8} \zeta(6) \zeta(2n - 6),
$$

$$
\sum \left(\text{Sym } i^4 j\right) \zeta(2i, 2j, 2k) = \frac{n(20n^3 - 8n^2 - 15n + 5)}{256} \zeta(2n)
+ \frac{16n^4 - 144n^3 + 294n^2 - 183n + 15}{64} \zeta(2) \zeta(2n - 2)
- \frac{(2n - 5)(8n^2 - 70n + 45)}{16} \zeta(4) \zeta(2n - 4) - \frac{15(2n - 7)}{8} \zeta(6) \zeta(2n - 6),
$$

$$
\sum (i^5 + j^5 + k^5) \zeta(2i, 2j, 2k) = \frac{5n(32n^4 - 20n^3 + 4n^2 + 5n - 1)}{256} \zeta(2n)
- \frac{16n^5 + 80n^4 - 360n^3 + 490n^2 - 285n + 15}{64} \zeta(2) \zeta(2n - 2)
+ \frac{5(2n - 5)(2n - 9)(2n - 1)}{16} \zeta(4) \zeta(2n - 4) + \frac{15(2n - 7)}{8} \zeta(6) \zeta(2n - 6).
$$

We may check the consistency by using the identity

$$(i + j + k)^5 = \text{Sym}_{i,j,k} \left(i^5 + 5i^4 j + 10i^3 j^2 + 20i^2 j^3 k + 30ij^4 k^2\right).$$

We end our paper by the following general conjecture which is supported by the above examples in depth 3, Examples 3.7 and Theorem 3.11 in depth 2.

Conjecture 4.7. Let $F(x_1, \ldots, x_m) \in \mathbb{Q}[x_1, \ldots, x_m]$ be a symmetric polynomial of total degree r. Suppose $d = \text{deg}_{x_1} F(x_1, \ldots, x_m)$. Then for every positive integer $n \geq m$ we have

$$
\sum_{k_1 + \cdots + k_m = n \atop k_1, \ldots, k_m \geq 1} F(k_1, \ldots, k_m) \zeta(2k_1) \cdots \zeta(2k_m) = \sum_{k=0}^{T} e_{F,k}(n) \zeta(2k) \zeta(2n - 2k),
$$

$$
\sum_{k_1 + \cdots + k_m = n \atop k_1, \ldots, k_m \geq 1} F(k_1, \ldots, k_m) \zeta(2k_1, \ldots, 2k_m) = \sum_{k=0}^{T} c_{F,k}(n) \zeta(2k) \zeta(2n - 2k),
$$

where $T = \max\{[(r + m - 2)/2], [(m - 1)/2]\}$, $e_{F,k}(x), c_{F,k}(x) \in \mathbb{Q}[x]$ depend only on k and F, $\deg e_{F,k}(x) \leq r - 1$ and $\deg c_{F,k}(x) \leq d$.

Notice that $T = [(m - 1)/2]$ or $T = [(r + m - 2)/2]$ depending on whether $r = 0$ or $r > 0$. When $r = d = 0$ the second formula of the conjecture follows from the main result in [5] by Hoffman. When $r = d = 1$ then $F(k_1, \ldots, k_m) = k_1 + \cdots + k_m = n$ so the sum formula reduces to the case $r = d = 0$.

Acknowledgements. This work is supported by the National Natural Science Foundation of China (Grant No. 11371178) and the National Science Foundation of US (Grant No. DMS 1001855 and DMS 1162116). Part of the work was done while JZ was visiting the Max-Planck Institute for Mathematics and the Kavli Institute for Theoretical Physics China whose support is gratefully acknowledged.

References

Department of Mathematics and Computer Science, Rutgers University, Newark, NJ 07102, USA
E-mail address: liguo@rutgers.edu

Department of Mathematics, Lanzhou University, Lanzhou, Gansu 730000, China
E-mail address: leip@lzu.edu.cn

Department of Mathematics, Eckerd College, St. Petersburg, FL 33711, USA
E-mail address: zhaoj@ekerd.edu