
Theory and Applications of Graphs Theory and Applications of Graphs

Volume 9 Issue 2 Article 12

October 2022

Path-Stick Solitaire on Graphs Path-Stick Solitaire on Graphs

Jan-Hendrik de Wiljes
Freie Universität Berlin, jan.dewiljes@math.fu-berlin.de

Martin Kreh
University of Hildesheim, kreh@imai.uni-hildesheim.de

Follow this and additional works at: https://digitalcommons.georgiasouthern.edu/tag

 Part of the Discrete Mathematics and Combinatorics Commons

Recommended Citation Recommended Citation
de Wiljes, Jan-Hendrik and Kreh, Martin (2022) "Path-Stick Solitaire on Graphs," Theory and Applications
of Graphs: Vol. 9: Iss. 2, Article 12.
DOI: 10.20429/tag.2022.090212
Available at: https://digitalcommons.georgiasouthern.edu/tag/vol9/iss2/12

This article is brought to you for free and open access by the Journals at Digital Commons@Georgia Southern. It
has been accepted for inclusion in Theory and Applications of Graphs by an authorized administrator of Digital
Commons@Georgia Southern. For more information, please contact digitalcommons@georgiasouthern.edu.

https://digitalcommons.georgiasouthern.edu/tag
https://digitalcommons.georgiasouthern.edu/tag/vol9
https://digitalcommons.georgiasouthern.edu/tag/vol9/iss2
https://digitalcommons.georgiasouthern.edu/tag/vol9/iss2/12
https://digitalcommons.georgiasouthern.edu/tag?utm_source=digitalcommons.georgiasouthern.edu%2Ftag%2Fvol9%2Fiss2%2F12&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/178?utm_source=digitalcommons.georgiasouthern.edu%2Ftag%2Fvol9%2Fiss2%2F12&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.georgiasouthern.edu/tag/vol9/iss2/12?utm_source=digitalcommons.georgiasouthern.edu%2Ftag%2Fvol9%2Fiss2%2F12&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digitalcommons@georgiasouthern.edu

Abstract

In 2011, Beeler and Hoilman generalised the game of peg solitaire to arbitrary
connected graphs. Since then, peg solitaire and related games have been considered on
many graph classes. In this paper, we introduce a variant of the game peg solitaire,
called path-stick solitaire, which is played with sticks in edges instead of pegs in vertices.
We prove several analogues to peg solitaire results for that game, mainly regarding
different graph classes. Furthermore, we characterise, with very few exceptions, path-
stick-solvable joins of graphs and provide some possible future research questions.

1 Introduction

In [4], Beeler and Hoilman introduced the game of peg solitaire on graphs as a generalisation
of the classical peg solitaire game:

Given a connected, undirected graph G with vertex set V (G) and edge set E(G), pegs
can be put in the vertices of G. Given three vertices u, v, w with pegs in u and v and a hole
in w such that uv, vw ∈ E(G), we can jump with the peg from u over v into w, removing
the peg in v (cf. Figure 1). This jump will be denoted as u · #–v · w.

u v w u v w u v w

Figure 1: A jump in peg solitaire.

If, starting with a single hole in one of the graphs vertices, by some series of jumps
all pegs but one can be removed, then the graph is called (peg) solvable. Characterising
solvable graphs is one of the main goals in current research on peg solitaire. To tackle this
problem, the game has been considered for several classes of graphs, including path graphs,
complete graphs, star graphs, double stars, and caterpillars (for more results and variants
see [3–9,11,12,14,15]).

In this paper, we define a variant of this game as follows: Given a graph G, we put sticks
in the edges of G. Let e, f, g ∈ E(G) be three edges such that e is incident to f and f is
incident to g, but no vertex of G is incident to all three of these edges. If sticks are in e and
f and no stick (i.e., a hole) is in g, then we can jump with the stick from e over f into g,

removing the stick in f . This jump will be denoted as e · #–

f · g (cf. Figure 2). Note that the
edges e, f and g form (in this order) a path or cycle of length 3, hence the name path-stick
solitaire.

A variant of this game, called stick solitaire, is introduced in [13] to investigate peg
solitaire on line graphs. The line graph L(G) of a graph G has vertex set E(G) and two
edges of G are adjacent in L(G) if and only if they are incident in G (cf. Figure 3).

In stick solitaire, additional to the jump possibilities described above, the jump e · #–

f ·g is
allowed whenever e, f, g are edges incident to the same vertex. In particular, any move that
is allowed in path-stick solitaire is also allowed in stick solitaire. Conversely, any graph that
can be solved in stick solitaire without using the additional type of jump is also solvable in
path-stick solitaire. This is in particular the case, whenever there are no vertices of degree at
least 3. Note, moreover, that playing stick solitaire on G is the same as playing peg solitaire

1

de Wiljes and Kreh: Path-Stick Solitaire on Graphs

Published by Digital Commons@Georgia Southern, 2022

e f g e f g e f g

e

fg

e

fg

e

fg

Figure 2: Possible jumps in path-stick solitaire.

e1

e2
e3

e4e5

e6

e1

e2
e3

e4

e5 e6

Figure 3: A graph G (left) and its line graph L(G) (right).

on L(G). In contrast to that, peg solitaire results cannot be applied to path-stick solitaire
in general in the same way. For instance, the edges e2, e3 and e5 of the graph G displayed
in Figure 3 cannot be used for the same jump in path-stick solitaire, but the corresponding
nodes in L(G) form a triangle and can therefore certainly be part of the same jump in peg
solitaire.

The following notation is equivalent to the respective notation for peg solitaire. In general,
we begin with a starting state S ⊂ E of edges that are empty, i.e., without sticks; all other
edges contain a stick. A terminal state T ⊂ E is a set of edges that contain sticks at the end
of the game such that no more jumps are possible; all other edges are empty. A terminal
state T is associated to a starting state S if T can be obtained from S by a series of jumps.
We will always assume that the starting state S consists of a single edge.

As mentioned above, the goal of the original peg solitaire game is to remove all pegs but
one. Analogously, we want to achieve a terminal state consisting of a single edge. Since this
is not possible for all graphs, we introduce the following (analogue) notations and notions.
A graph G is called

• path-stick-solvable, in short ps-solvable, if there is some e ∈ E such that the starting
state S = {e} has an associated terminal state consisting of a single edge.

• freely ps-solvable if, for all e ∈ E, the starting state S = {e} has an associated terminal
state consisting of a single edge.

2

Theory and Applications of Graphs, Vol. 9 [2022], Iss. 2, Art. 12

https://digitalcommons.georgiasouthern.edu/tag/vol9/iss2/12
DOI: 10.20429/tag.2022.090212

• k-ps-solvable if there is some e ∈ V such that the starting state S = {e} has an
associated terminal state consisting of k edges.

• strictly k-ps-solvable if G is k-ps-solvable but not `-ps-solvable for any ` < k. In that
case G has path-stick solitaire number t(G) = k.

Since this paper serves as an introduction to path-stick solitaire, we begin by determining
the path-stick solitaire number of (at least in the context of peg solitaire) well-known graph
classes in Section 2. As the construction of ps-solvable graphs from known examples is an
important step to classifying all ps-solvable graphs, we consider joins and Cartesian products
of graphs in Section 3. We almost completely characterise ps-solvable joins, which is our
main result.

We use the notations Pn, Cn, and Kn for the path graph, the cycle graph, and the complete
graph on n vertices. Furthermore, Km,n denotes the complete bipartite graph on m + n
vertices. Two additional (not as common as the ones before) graph classes are considered in
this paper. For R,L ≥ 1, let DS(L,R) denote the double star with L + R pendant vertices,
i.e., the graph which is obtained by connecting the centres of K1,R and K1,L by an (additional)
edge. A windmill variant W (P,B) is a graph with a universal vertex u (that is adjacent to
every other vertex), P pendant vertices, that are only adjacent to u, and B blades consisting
of two vertices each, such that these two vertices are adjacent (and vertices in a blade are
not adjacent to vertices in another blade). A closed trail containing all edges of a graph G
is an Eulerian cycle of G. The union G ∪H of two graphs G and H is understood as their
disjoint union in this paper, i.e., it has vertex set V (G) ∪ V (H), where V (G) ∩ V (H) = ∅,
and edge set E(G)∪E(H), where E(G)∩E(H) = ∅. As a special case, nG denotes the union
of n disjoint copies of a graph G. Two other binary graph operations will also be considered
in this paper. For graphs G and H, we denote the Cartesian product of G and H by G �H
and use the (common) notation (g, h) ∈ V (G �H) for the vertex induced by g ∈ V (G) and
h ∈ V (H). The join G∨H of two graphs G and H is G∪H together with additional edges
connecting every pair of vertices g, h with g ∈ V (G) and h ∈ V (H). Furthermore, we use
the common abbreviations [i, j] = {i, i + 1, . . . , j} and [j] = [1, j] for integers i < j.

2 Graph classes

First of all, if no vertices of degree larger than 2 exist, then we may apply results from peg
solitaire (cf. [4]).

Proposition 2.1. Let n be a positive integer.

1. For n ≥ 4, we have t(Pn) = 1 if n = 4 or 2 - n and t(Pn) = 2 otherwise. In the
second case, it is possible to achieve a terminal state {v1v2, v3v4} with v2v3 ∈ E(Pn)
and certain vi ∈ V (Pn).

2. For n ≥ 3, we have t(Cn) = 1 if n = 3 or 2 | n and t(Cn) = 2 otherwise. In the
second case, for any v1, v2, v3, v4 ∈ V (Cn) with v1v2, v2v3, v3v4 ∈ E(Cn), it is possible
to achieve the terminal state {v1v2, v3v4}.

3. If G contains an even Eulerian cycle, then we have t(G) = 1.

3

de Wiljes and Kreh: Path-Stick Solitaire on Graphs

Published by Digital Commons@Georgia Southern, 2022

Although this proposition follows immediately from the previously mentioned connection
to line graphs, for illustrative reasons, we explicitly explain how to solve G when it contains
an even Eulerian cycle. Let v1, v2, . . . , v2n be an even Eulerian cycle of G. Start with a hole
in the edge v2v3. Start jumping v4v5 · # –v3v4 ·v2v3, v1v2 · # –v2v3 ·v3v4. Now we can proceed jumping
back and forth, ending with a stick in the edge v2n−1v2n.

Proposition 2.2. For every integer n ≥ 3, we have t(Kn) = 1.

Proof. We distinguish several cases. If n ≡ 1 mod 4, then Kn contains an even Eulerian cycle
and the statement follows from Proposition 2.1. If n ≡ 3 mod 4, then we can use Fleury’s
algorithm to obtain an Eulerian cycle starting with v1v2v3v1, where vi ∈ V (Kn). This can
be solved using Proposition 2.1 such that the final sticks are in v1v2 and v3v1. Using the
jump v2v1 · # –v1v3 · v3v2 solves this case. If n is even, then let V (Kn) = {v1, v2, . . . , vn}. The
graph Kn \{v1v2, v3v4, . . . , vn−1vn} contains an even Eulerian cycle, hence it is ps-solvable by
Proposition 2.1. Without loss of generality let {vnv1} be the terminal state. Now we can solve
Kn in the same way using the additional jumps vnv1 · # –v1v2 ·v2v3, v2v3 · # –v3v4 ·v4v5, . . . , vn−2vn−1 ·
–vn−1vn · vnv1 in the end.

Stars and double stars pose a huge problem for path-stick solitaire as can be seen in the
following (easily provable) result.

Proposition 2.3. Let n, L, and R be positive integers.

• We have t(K1,n) = n− 1.

• We have t(DS(L,R)) = L + R− 1.

As soon as cycles (or longer paths) exist, it is possible to remove more sticks. In partic-
ular, for Km,n and the windmill variant we can prove results similar to the corresponding
statements in peg solitaire.

Proposition 2.4. Let m and n be non-negative integers with m + n ≥ 3. Then we have
t(Km,n) = 1 if and only if (m,n) ∈ {(1, 2), (2, 1)} or m,n ≥ 2.

Proof. If m = 1 or n = 1, then the statement follows from Proposition 2.3. Hence, we assume
m,n ≥ 2 from now on. If both parameters are even, then Km,n is ps-solvable because of
Part 3 in Proposition 2.1. If 2 - m or 2 - n, then we reduce the situation to the even case.
Denote by w1, w2, . . . , wn the vertices in the independent set of size n. Start with a hole
in an edge uw1, choose some non-neighbour v 6= u of u, and jump wnv · # –vw1 · w1u. For
i = n − 1, n − 2, . . . , 2, execute the jump uwi · # –wiv · vwi+1. After wnu · # –uw1 · w1v, we have
eliminated all sticks from edges incident to u and are left with sticks everywhere else except
for vw2. This procedure will be completed (at most twice) until we only have to solve a
subgraph Km′,n′ with even m′, n′.

The following proposition is an analogue to the result in [1, Corollary 2.2] on the peg
unsolvability of graphs with large maximum degree and large number of leaves. This might
be especially useful when investigating trees.

4

Theory and Applications of Graphs, Vol. 9 [2022], Iss. 2, Art. 12

https://digitalcommons.georgiasouthern.edu/tag/vol9/iss2/12
DOI: 10.20429/tag.2022.090212

Proposition 2.5. Let G be a graph with |V (G)| ≥ 4 and let v ∈ V (G) be a vertex that is
adjacent to at least 1

2
|E(G)| leaves. Then G is not ps-solvable.

Proof. Denote by e1, e2, . . . , ep the p edges connecting v with leaves, let f1, f2, . . . , fm be the
other edges incident to v, and let g1, g2, . . . , gn be the edges not incident to v. Then we have
p ≥ m + n. To remove the sticks from the edges ei, the only possible move is ei ·

#–

fj · gk
for some j, k. It is best possible to start with a hole in some fj or gk, since otherwise the
first move will increase the number of sticks in the edges ei. For each stick in an edge ei, we
need a stick in an edge fj. To get a stick in fj, there are two possibilities: We can either

jump gk · #–g` · fj or gk ·
#–

f` · fj. Only the first of these two jumps increases the number of
sticks in the edges fj. Since the first move requires two sticks in edges not adjacent to v
and each jump that removes a stick from an edge ei increases the number of sticks in the
edges gk by 1, the maximum number of sticks that can be removed from the edges ei is
m + 2n− n− 1 = m + n− 1 < p. Hence G is not ps-solvable.

Equivalence does not hold in Proposition 2.5. There are even infinitely many graphs
being unsolvable in path-stick solitaire without having the mentioned property.

Proposition 2.6. Let P and B be non-negative integers with P+2B ≥ 3. Then t(W (P,B)) =
1 if and only if P ≤ 2B.

Proof. Let us first consider P ≤ 2B. Denote by e1, e2, . . . , eP the edges incident to some
pendant vertex and by f1, f2, . . . , fB the edges not incident to the central vertex u of W (P,B).
Finally, let ai, bi be the edges incident to fi. We start with a hole in f1 and distinguish the
following cases.

1. If P ∈ {0, 1}, then we execute the jumps ai · #–a1 · f1, b1 ·
#–

f1 · a1, fi ·
#–

bi · b1 for i ∈ [2, B].

We solve the graph via a1 ·
#–

b1 · f1, if P = 0, or via e1 ·
#–

b1 · f1, a1 ·
#–

f1 · b1, if P = 1.

2. If P ≥ 2, then we jump

e2i−1 · #–a1 · f1, fi+1 ·
–

bi+1 · a1, e2i · # –ai+1 · fi+1, f1 · #–a1 · ai+1, fi+1 · # –ai+1 · a1 (1)

for i ∈
[⌊

P
2

⌋
− 1

]
. In each step, we removed sticks from two ej and all edges in one

blade. Hence, this procedure yields a situation with only sticks (and a hole in f1) in a
subgraph isomorphic to W (P ′, B′) with P ′ ∈ {2, 3} and B′ = B −

⌊
P
2

⌋
+ 1.

If P ≤ 2B − 1, which implies B′ ≥ 2, then we execute the same series of jumps as in
(1) for i =

⌊
P
2

⌋
and solve the graph as in the first case.

If P = 2B, then the jumps eP−1 ·
#–

b1 · f1, f1 · #–a1 · b1, eP ·
#–

b1 · f1 solve the graph.

We now turn our attention to the necessity and, hence, consider P > 2B (note that
Proposition 2.5 implies the statement only for P ≥ 3B). A stick in some ei can only be

removed by a jump ei · #–aj · fj or ei ·
#–

bj · fj, which removes a stick from some aj or bj as well.
Since there is no jump which increases the number of sticks in the edges of blades incident to
u, for W (P,B) to be ps-solvable we need P ≤ 2B + 1 and hence P = 2B + 1. Furthermore,
we need to start with a hole in some ei. But since the only two possible jumps in that case
are of the form fj · #–aj · ei or fj ·

#–

bj · ei, the number of sticks in edges incident to leaves is,
after the first jump, larger than the number of sticks in the edges of blades incident to u.
This configuration is again not ps-solvable, due to the argument above.

5

de Wiljes and Kreh: Path-Stick Solitaire on Graphs

Published by Digital Commons@Georgia Southern, 2022

3 Binary graph operations

Some graph operations, such as Cartesian products, joins, and line graphs, have been con-
sidered for peg solitaire and its variants (cf. [2, 4, 14, 15]), in particular to construct new
solvable graphs. Since we are mainly interested in characterising ps-solvable graphs, it also
appears natural to investigate graph operations. The ones mentioned before seem, compared
to peg solitaire, particularly problematic for path-stick solitaire as additional sticks appear.
Nevertheless, a neat trick gives the following partial characterisation for ps-solvable joins.

Theorem 3.1. Let G and H be graphs. The join G∨H is ps-solvable if (|V (G)|, |V (H)|) /∈
{(x, y) ∈ N2 : (x = 1 and y ≥ 3) or (x ≥ 3 and y = 1)}.

Proof. The cases (|V (G)|, |V (H)|) ∈ {(1, 1), (1, 2), (2, 1)} are trivial.
Begin with a hole in some edge e = gh, where g ∈ V (G), h ∈ V (H). Now empty all edges

in G by the following procedure. Let f = ab be an edge in G, i.e., a, b ∈ V (G), containing a

stick. Assume without loss of generality that a 6= g. Jump f · # –

ah · e. Redefining f as e and
iterating this step empties every edge of G. We can proceed analogously with the sticks in
H. Lastly, we use Proposition 2.4 to ps-solve the complete bipartite graph induced by the
edges between G and H.

The excluded cases pose more problems. Proposition 2.5 implies the following result.

Corollary 3.2. If G is a graph with at least 1
2
(|E(G)| + |V (G)|) isolated vertices, then the

join G ∨K1 is not ps-solvable.

This is not an equivalence as W (5, 2), which is the join of 2K2 ∪ 5K1 and K1, shows.
Proposition 2.6 even yields infinitely many such examples. Nevertheless, windmill variants
give the worst case examples in the sense, that G ∨K1 is solvable if G has at most 1

2
|V (G)|

isolated vertices, as we will see in the next two theorems.

Theorem 3.3. Let G be a connected graph. Then G∨K1 is ps-solvable. In particular, if G
is non-trivial, then it is possible to ps-solve G ∨K1 with starting hole in an (arbitrary) edge
lying at the end of a longest path of G and a final stick in some (not arbitrary) edge of G.

Proof. Note that G ∨ K1 with G ∼= K1 is trivially ps-solvable, hence we exclude this case.
We prove the theorem via induction over the length of a longest path in G. Note that the
statement is certainly true for K2 ∨ K1 (base case), hence assume G containing a path of
length m ≥ 2 from now on. The main idea is to remove all sticks from edges incident to
an end-vertex of a longest path in G. The graph obtained by deleting this vertex from G is
connected. To this end, let v1 be an end-vertex of a longest path v1v2 . . . vm in G. Among
the end-vertices of longest paths in G′ = G \ {v1}, let w be one of largest degree and let x
be its successor on some longest path P of G′. Let further a be the single vertex of K1. We
start with a hole in v1v2 and distinguish several cases and subcases depending on the degrees
of the involved vertices.

Case 1: dG(v1) ≥ 3. Let NG(v1) \ {v2} = {b1, b2, . . . , b`}. If ` is even, then we jump
v1a· # –av2·v2v1, b1v1· # –v1v2·v2a. If ` is odd, then we jump b1a· # –av2·v2v1, b2v1· # –v1a·ab1, b1v1· # –v1v2·v2a.
In both cases, we eliminate all sticks from edges incident to v1 except for the one in v1b`

6

Theory and Applications of Graphs, Vol. 9 [2022], Iss. 2, Art. 12

https://digitalcommons.georgiasouthern.edu/tag/vol9/iss2/12
DOI: 10.20429/tag.2022.090212

using the reduction procedure in Figure 4. After jumping xw · # –wa · av1, b`v1 · # –v1a · aw, we
proceed in G′∨K1 as before (use w in place of v1) until we can use our induction hypothesis.
Note that whenever we use the phrase “proceed . . . as before” during the proof, we mean
starting at the beginning of the proof with renamed objects until the induction hypothesis
can be applied.

v1 v2 bi bi+1

a

Figure 4: The elimination process for Theorem 3.3, Case 1. Repeatedly (for different i)

perform the jumps v1bi+1 ·
–

bi+1a · av1, biv1 · # –v1a · abi+1.

Case 2: dG(v1) = 1. Whenever we can choose v2 as w, we will do that. In that case,
after jumping av3 · # –v3v2 · v2v1, v2v1 · # –v1a · av3, we are done by using the induction hypothesis
on G′, since a longest path in G′ starting with v2 has length m− 1. Hence assume now that
w = v2 is impossible. If x = v2, then we jump wa · # –av1 · v1v2, v1v2 · # –v2w · wa and proceed in
G′ as before. Now consider x 6= v2. We make the following distinction.

Case 2.1: dG′(w) ≥ 2. Let y 6= x be another neighbour of w in G′. If dG′(w) is odd,
then we jump ya · # –av1 · v1v2, aw · # –wy · ya, wx · # –xa · av1, v2v1 · # –v1a · ax. If dG′(w) is even, then
we jump xa · # –av2 · v2v1, av1 · # –v1v2 · v2a, aw · # –wx · xa. Either way, we can proceed as in Case 1,
considering G′ instead of G and w instead of v1.

Case 2.2: dG′(w) = 1. If P is not the unique longest path in G′, then let y be some
end-vertex of a longest path in G′ but not of P . By choice of w we have dG′(y) = 1,
and, by our assumption above, y 6= v2. Let z be the neighbour of y in G′. We jump
v1a · # –av2 · v2v1, zy · # –ya · av2, wx · # –xa · av1, v2v1 · # –v1a · ax and proceed in (G′ \ {y}) ∨ K1 as
before. If P is unique, then let y be the end-vertex of a longest path in G′ starting with w.
Now removing w or y might result in a graph containing a longest path with an end-vertex
of degree larger than 1 where the hole is in the wrong place. If this is not the case, then we
can continue as before (possibly exchanging w and y). Otherwise, let p be an end-vertex of
a longest path in G′ \ {w} of largest degree and let q be its successor on a longest path in
G′ \{w} (choosing without loss of generality w here for reasons of simplicity as w 6= v2 6= x).
We jump v1a · # –av2 · v2v1, xw · # –wa ·av2, qp · # –pa ·av1, v2v1 · # –v1a ·ap and proceed in (G′ \{w})∨K1

as before.
Case 3: dG(v1) = 2. Let y 6= v2 be the other neighbour of v1 in G. If w = v2, then

we jump v3a · # –av1 · v1v2, v3v2 · # –v2a · av3, yv1 · # –v1v2 · v2a and are done by using the induction
hypothesis on G′, since a longest path in G′ starting with v2 has length m−1. Now consider
w 6= v2. If dG′(w) ≥ 2, then we denote by z 6= x another neighbour of w in G′ and, similarly
as in Case 2.1, distinguish the degrees parity possibilities. If dG′(w) is even, then we jump

7

de Wiljes and Kreh: Path-Stick Solitaire on Graphs

Published by Digital Commons@Georgia Southern, 2022

v1a · # –av2 · v2v1, v1y · # –ya · av2, v1v2 · # –v2a · ay, xw · # –wa · av2. If dG′(w) is odd, then we jump
v1a · # –av2 · v2v1, yv1 · # –v1v2 · v2a, wx · # –xa · av1, v1a · # –aw · wx, zw · # –wx · xa. Either way, we can
proceed as in Case 1, considering G′ instead of G and w instead of v1. If dG′(w) = 1, then let
p be an end-vertex of a longest path in G′ \{w} of largest degree and let q be its successor on
a longest path in G′\{w}. Jump wa· # –av1 ·v1v2, av2 · # –v2v1 ·v1a, yv1 · # –v1a·av2, qp· # –pa·aw, xw· # –wa·ap
and proceed in (G′ \ {w}) ∨K1 as before.

Theorem 3.4. Let G be a graph having at most 1
2
|V (G)| isolated vertices. Then G ∨K1 is

ps-solvable.

Proof. We assume |V (G)| ≥ 3 from now on as the other cases are trivial. Let u1, u2, . . . , uk

denote the isolated vertices of G, note k ≤ 1
2
|V (G)|, and let C1, C2, . . . , C` be the non-trivial

connected components of G. Furthermore, let a denote the vertex of K1. If |V (Ci)| = 2 for
all i ∈ [`], then we are done using Proposition 2.6. Hence we find some component of G, say
C1, on at least three vertices. Pick a longest path v1v2 . . . vm of C1, note that m ≥ 3 holds,
and start with a hole in v1v2. If k = 0, then we can use Theorem 3.3 iteratively on Ci ∨K1,
clearing a solved component completely and preparing the next one by the jumps indicated
in Figure 5. Otherwise, we distinguish two cases.

w1

w2 w3

w4

a

Ci Cj

Figure 5: The transfer jump for Theorem 3.4. Perform the jumps w4w3 · # –w3a · aw2, w1w2 ·
–w2a · aw3. Note that w3 is an end-vertex of a longest path in Cj.

Case 1: If v1 has degree dG(v1) > 1, then execute u1a · # –av2 · v2v1 and jump from some
edge incident to v1 and some vertex other than a, v2 over v1v2 into v2a. This removes a stick
from the edge u1a and from some edge in C1. Note that, since v1 is at the end of a longest
path, C1 without that edge is still connected. Proceed in this way (using u2, u3, . . .) until
there is only one stick in an edge incident to v1, namely in av1. Note that if we have to
stop short because of d(v1) > k + 2, then we are again done using Theorem 3.3. If there are
still some sticks in edges incident to some ui, then we proceed as in Case 2. For reasons of
simplicity, we redefine G to be the graph obtained by deleting the vertices u1, u2, . . . , ud(v)−2
and the empty edges of C1 (expect for v1v2). After renaming the other vertices ui (ui will
become ui−d(v)+2) and redefining C1 (previous C1 without the deleted edges), we consider
G ∨K1. Note that (the new) G now has even less than 1

2
|V (G)| isolated vertices.

Case 2: Consider dG(v1) = 1 now.

8

Theory and Applications of Graphs, Vol. 9 [2022], Iss. 2, Art. 12

https://digitalcommons.georgiasouthern.edu/tag/vol9/iss2/12
DOI: 10.20429/tag.2022.090212

Case 2.1: If v2 is adjacent to some v 6= vi for all i ∈ [m], then we jump u1a· # –av1 ·v1v2, vv2 ·
–v2a · av1, av1 · # –v1v2 · v2a. Since u1, v1 are incident only to empty edges, we delete them from
G, redefining everything as before. Note that vv2v3 . . . vm is also a longest path in C1 and
that we have a hole in vv2. Hence after changing the name of v to v1 (and also redefining C1

by deleting the previous v1), we can proceed either with Case 1 or continue with Case 2.2.
Case 2.2: If v2 is adjacent only to vertices on the longest path, then we jump u1a · # –av1 ·

v1v2, v3v2 · # –v2a ·av1, av1 · # –v1v2 ·v2a. Again, we delete v1 and u1 from G and redefine everything.
Note that the redefined C1 keeps being connected and we keep having a hole in the first edge
of a longest path of C1. Furthermore, the new G has at most 1

2
|V (G)| isolated vertices.

If we proceed in this manner, then we either reach a state where the current graph is
ps-solvable by Theorem 3.3 or C1 is reduced to a graph on two vertices. In the second case,
we use, if k > 1, the jumps indicated in Figure 6 and proceed with C2 instead of C1.

w1 w2 w3

w4

w5 w6

a

C2

Figure 6: The transfer jump for Theorem 3.4, Case 2.2. Perform the jumps w5a · # –aw1 ·
w1w2, w1w2 · # –w2a · aw1, w4w3 · # –w3a · aw2, w6a · # –aw1 · w1w2, w1w2 · # –w2a · aw3.

For k = 1, we also have two cases to consider. If some i ∈ [2, `] with |V (Ci)| ≥ 3 exists,
then solve C1∨K1, use the transfer jump in Figure 5 to get to Ci, and proceed as before. The
stick from u1a will be removed in the process and we finish using Theorem 3.3. Otherwise,
we have a windmill which is ps-solvable, with the current stick situation, using Proposition
2.6. Since in the above process we have always deleted at least as many non-isolated vertices
as isolated vertices, the statement follows.

Joins on one hand have the disadvantage of “adding” a lot of edges, and hence sticks,
but on the other hand this can be helpful since many extra jumping possibilities appear.
Cartesian products do not have this advantage and, therefore, appear to be less accessible
(and less usable for the construction of ps-solvable graphs). Nevertheless, due to the nice
symmetry, we can prove that the Cartesian product of two path graphs is ps-solvable.

Proposition 3.1. For every positive integer n, the graph Pn � P2 is ps-solvable.

Proof. The cases n = 1, 2 follow from Proposition 2.1. Let u1, u2, . . . , un be the vertices
of Pn, where for every i ∈ [2, n − 1] the vertex ui is adjacent to ui−1 and ui+1. Further-
more, let v1, v2 denote the vertices of P2. Start with a hole in (u1, v1)(u1, v2) and jump

(u3, v1)(u2, v1) ·
–

(u2, v1)(u1, v1) · (u1, v1)(u1, v2), (u1, v2)(u2, v2) ·
–

(u2, v2)(u2, v1) · (u2, v1)(u1, v1),

(u1, v2)(u1, v1) ·
–

(u1, v1)(u2, v1) · (u2, v1)(u3, v1). All vertices except (u1, v1) and (u1, v2) induce

9

de Wiljes and Kreh: Path-Stick Solitaire on Graphs

Published by Digital Commons@Georgia Southern, 2022

a graph isomorphic to Pn−1 � P2 with a hole in (u2, v2)(u2, v1) in the current configuration.
By induction, this is ps-solvable.

A very similar argument, which is visualised in Figure 7, yields the following result.

Theorem 3.5. Let n and m be integers greater than 1. The graph Pn � Pm is ps-solvable.

Figure 7: The elimination process for iteratively ps-solving the graph Pn�Pm. Proceed until
the remaining graph is Pn � P2 or P2 � Pm.

4 Open problems

Certainly many more questions/problems could be considered, such as the determination of
t(G) for other classes of graphs. As for the original game of peg solitaire, it would be nice to
have a characterisation of ps-solvable trees (a problem studied for peg solitaire in [3, 7, 11])
or at least for certain classes of trees, e.g., caterpillars. In addition, one might examine the
game of Fool’s path-stick solitaire.

It would be interesting to know more about the “gap” for ps-solvable joins as indicated
by Corollary 3.2 and Theorem 3.4. Also, can more general results on the ps-solvability of
Cartesian products be proved? Furthermore, since joins and Cartesian products introduce
new sticks, it might be especially fruitful to investigate binary graph operations without that
property, such as the identification of certain vertices of the involved graphs.

In [10], the authors define the number ms(G) to be the least number of edges that have
to be added to make G peg solvable. Since complete graphs are ps-solvable, an analogue
question arises for path-stick solitaire. But note that adding an edge does not necessarily
increase the ps-solvability. Is it instead possible to lower t(G) by adding vertices in a suitable

10

Theory and Applications of Graphs, Vol. 9 [2022], Iss. 2, Art. 12

https://digitalcommons.georgiasouthern.edu/tag/vol9/iss2/12
DOI: 10.20429/tag.2022.090212

way? Might subdividing a graph help? For example, unsolvable path graphs can be made
solvable by subdividing an edge.

Another approach would be the concept of contracting edges. Thus, one might ask if
contracting certain edges always yields (after some iterations) a ps-solvable graph and, if so,
how many edges have to be contracted to obtain a ps-solvable graph.

References

[1] R. A. Beeler and A. D. Gray. Extremal results for peg solitaire on graphs. Bull. Inst.
Combin. Appl., 77:30–42, 2016.

[2] R. A. Beeler and A. D. Gray. Double jump peg solitaire on graphs. Bull. Inst. Combin.
Appl., 91:80–93, 2021.

[3] R. A. Beeler, H. Green, and R. T. Harper. Peg solitaire on caterpillars. Integers, 17:Ar-
ticle G1, 2017.

[4] R. A. Beeler and D. P. Hoilman. Peg solitaire on graphs. Discrete Math., 311(20):2198–
2202, 2011.

[5] R. A. Beeler and D. P. Hoilman. Peg solitaire on the windmill and the double star
graphs. Australas. J. Combin. 52:127–134, 2012.

[6] R. A. Beeler and T. K. Rodriguez. Fool’s solitaire on graphs. Involve, 5(4):473–480,
2012.

[7] R. A. Beeler and C. A. Walvoort. Peg solitaire on trees with diameter four. Australas.
J. Combin., 63:321–332, 2015.

[8] G. I. Bell. Solving triangular peg solitaire. J. Integer Seq., 11(4):Article 08.4.8, 2008.

[9] T. C. Davis, A. De Lamere, G. Sopena, R. C. Soto, S. Vyas, and M. Wong. Peg solitaire
in three colors on graphs. Involve, 13(5):791–802, 2020.

[10] J.-H. de Wiljes and M. Kreh. Making graphs solvable in peg solitaire. Electron. J. Graph
Theory Appl., forthcoming, 2022.

[11] J.-H. de Wiljes and M. Kreh. Peg solitaire on banana trees. Bull. Inst. Combin. Appl.,
90:63–86, 2020.

[12] J. Engbers and C. Stocker. Reversible peg solitaire on graphs. Discrete Math.,
338(11):2014–2019, 2015.

[13] M. Kreh and J-H. de Wiljes. Peg solitaire on line graphs. Preprint, 2022.

[14] M. Kreh and J-H. de Wiljes. Peg solitaire on Cartesian products of graphs. Graphs
Comb., 37(3):907–917, 2021.

[15] S. Loeb and J. Wise. Fool’s solitaire on joins and Cartesian products of graphs. Discrete
Math., 338(3):66–71, 2015.

11

de Wiljes and Kreh: Path-Stick Solitaire on Graphs

Published by Digital Commons@Georgia Southern, 2022

	Path-Stick Solitaire on Graphs
	Recommended Citation

	Path-Stick Solitaire on Graphs

