Effects on Teaching of an Intensive Summer New Faculty Workshop

Delena Bell Gatch
Georgia Southern University, dbgatch@georgiasouthern.edu

Michelle Cawthorn
Georgia Southern University, mcawthor@georgiasouthern.edu

Joy W. Darley
Georgia Southern University, jdarley@georgiasouthern.edu

Follow this and additional works at: http://digitalcommons.georgiasouthern.edu/sotlcommons

Part of the Curriculum and Instruction Commons, Educational Assessment, Evaluation, and Research Commons, Educational Methods Commons, Higher Education Commons, and the Social and Philosophical Foundations of Education Commons

Recommended Citation
Gatch, Delena Bell; Cawthorn, Michelle; and Darley, Joy W., "Effects on Teaching of an Intensive Summer New Faculty Workshop" (2013). SoTL Commons Conference. 1.
http://digitalcommons.georgiasouthern.edu/sotlcommons/SoTL/2013/1

This presentation (open access) is brought to you for free and open access by the Programs and Conferences at Digital Commons@Georgia Southern. It has been accepted for inclusion in SoTL Commons Conference by an authorized administrator of Digital Commons@Georgia Southern. For more information, please contact digitalcommons@georgiasouthern.edu.
Effects on Teaching of an Intensive New Faculty Workshop

Delena Bell Gatch, Michelle Cawthorn, and Joy Darley
Georgia Southern University
Think–Pair–Share

- If you were going to conduct a new faculty workshop on your campus, what would be the learning outcomes for your workshop?

- What challenges would you face in implementing a new faculty workshop at your institution?
Summer Workshop

- Participants: New faculty to the College of Science and Mathematics at Georgia Southern, 8 participants

- When: 4 Weeks in July, Monday – Friday

- Goal: Guide faculty through the process of course development while sharing best practices in teaching and learning

- Product: Fully developed semester course including: syllabus, schedule, lectures, activities, and assessment materials
Filling Up Your Pedagogical Toolbox: How to Excel at Teaching and Learning

- Week 1: Engaging Learning Experiences
- Week 2: Classroom Assessment Techniques
- Week 3: Technology in the Classroom
- Week 4: Presentation of Lessons Developed by Participants
Data Collection

- Surveys about course preparation
 - Pre and post for participants
 - At the end of one semester of teaching for participants and non-participants
 - Likert scale and free response questions

- Pre and post surveys about knowledge and comfort with different pedagogical tools (participants only; Likert scale)
Data Collection

- At the end of one semester of teaching for participants and non-participants
 - Video Classes and Analyze
 - Survey Students
 - One Minute Paper Summaries of Class
 - Likert Scale Questions Pertaining to Workshop Goals
Participants Previous Teaching Experiences

- How many year(s) have you taught in higher education?
 - All Participants listed 2–6 years experience as Graduate Teaching Assistant
 - 2 Participants had experience teaching courses Part Time
 - 3 Participants had taught 1 year as Visiting Professors
Participants Previous Teaching Experiences

Have you ever attended a seminar(s) and/or workshop(s) about teaching?

- 5 Participants had previously attended workshops
 - Higher Education Teaching Certificate (9 credit hours)
 - NSF Faculty Institute for Reforming Science Teaching (70 hours)
 - Various Teaching Assistant Workshop offered by Centers for Excellence in Teaching on local campus
 - Process Oriented Guided Inquiry Learning (POGIL) Workshop
How would you go about planning and developing a new course?

![Bar chart showing the comparison of planning and development of a new course among Pre-Workshop Participant (N=8), Post-Workshop Participant (N=7), Post-Semester Participant (N=6), and Post-Semester Non-Participant (N=5).]
Engaging Learning Experiences

- Writing Course Learning Outcomes
 - Backward Course Design
 - Bloom’s Taxonomy

- Designing a Student Centered Classroom
 - Active Learning
 - Cooperative Learning
 - Inductive Teaching and Learning
 - Flipping Your Classroom

- Building a Syllabus and Schedule

- Studied from
 - Dee Fink’s *Creating Significant Learning Experiences: An Integrated Approach to Designing College Courses*
 - Barkley’s *Student Engagement Techniques: A Handbook for College Faculty*
What is student centered teaching?

![Bar Chart]

- Correct:
 - Pre-Workshop Participant (N=8)
 - Post-Workshop Participant (N=7)
 - Post-Semester Participant (N=6)
 - Post-Semester Non-Participant (N=5)

- Somewhat Correct:
 - Pre-Workshop Participant (N=8)
 - Post-Workshop Participant (N=7)
 - Post-Semester Participant (N=6)
 - Post-Semester Non-Participant (N=5)

- Incorrect:
 - Pre-Workshop Participant (N=8)
 - Post-Workshop Participant (N=7)
 - Post-Semester Participant (N=6)
 - Post-Semester Non-Participant (N=5)
Classroom Assessment Techniques

- Designing Formative and Summative Classroom Techniques
 - Concept Maps
 - Creative Exercises
 - Rubrics
 - Performance Assessments
 - Multiple Choice Questions

- Building a Classroom Assessment Plan and Developing Assessment Materials for One Unit

- Studied from Angelo and Cross’s *Classroom Assessment Techniques: A Handbook for College Teachers*
How will you determine whether or not your students are learning?

- Pre/post test
- Exams
- Quizzes
- In Class Assignments
- Class Discussion
- Homework Assignments
- Surveys

- Formative Assessment
- Clicker Questions
- Performance Task
- Concept Maps
- System Diagraming Exercises
- Assess Group Work
- Evaluate Critical Thinking Skills & Higher Order Thinking Skills
- Ability to Apply, Analyze, and Evaluate Scientific Information

Pre–workshop Participants

Post–workshop participants
Technology in the Classroom

- Investigated Technology Best Practices in the Classroom
 - WINGS Training
 - Google Training
 - IClicker2Training
 - Desire2Learn Training
 - Audio & Video Capture Training

- Building Technology Components of Course

- Studied from Manning and Johnson’s *The Technology Toolbelt for Teaching*
Do you plan to incorporate technology into your new classroom? If so, how?

- Course Management Systems
- Discipline Specific Software
- PowerPoint Presentations
- Clickers
- Videos

- Google Chat for Office Hours
- Google Drive for Drawing System Diagrams
- Course Management Systems for Just-in-Time Teaching
- Concept Maps on Bubbl.US
- Podcast
- Web-quest
- PhET Simulations

Pre-workshop participants and Non-participant

Post-workshop participants
How well prepared were you to teach your course(s) at the beginning of the semester?

- Participants
- Non-participants
What was your level of stress due to course preparation at the beginning of the semester?

![Bar chart showing stress levels](chart.png)

- **Participant**
- **Non-participant**
Student Responses to Questions about Faculty

Participants (N=345) Non-participants (N=332)

Likert Scale Value

Engaged in class Engaged outside of class Frequency of assessment Technology used beneficially

*
Unexpected Value Added

- Interdisciplinary Research Collaborations Emerged among Workshop Participants

- Workshop Participants were viewed as more Research Productive during First Semester at GSU

- Less Complaints were Elevated to Department Chairs concerning Workshop Participants Teaching Styles

- Workshop Participants were Involved in CTLS Activities on Campus
 - Reading Round Tables
 - Faculty Learning Communities
Know chemical formula, bonding type, and physical characteristics of ten rock-forming minerals

Laboratory Exercises 1.1 and 1.2

Earth Materials: Minerals

Mineral Building Blocks
- Crystallization
- Cations and Anions
- Atoms
- Bonds

Physical Properties of Minerals
- Cleavage
- Fracture
- Crystal Habit
- Streak
- Luster
- Density
- Hardness
- Color

Foundational Knowledge

Chapter 3 Earth Materials: Minerals and Rocks
Earth Materials: Minerals
For your information

Atomic Structure
http://www.youtube.com/watch?v=IP57gEWcisY
http://phet.colorado.edu/en/simulation/build-an-atom

Cations and Anions
http://phet.colorado.edu/en/simulation/build-an-atom

Chemical Bonding
http://bcs.whfreeman.com/thelifewire/content/chp02/02020.html

Mineral Crystallization Video
http://www.youtube.com/watch?v=Jd9C40Svt5g

Physical Properties of Minerals
http://www.galleries.com/Mineral_Properties
Think–Pair–Share

- If you were going to conduct a new faculty workshop on your campus, what would be the learning outcomes for your workshop?

- What challenges would you face in implementing a new faculty workshop at your institution?

- How would you address the challenges to ensure your learning outcomes are addressed?
Anticipated Changes to Schedule

- An Hour Added to Each Day allows for No Friday Sessions,
 - Encouraged to Focus on Research Establishment

- Structured Afternoon “Working” Sessions
 - Ensure Full Development of Course Materials
 - Participants will set daily goals
 - Scheduled breaks will be taken
 - Participants will evaluate daily goals
Conclusions

- New Faculty Exited Workshop with
 - Syllabus
 - Course Schedule
 - Classroom Activities
 - Lectures
 - Assessment Materials
 - Classroom Technology Skills

- Participants were Equipped to
 - Develop a Student Centered Classroom
 - Utilize Formative & Summative Assessment Techniques
 - Creatively Incorporate Technology into their Courses
Thanks to the COSM Dean’s Office for Financially Supporting the Workshop
Week 1: July 9-13, 2012

Objectives/Goals: Presentation of Pedagogical Toolbox

<table>
<thead>
<tr>
<th>Day</th>
<th>Time</th>
<th>Session Title</th>
<th>Presenter(s)</th>
<th>Location</th>
</tr>
</thead>
</table>
| Monday | 9 am - Noon| Introductions / Ice Breaker
Broad Overview of Workshop / Expectations
Pre-Assessment | Joy Darley, Michelle Cawthorn, Delena Bell Gatch | Math/Physics Rm 2023 |
| | 1 pm – 4 pm| Presentation of Pedagogical Toolbox: The Many Faces of Inductive Teaching | Delena Bell Gatch | Math/Physics Rm 2023 |
| Tuesday | 9 am - Noon| Creating Significant Learning Outcomes to Support Student Learning
(Backward Course Design, Bloom’s Taxonomy & Student Learning Outcomes) | Judith Longfield | Math/Physics Rm 2023 |
| | 1 pm – 4 pm| Departmental Meetings
(Presented with Schedule, Textbooks, Other Instructor Resources, Departmental Syllabi and Policy, Departmental Learning Outcomes for Necessary Courses, and Information on Common Exams) | Department Chairs (or Designated Person) | TBA |
| Wednesday | 9 am - Noon| Introduction to Students at GSU
Learning Styles | Chris Caplinger, Delena Bell Gatch | Math/Physics Rm 2023 |
| | 1 pm – 4 pm| Building a Syllabus and Schedule
One Hour from My Class | Delena Bell Gatch, Jim Reichard | Math/Physics Rm 2023 |
| Thursday | 9 am - Noon| Google Training (Mail, Calendar, Documents, Sites, and Google Plus) | Daniel Rivera | COE Rm 2151 |
| | 1 pm – 4 pm| Independent Development of Syllabus and Course Schedule | | |
| Friday | 9 am - Noon| Course and Lesson Design (Dee Finkle’s “Creating Significant Learning Experiences”) | Cynthia Alby | Math/Physics Rm 2023 |
| | 1 pm – 4 pm| Flipping the Classroom
Student Engagement
What Can I Do Besides Lecture | Cynthia Alby | Math/Physics Rm 2023 |
Week 2: July 16-20, 2012

Objectives/Goals: Formative and Summative Classroom Assessment Techniques

<table>
<thead>
<tr>
<th>Day</th>
<th>Time</th>
<th>Session Title</th>
<th>Presenter(s)</th>
<th>Location</th>
</tr>
</thead>
<tbody>
<tr>
<td>Monday, July 16</td>
<td>9 am - Noon</td>
<td>Continued Independent Development of Syllabus and Course Schedule</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1 pm – 4 pm</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tuesday, July 17</td>
<td>9 am - Noon</td>
<td>Reflection on Syllabus and Schedule Overview of Formative and Summative Classroom Assessment Techniques Rubrics Performance Assessment</td>
<td>Delena Bell Gatch Michelle Cawthorn</td>
<td>Math/Physics Rm 2023</td>
</tr>
<tr>
<td></td>
<td>1 pm – 4 pm</td>
<td>Levels of Assessment Across the University Developing Questions Item and Exam Analysis</td>
<td>Joy Darley</td>
<td>Math/Physics Rm 2023</td>
</tr>
<tr>
<td>Wednesday, July 18</td>
<td>9 am - Noon</td>
<td>Folio (Desire2Learn) Basics, Video & Audio Capture (using a headset, camera, SMART phone), and Uploading Files to YouTube and Folio</td>
<td>Daniel Rivera</td>
<td>COE Rm 2151</td>
</tr>
<tr>
<td></td>
<td>1 pm – 4 pm</td>
<td>Continued Investigation of Audio & Video Capture and Uploading</td>
<td>Daniel Rivera Michelle Cawthorn Joy Darley Delena Bell Gatch</td>
<td>COE Rm 2151</td>
</tr>
<tr>
<td>Thursday, July 19</td>
<td>9 am - Noon</td>
<td>Independent Development of Classroom Assessment Plan</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1 pm – 4 pm</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Friday, July 20</td>
<td>9 am - Noon</td>
<td>Classroom Assessment Techniques Introduction to Book (Classroom Assessment Techniques)</td>
<td>Cynthia Alby</td>
<td>Math/Physics Rm 2023</td>
</tr>
<tr>
<td></td>
<td>1 pm – 4 pm</td>
<td>Authentic Assessment</td>
<td>Cynthia Alby</td>
<td>Math/Physics Rm 2023</td>
</tr>
</tbody>
</table>
Week 3: July 23-27, 2012

Objectives/Goals: Technology in the Classroom

<table>
<thead>
<tr>
<th>Day</th>
<th>Time</th>
<th>Session Title</th>
<th>Presenter(s)</th>
<th>Location</th>
</tr>
</thead>
<tbody>
<tr>
<td>Monday</td>
<td>9 am - Noon</td>
<td>Cognitive Learning Group Work</td>
<td>Joy Darley, Delena Bell Gatch</td>
<td>Math/Physics Rm 2023</td>
</tr>
<tr>
<td></td>
<td>1 pm - 4 pm</td>
<td>Policies, Procedures, and Methods that Enhance Student Academic Behaviors</td>
<td>Marshall Randson, Michelle Cawthorn</td>
<td>Math/Physics Rm 2023</td>
</tr>
<tr>
<td>Tuesday</td>
<td>9 am - Noon</td>
<td>Assessment Practices in the College Science Classroom (Concept Maps, Creative Exercises, and Flow Charts)</td>
<td>Jessica Orvis</td>
<td>Chemistry Rm 2241</td>
</tr>
<tr>
<td></td>
<td>1 pm - 4 pm</td>
<td>One Hour from My Class Reflection on Assessment Techniques Overview of Technology Best Practices in the Classroom</td>
<td>Jeff Orvis, Michelle Cawthorn, Joy Darley</td>
<td>Chemistry Rm 2241</td>
</tr>
<tr>
<td>Wednesday</td>
<td>9 am - Noon</td>
<td>Folio (Desire2Learn) Intermediate, IClicker2, and Specific Course Management Systems</td>
<td>Daniel Rivera</td>
<td>COE Rm 2151</td>
</tr>
<tr>
<td></td>
<td>1 pm - 4 pm</td>
<td>Independent Development of Classroom Instruction Plans and Activities</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Thursday</td>
<td>9 am - Noon</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1 pm - 4 pm</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Friday</td>
<td>9 am - Noon</td>
<td>Encouraging Students to Read Assigned Texts</td>
<td>Cynthia Alby</td>
<td>Math/Physics Rm 2023</td>
</tr>
<tr>
<td></td>
<td>1 pm - 4 pm</td>
<td>Improving Discussions Reviewing</td>
<td>Cynthia Alby</td>
<td>Math/Physics Rm 2023</td>
</tr>
</tbody>
</table>
Week 4: July 30 – August 3, 2012

Objectives/Goals:

<table>
<thead>
<tr>
<th>Day</th>
<th>Time</th>
<th>Session Title</th>
<th>Presenter(s)</th>
<th>Location</th>
</tr>
</thead>
<tbody>
<tr>
<td>Monday July 30</td>
<td>9 am - Noon</td>
<td>Independent Preparation of Active Learning Lessons</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1pm – 4 pm</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tuesday July 31</td>
<td>9 am - Noon</td>
<td>Teaching Portfolios</td>
<td>Judith Longfield</td>
<td>Math/Physics Rm 2023</td>
</tr>
<tr>
<td></td>
<td></td>
<td>One Hour from My Class</td>
<td>Delena Bell Gatch</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1pm – 4 pm</td>
<td>Continued Independent Development of Classroom Instruction Plans and Activities</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Wednesday August 1</td>
<td>9 am - Noon</td>
<td>Presentations of Active Learning Lessons</td>
<td>Workshop Participants</td>
<td>Math/Physics Rm 2023</td>
</tr>
<tr>
<td></td>
<td>1pm – 4 pm</td>
<td>Continued Independent Development of Classroom Instruction Plans and Activities</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Thursday August 2</td>
<td>9 am - Noon</td>
<td>Presentations of Active Learning Lessons</td>
<td>Workshop Participants</td>
<td>Math/Physics Rm 2023</td>
</tr>
<tr>
<td></td>
<td>1pm – 4 pm</td>
<td>Continued Independent Development of Classroom Instruction Plans and Activities</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Friday August 3</td>
<td>9 am - Noon</td>
<td>WINGS Training</td>
<td>Valerie Kasay</td>
<td>Math/Physics Rm 2023</td>
</tr>
<tr>
<td></td>
<td>1pm – 3 pm</td>
<td>Post Assessment of Workshop</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Grant Writing</td>
<td>Karin Scarpinato</td>
<td>Math/Physics Rm 2023</td>
</tr>
</tbody>
</table>