Assessment of Anti-Saccades Within 24 to 48 Hours Post-Concussion

Nathan D'Amico
Georgia Southern University, nd01374@georgiasouthern.edu

Follow this and additional works at: https://digitalcommons.georgiasouthern.edu/research_symposium

Part of the Exercise Science Commons

Recommended Citation
https://digitalcommons.georgiasouthern.edu/research_symposium/2016/2016/47

This presentation (open access) is brought to you for free and open access by the Conferences & Events at Digital Commons@Georgia Southern. It has been accepted for inclusion in Georgia Southern University Research Symposium by an authorized administrator of Digital Commons@Georgia Southern. For more information, please contact digitalcommons@georgiasouthern.edu.
Assessment of Anti-Saccades Within 24 to 48 Hours Post-Concussion

Nathan D’Amico, ATC
Barry Munkasy, PhD
Brandonn Harris, PhD
Nicholas Murray, PhD
Introduction

- ~90% of concussions involve oculomotor dysfunction (Thiagarajan, 2011; Ciuffreda, 2007)
- ~30 areas of the brain and 8 of the 12 cranial nerves are responsible for vision
- Saccade deficits (anti-saccades) are the most common type of oculomotor dysfunction (Cifu, 2015)
Saccadic Eye Movements

Saccades

- Rapid eye movements that bring a fixed point or area of interest (AOI) into the center of sight (Johnson, 2014)
- Important for navigating safely through the environment

Anti-Saccades

- Reflexive saccade away from the fixed point or area of interest (AOI) (DeHaan, 2007)
- Inhibitory signal consistently present as a cognitive rule that the participant must apply (Mullen, 2014)
Accessing Saccades

- Saccadic eye movements are readily recorded, quantifiable, and neural substrates are understood (Phillipou, 2013)

- Anti-saccades may provide a fast, accurate, and reliable way to screen for concussion (Maruta, 2014)
 - May provide important information regarding the health and integrity of the brain post-concussion
Purpose

• To investigate anti-saccades (involuntary gaze deviations) between athletes post-concussion (PC) and matched controls (MC) during a dynamic, environmentally relevant task

1) Anti-saccades
2) Duration of anti-saccades
3) Average duration of anti-saccades
METHODOLOGY
Subjects

• 10 collegiate Division I athletes with a diagnosed concussion (PC)
 • PC tested within 24 to 48 hours of diagnosis
 • PC matched with healthy controls (MC)
 • MC matched based on position, gender, height, and weight
Participation Criteria

Inclusion Criteria

- Ages 18-30
- NCAA Division I athletes and cheerleaders
- No musculoskeletal injury
- No history of psychiatric illness or seizures
- Documented concussion (PC)

Exclusion Criteria

- Documented head injury within past 12 months
- LOC within past 6 months
- Diagnosis of learning disorders or ADHD
- Involved in NCAA sporting season (PC)
Design

- Exploratory research
- Prospective cohort
- Testing at one time point
 - 24 to 48 hours post-concussion
 - WiiFit Soccer Heading game using ASL Eye Tracker
- 3 trials (1 practice and 2 collection)
 - Each trial lasts about 60 seconds
Procedures

• WiiFit Soccer Heading game
 • Dynamic, environmentally relevant task
 • Athletes sway their body in a ML direction to head soccer ball coming down center, left, and right of the screen
 NOT ACTUALLY HEADING SOCCER BALLS
 • Athletes instructed to look at the center of the screen where the soccer balls are being kicked from (AOI)
 • Each gaze deviation away from where the balls are being kicked (AOI) is considered an anti-saccade
Procedures Cont.

- Applied Science Laboratories (ASL) Eye Tracker
 - Applied Science Laboratory Desktop 7 Eye Tracking System (240 Hz)
 - Communicates with Vicon Nexus 1.8.5 8-camera motion capture system (Eye-Head Integration)
 - Creates the 3 AOIs (center, left, and right)
 - Worn by athletes while playing the WiiFit Soccer Heading game to obtain anti-saccade (gaze deviation) data
ASL Eye Tracker
Tilt your body left and right to head the soccer balls flying at you.
Statistical Analyses

• One-Way ANOVA
 • Creates the 3 AOIs (center, left, and right)
 • PC vs MC

• N = 10 per group (PC and MC)
 • G*Power: 8-10
 • PC: 24 to 48 hours post-concussion
One-Way ANOVA

<table>
<thead>
<tr>
<th></th>
<th>Group</th>
<th>N</th>
<th>Mean</th>
<th>P-Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Anti-Saccades</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>PC</td>
<td>10</td>
<td>11.85</td>
<td><.001</td>
</tr>
<tr>
<td></td>
<td>MC</td>
<td>10</td>
<td>2.00</td>
<td></td>
</tr>
<tr>
<td>Anti-Saccade Duration</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>PC</td>
<td>10</td>
<td>8.90</td>
<td>.003</td>
</tr>
<tr>
<td></td>
<td>MC</td>
<td>10</td>
<td>0.45</td>
<td></td>
</tr>
<tr>
<td>Average Anti-Saccade Duration</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>PC</td>
<td>10</td>
<td>0.83</td>
<td>.002</td>
</tr>
<tr>
<td></td>
<td>MC</td>
<td>10</td>
<td>0.12</td>
<td></td>
</tr>
</tbody>
</table>
Anti-Saccades

P < .001

Number of Anti-Saccades (#)

Healthy
Concussion
Anti-Saccade Duration

Total Duration of Anti-Saccades (s)

Healthy

Concussion

P = .003
Average Anti-Saccade Duration

<table>
<thead>
<tr>
<th>Avg. Duration of Anti-Saccades (s)</th>
<th>P = .002</th>
</tr>
</thead>
<tbody>
<tr>
<td>Healthy</td>
<td></td>
</tr>
<tr>
<td>Concussion</td>
<td></td>
</tr>
</tbody>
</table>

Georgia's large-scale, small-feel research university
Conclusion

- Anti-Saccades are more prevalent in PC than MC
 - Anti-Saccades (p=.022)
 - Duration of Anti-Saccades (p=.020)
 - Average Duration of Anti-Saccades (p=.000)
- PC are unable to appropriately control their gaze during an environmentally relevant dynamic task
 - Potential oculomotor impairment 24-48 hours post injury and could be a candidate marker for concussion
References

5) Ciuffreda KJ, Ludham D, Thiagarajan P. Oculomotor diagnostic protocol of mTBI population. Am Optom Ass. 2011; 1-3

QUESTIONS?