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Abstract

Given a vertex coloring c of a graph, the neighborhood color set of a vertex is defined
to be the set of all of its neighbors’ colors. The coloring c is called a set coloring if
any two adjacent vertices have different neighborhood color sets. The set chromatic
number χs(G) of a graph G is the minimum number of colors required in a set coloring
of G. In this work, we investigate a total analog of set colorings; that is, we study set
colorings of the total graph of graphs. Given a graph G = (V,E), its total graph T (G)
is the graph whose vertex set is V ∪ E and in which two vertices are adjacent if and
only if their corresponding elements in G are adjacent or incident. First, we establish
sharp bounds for the set chromatic number of the total graph of a graph. Furthermore,
we study the set colorings of the total graph of different families of graphs.

1 Introduction

In graph theory, much research has been devoted to graph colorings that are neighbor-
distinguishing. In general, a neighbor-distinguishing coloring of a graph is a coloring that
induces a vertex labelling for which any two adjacent vertices are assigned distinct labels.
The proper vertex coloring is a classic example of a neighbor-distinguishing coloring. Other
examples can be found in [2, 4, 5, 7, 8, 9, 10].

In this work, we focus on a neighbor-distinguishing coloring called set coloring, introduced
by Chartrand et al. in [6]. The graphs to be considered in this paper are finite, simple,
undirected, and nontrivial. Unless otherwise stated, definitions and notations will follow [3].

1.1 Set coloring

For a graph G, let c : V (G)→ N be a vertex coloring, not necessarily proper. For S ⊆ V (G),
we denote by c(S) the set of colors assigned to the vertices in S; that is, c(S) := {c(v) : v ∈
S}. The neighborhood color set NC(v) of a vertex v is defined as NC(v) = c(N(v)), where
N(v) := {u ∈ V (G) : vu ∈ E(G)}. The coloring c is called a set coloring if NC(u) 6= NC(v)
for every pair of adjacent vertices u and v of G. Moreover, c is called a set k-coloring if c
uses k colors (i.e., |c(V (G))| = k). The minimum number of colors required in a set coloring
is called the set chromatic number of G and is denoted by χs(G).

In [17], it has been established that the graph set k-colorability problem (i.e., the decision
problem of determinining whether a givem graph is set k-colorable or not) is NP-complete.
In [6], it has been shown that a proper k-coloring of any graph G induces a set k-coloring;
consequently, χs(G) ≤ χ(G). The following sharp lower bound for the set chromatic number
has also been established in [6].

Proposition 1.1 (Chartrand et al., [6]). For every graph G, χs(G) ≥ 1 + dlog2 ω(G)e.
The following family of graphs has also been studied in [6]. Let n, t be integers such that

n ≥ 2 and 0 ≤ t ≤ n. The graph Gn,t is the graph whose vertex set may be denoted by
{v1, v2, ..., vn} ∪ {u1, u2, ..., ut} and whose edge set is {vivj : i 6= j} ∪ {vkuk : k = 1, 2, ..., t}.
Note that the vertices v1, v2, ..., vn induce a complete subgraph, order n, of Gn,t. The set
chromatic number of Gn,t is given by the following proposition.

Proposition 1.2 (Chartrand et al., [6]). For n ≥ 2 and 0 ≤ t ≤ n, χs(Gn,t) = n.
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1.2 Total set coloring

As has been done in [15] and [20] for equitable colorings and list colorings, respectively, we
investigate a “total coloring analog” of set colorings. Recall that a total coloring of a graph
G is a coloring of the vertices and edges of G such that adjacent or incident elements are not
assigned the same colors. The minimum number of colors required for a total coloring of G
is called the total chromatic number of G and is denoted by χ′′(G). In a similar manner, we
introduce the following.

Definition 1.1. For a graph G, let c : V (G) ∪ E(G) → N be a coloring of the vertices and
edges of G.

1. The total neighborhood color set of a vertex v ∈ V (G) is the set c({u ∈ V (G) : uv ∈
E(G)} ∪ {wv : wv ∈ E(G)}) and is denoted by TNC(v).

2. The total neighborhood color set of an edge e = uv ∈ E(G) is the set c({u, v} ∪ {xy ∈
E(G) : x = u or y = v, xy 6= uv}) and is denoted by TNC(uv).

3. The coloring c is a total set coloring if TNC(x) 6= TNC(y) whenever any pair of
elements x and y of V (G) ∪ E(G) are adjacent or incident. Moreover, c is called a
total set k-coloring if c uses k colors (i.e., |c(V (G) ∪ E(G))| = k).

4. The minimum number of colors required for a total set coloring of G is called the total
set chromatic number of G.

Example 1.1. Consider the cycle C7 = v1v2 · · · v7v1. Define a coloring c such that c(y) = 2
when y ∈ {v7, v3v4}, c(y) = 3 when y ∈ {v4, v1v7}, and c(y) = 1 otherwise. Then c is a
total set 3-coloring of C7. In fact, for n ≥ 3, it is clear that T (Cn) ∼= C2n(1, 2), which is
the circulant graph whose vertex set is the cyclic group Z2n and whose edge set is E = {ij :
i− j = ±1 or ± 2}. By a result in [14], we have χs(T (C4)) = 4 and χs(T (Cn)) = 3 for all
n ≥ 3, n 6= 4.

The graph operation called total graph can be used to formulate the notions of total
coloring [21] and total set coloring. Given a graph G, its total graph T (G) is the graph
whose vertex set is V (G) ∪ E(G) and in which two vertices u and v are connected by an
edge if and only if u and v are adjacent (if u, v are both vertices or both edges) or incident
(if one of u, v is a vertex while the other is an edge) in G.

For a graph G, it is clear that χ′′(G) = χ(T (G)). Similarly, G has a total set k-coloring
if and only if T (G) has a set k-coloring. Hence, the total set chromatic number of G is
equal to χs(T (G)). Moreover, it follows that χs(T (G)) ≤ χ′′(G); that is, the total chromatic
number is an upper bound for the total set chromatic number. Additionally, it immediately
follows from the NP-completeness of the graph set k-colorability problem that the total set
k-colorability problem is also NP-complete.

For the rest of the paper, we will adopt the above total graph formulation of total
set colorings; that is, we study set colorings in relation to the operation total graph [11].
Previous studies have also focused on set colorings in relation to other graph operations such
as join [23, 13], corona and vertex/edge deletions [6], comb product [13], and middle graph
[12]. Other neighbor-distinguishing colorings have also been studied in relation to graph
operations such as those in [1, 16, 18, 19, 22, 24].
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Figure 1: The graph Hm

We will use the following notations for the rest of the paper: For a positive integer k, we
denote by Nk the set {1, 2, ..., k}. Given a vertex v in a graph G, we denote by SG(v) the
set of all pendant neighbors, in G, of v.

2 Lower Bounds for the Total Set Chromatic Number

Given a graph G, it is clear that ω(T (G)) ≥ ∆(G) + 1. Thus, Proposition 1.1 also provides
a lower bound for χs(T (G)). We can also prove the sharpness of this lower bound.

Theorem 2.1. For any graph G,

χs(T (G)) ≥ 1 + dlog2(∆(G) + 1)e. (1)

Moreover, for every integer m ≥ 4, there is a graph Hm with ∆(Hm) = m and χs(T (Hm)) =
1 + dlog2(∆(Hm) + 1)e.

Proof. We prove the sharpness of (1) by construction. Let m ≥ 4 be an integer and set
k := 1+dlog2(m+1)e. Denote by S1, S2, ..., S2k−1−1 the nonempty subsets of the set Nkr{1},
where S1, S2, ..., Sk−1 are the 1-subsets, Sk, Sk+1, ..., Sk+(k−1

2 )−1 are the 2-subsets, and so on.

Now, take the star graph K1,m and label its vertices as v0, v1, ..., vm, where deg(v0) = m and
deg(vi) = 1 for i 6= 0. Since 2k−1 − 1 ≥ m, for each i ∈ {1, 2, ...,m}, we can have a set Ui

containing |Si|−1 vertices such that U1, U2, ..., Um, and V (K1,m) are mutually disjoint. Note
that U1, U2, ..., Uk−1 are empty.

We now construct Hm as follows: set V (Hm) = V (K1,m) ∪
⋃m

i=1 Ui and E(Hm) =
E(K1,m) ∪

⋃m
i=1 Ti, where Ti := {viu : u ∈ Ui}. Clearly, ∆(Hm) = m. Since χs(T (Hm)) ≥ k

by (1), it remains to show that T (Hm) is set k-colorable.
Recall that V (T (Hm)) = V (Hm) ∪ E(Hm). We consider two cases.

Case 1. Suppose m < 2k−1 − 1. We define a k-coloring c1 : V (T (Hm))→ Nk as follows:
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1. We set c1(v) = 1 for v ∈ {v0, v0v1, v0v2, ..., v0vm} ∪
m⋃
i=1

Ui.

2. For i = 1, 2, ...,m, we set c1 ({vi} ∪ Ti) = Si such that c1(vi) = minSi.

Note that the vertices in each clique induced by the set {v0vi, vi}∪Ti receive different colors.
We now obtain the neighborhood color sets of the vertices in T (Hm).

• NC(v0) = Nk

For i ∈ {1, 2, ...,m}:
• NC(v0vi) = {1} ∪ Si

• NC(vi) = ({1} ∪ Si)− {c1(vi)}

• NC(t) = ({1} ∪ Si)− {c1(t)} for t ∈ Ti

• NC(u) = c1({vi, t}), for t ∈ Ti and u ∈ Ui such that tu ∈ E(T (Hm))

Note that since m < 2k−1 − 1, we have Si ( Nk − {1}, and consequently {1} ∪ Si ( Nk,
for all i = 1, 2, ...,m. From here, it is easy to verify that c1 is a set k-coloring; hence,
χs(T (Hm)) = k when m < 2k−1 − 1.

Case 2. Suppose m = 2k−1 − 1. We define a k-coloring c2 : V (T (Hm))→ Nk as follows:

1. We set c2(v) = 1 for v ∈ {v0, vm, v0v1, v0v2, ..., v0vm} ∪ Tm ∪

(
m−1⋃
i=1

Ui

)
.

2. For i = 1, 2, ...,m− 1, we set c2 ({vi} ∪ Ti) = Si such that c2(vi) = minSi.

3. We set c2(Um) = Sm−1.

To show that c2 is a set coloring, we will just show that

(a) NC(wm) 6= NC(wi) for i = 1, 2, ...,m− 1, and that

(b) NC(u) 6= NC(v) for adjacent vertices u, v ∈ {v0, v0vm, vm} ∪ Tm ∪ Um.

The verification for the remaining adjacencies can be done easily, as in Case 1. To prove
(a) and (b), we need to consider only the following neighborhood color sets: NC(v0) = Nk;
NC(v0vi) = {1} ∪ Si for i = 1, 2, ...,m − 1; NC(v0vm) = {1}; NC(vm) = {1} ∪ Sm−1;
NC(t) = {1, c2(u)} for t ∈ Tm, u ∈ Um such that tu ∈ E(T (Hm)); and NC(u) = {1} for
u ∈ Um.

For i ∈ {1, 2, ...,m − 1}, we have Si 6= ∅, which implies that NC(wm) 6= NC(wi).
We now verify (b). Suppose t ∈ Tm and u ∈ Um such that tu ∈ E(T (Hm)). First, it is
clear that NC(v0), NC(v0vm), and NC(vm) are pairwise distinct. Since c2(u) 6= 1, we have
NC(v0vm) 6= NC(t). Moreover, since m = 2k−1 − 1, we have m ≥ 7 and k ≥ 4, which
imply that |Sm−1| = k − 2 ≥ 2. Thus, NC(vm) 6= NC(t). Finally, NC(vm) 6= NC(t) and
NC(t) 6= NC(u) follow easily from the cardinalities of these sets. This proves that c2 is a
set k-coloring; hence, χs(T (Hm)) = k when m = 2k−1 − 1.

Therefore, for m ≥ 4, Hm is a graph satisfying ∆(Hm) = m and χs(T (Hm)) = 1 +
dlog2(∆(Hm) + 1)e.
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We now establish a second lower bound for the total set chromatic number of graphs that
have a vertex with at least one pendant neighbor.

Theorem 2.2. Let G be any graph and let W be the set of all vertices of G that have at
least one pendant neighbor. If W 6= ∅, then

χs(T (G)) ≥ max{|SG(v)| : v ∈ W}. (2)

Proof. Let v ∈ W . We set Q := the set of all nonpendant neighbors, in G, of v, T := {vq ∈
E(G) : q ∈ Q}, S := SG(v), and R := {vs ∈ E(G) : s ∈ S}. Note that T and R can also be
viewed as subsets of V (T (G)).

Let c be a set k-coloring of T (G). Suppose, for now, that Q 6= ∅ and let t ∈ T . Let H be
the clique of T (G) formed by v, t, and all the vertices in R. Then H ∼= K|S|+2. Permuting
colors if necessary, we have c(V (H)) = N` for some ` ≤ k. Let X be the maximal subset of
V (H) such that for all x ∈ X, there exists y ∈ {X} − x for which c(x) = c(y). Since the
remaining vertices in V (H) rX receive unique colors, we must have |V (H)| − |X| + 1 ≤ `
or |X| ≥ |V (H)| − `+ 1. The neighborhood color sets of vertices in X are given as follows.

1. If v ∈ X, then NC(v) = N` ∪ c(S) ∪ c(Q) ∪ c(T r {t}).

2. If t ∈ X, then NC(t) = N` ∪ c[NT (G)(t) r (V (H) r {t})].

3. Let r ∈ R ∩X and s ∈ S ∩N(r).

(a) If c(s) 6∈ N`, then NC(r) = N` ∪ {c(s)} ∪ c(T r {t}).
(b) If c(s) ∈ N`, then NC(r) = N` ∪ c(T r {t}).

At best, all the neighborhood color sets in (1)-(3) above are all distinct from each other.
Since there are k − ` colors not in N`, (3a) provides for k − ` distinct neighborhood color
sets. Hence, the maximum number of neighborhood color sets available for vertices in X
is k − ` + 3. So we must have k − ` + 3 ≥ |X|. Then k − ` + 3 ≥ |V (H)| − ` + 1. With
|V (H)| = |S|+ 2, we have k ≥ |S| and the conclusion follows.

Now, suppose Q = ∅. (Note that, in this case, v and the vertices in S induce a star
component of G.) Then we can take H to be the clique formed by v and the vertices in R.
As before, we assume that c(V (H)) = N` for some ` ≤ k and we can construct the set X as
before. Then the neighborhood color sets of vertices in X are as follows.

(1′) If v ∈ X, then NC(v) = N` ∪ c(S).

(3′) Let r ∈ R ∩X and s ∈ S ∩N(r).

(a′) If c(s) 6= N`, then NC(r) = N` ∪ {c(s)}.
(b′) If c(s) ∈ N`, then NC(r) = N`.

Then the maximum number of neighborhood color sets for vertices in X is k − ` + 2. We
now have k − ` + 2 ≥ |X| ≥ |V (H)| − ` + 1 = |S| + 1 − ` + 1. Therefore, we also obtain
k ≥ |S| and the conclusion also follows in this case.
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When (2) is an equality, we can establish some properties of optimal total set colorings
of G. Such properties are useful, for instance, for constructing optimal total set colorings.
For convenience, we restrict our attention to connected graphs that are not stars, the total
set chromatic number of which will be discussed in the next section. In the following, R is
defined as in the proof of Theorem 2.2.

Lemma 2.3. Let G be any connected graph that is not a star. If there is a vertex v ∈
V (G) such that χs(T (G)) = |SG(v)|, then any total set χs(T (G))-coloring of G satisfies the
following:

1. Let q be a nonpendant neighbor, in G, of v. If y ∈ {v, vq}, then there is a y′ ∈
[R ∪ {vq, v}] r {y} such that c(y) = c(y′).

2. |c (SG(v) ∪ {vs ∈ E(G) : s ∈ SG(v)})| = |SG(v)|

Proof. The assumptions imply that v has at least one nonpendant neighbor and at least one
pendant neighbor. We set Q := the set of all nonpendant neighbors, in G, of v, T := {vq ∈
E(G) : q ∈ Q}, S := SG(v), and R := {vs ∈ E(G) : s ∈ S}. Let c be a set |S|-coloring of
T (G).

First, we prove (1). Suppose |c(R ∪ {v, vq})| = m for some m ≤ |S|. Moreover, let X be
the set of vertices x in R ∪ {v, vq} for which c(x) = c(x′) for some x′ ∈ [R ∪ {v, vq}] r {x}.
Let γ = |{v, vz} \X|. Following a similar argument as in the proof of Theorem 2.2, we have
|S| − l + 3− γ ≥ (|S|+ 2)− l + 1. Thus, γ = 0 and the conclusion follows.

Now, let us prove (2). First, suppose |c(R)| = l for some l ≤ |S|. Let P ⊆ R be
the set of all p in R for which c(p) = c(y) for some y ∈ R r {p}. The conclusion follows
immediately when P = ∅; thus, let us assume that P 6= ∅. Then, for all p ∈ P , we have
NC(p) = c(R) ∪ c(T ∪ {v}) ∪ {c(s)}, where s ∈ S ∩ NT (G)(p). Hence, there are at most
|S| − l + 1 possible neighborhood color sets for vertices in P ; consequently, we must have
|P | ≤ |S| − l + 1. On the other hand, |P | = |R| − |R r P | = |S| − (l − |c(P )|). Therefore,
we must have |c(P )| = 1 and |P | = |S| − l + 1.

Now, only one of the vertices in P may have neighborhood color set equal to c(R)∪c(T ∪
{v}); thus, we must have at least |S| − l colors that are in c(S) but not in c(R)∪ c(T ∪{v}).
Thus, |c(S) r c(R)| ≥ |c(S) r [c(R) ∪ c(T ∪ {v})]| ≥ |S| − l. Finally, we have c(R ∪ S)| =
|c(R)|+ |c(S) r c(R)| ≥ l + |S| − l = |S| and the conclusion follows.

Note, in particular, that Lemma 2.3(2) implies that NC(v) must contain all the colors
used by an optimal set coloring of T (G). The usefulness of Theorem 2.2 and Lemma 2.3
will be evident in the next section, where we determine the total set chromatic number of
different families of trees. The sharpness of (2) also follows from some of these results.

3 Total Set Chromatic Number of Some Tree Families

We now determine the total set chromatic number of different families of trees. We begin
with the following proposition.

Proposition 3.1. For n ≥ 3, χs(T (Pn)) = 3.
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Proof. Suppose Pn = v1v2 · · · vn. Clearly, χs(T (Pn)) ≥ 3. On the other hand, it is easy to
verify that the coloring c : V (T (Pn))→ N3 defined below is a set 3-coloring of T (Pn).

c(y) =


3, if y = vi, where i ≡ 0 (mod 3),

or if y = vjvj+1, where j ≡ 1 (mod 3) and j ≥ 4,
2, if y = vi, where i ≡ 1 (mod 3),

or if y = vjvj+1, where j ≡ 2 (mod 3),
1, otherwise.

(3)

We now consider the total set chromatic number of stars. We have the following result.

Proposition 3.2. For m ≥ 1,

χs(T (K1,m)) =


3, if m ≤ 2,
4, if m = 3,
m, if m ≥ 4.

(4)

Proof. The cases when m ≤ 3 can be easily verified. Now, suppose m ≥ 4. Theorem 2.2
implies that χs(T (K1,m)) ≥ m.

Let V (K1,m) = {vi : i = 0, 1, ...,m} and E(K1,m) = {v0vi : i = 1, 2, ...,m}. We now a
construct a coloring c : V (T (K1,m))→ Nm as follows:

c(y) =


1, if y ∈ {v0, v1, vm} ∪ {v0v2, v0v3, ..., v0vm},
2, if y = v0v1,

2− i+m, if y = vi for i ∈ {2, 3, ...,m− 1}.
(5)

It can easily be checked that c is a set m-coloring of T (K1,m) and the desired conclusion
follows.

Let us now consider double-stars, by which we mean trees that have exactly two nonpen-
dant vertices. We denote by Sm,n the double-star in which one nonpendant vertex has exactly
m pendant neighbors while the other nonpendant vertex has exactly n pendant neighbors.
Our result is as follows.

Proposition 3.3. For m ≥ n ≥ 5,

χs(T (Sm,n)) =

{
m, if n < m,

m+ 1, if n = m.
(6)

Proof. Suppose V (Sm,n) = {vi : i = 0, 1, ...,m}∪{wi : i = 0, 1, ..., n} and E(Sm,n) = {v0w0}∪
{v0vi : i = 1, 2, ...,m} ∪ {w0wi : i = 1, 2, ..., n}. Theorem 2.2 implies that χs(T (Sm,n)) ≥ m.
If n < m, we construct the coloring c1 : V (T (Sm,n))→ Nm as follows:

c1(y) =



i, if y = vi for i ∈ {1, 2, ...,m},
2, if y = v0v1,
m, if y = w0w1,
n, if y ∈ {w3, w0w2},

i− 1, if y = wi for i ∈ {4, 5, ..., n},
1, otherwise.

(7)
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On the other hand, if n = m, we construct the coloring c2 : V (T (Sm,m)) → Nm+1 as
follows:

c2(y) =



i, if y = vi for i ∈ {1, 2, ...,m},
2, if y = v0v1,

m+ 1, if y = w0w1,
m, if y = w0w2,
i, if y = wi for i ∈ {3, 5, ...,m},
1, otherwise.

(8)

As in the previous propositions, it can be verified that c1 is a set m-coloring of T (Sm,n),
where 5 ≤ n < m, and that c2 is a set (m+ 1)-coloring of T (Sm,m), where m ≥ 5.

To complete the proof, we need to show that χs(T (Sm,m)) ≥ m + 1 for m ≥ 5. If
χs(T (Sm,m)) = m and c is a set m-coloring of T (Sm,m), then Lemma 2.3(2) implies that
|NC(v0)| = |NC(w0)| = m, which means that v0 and w0 must have the same neighborhood
color sets. This is a contradiction and we must have χs(T (Sm,m)) ≥ m+ 1 for m ≥ 5.

We now consider a more general family of trees with height 2, for which we will use the
following notations: The root vertex will be denoted by v0. The children of v0 will be denoted
by v1, v2, ..., vdeg v0 . For each i ∈ {1, 2, ..., deg v0} for which deg vi ≥ 2, the children of vi will
be denoted by vi,1, vi,2,, ..., vi,(deg vi)−1. Let us begin with the following lemma, which involves
a total set coloring algorithm.

Lemma 3.1. Let G be a tree of height 2 with root v0. If there is an internal vertex w such
that ∆(G) = degw ≥ 2 + deg v0 ≥ 7, then G is total set (degw − 1)-colorable.

Proof. Without loss of generality, we assume that w = v1 and we set m = |SG(v1)| =
deg v1 − 1. We construct a coloring c : V (G) ∪ E(G)→ Nm using Algorithm 1.

In Algorithm 1, for i ∈ {3, ..., deg v0}, the color i + 1 is assigned to the vertex vi (line
30) or to the edge vivi+1 (line 39). Since we want c to use only m colors, we must have
1+deg v0 ≤ m, which follows from our assumption that degw ≥ 2+deg v0. Moreover, it can
be easily verified that the sets {α1, ..., αm−2}, {β1, ..., βm−2}, {δ1, ..., δm−2}, {γ1, ..., γm−2}, and
{ε1, ..., εm−1} contain sufficient colors to color the vertices of vi,j (see lines 5, 13, 22, 32, and 40
of Algorithm 1). Thus, Algorithm 1 can always construct a coloring c : V (G)∪E(G)→ Nm.

We now prove that c is a set coloring of T (G). First, note that 2 /∈ NC(v0) while
2 ∈ NC(v0vi) and 2 ∈ NC(vi) for all i ∈ Ndeg v0 . Therefore, NC(v0) 6= NC(v0vi) and
NC(v0) 6= NC(vi) for all i ∈ Ndeg v0 . We now compute the neighborhood color sets of all the
vertices of T (G) except for v0.

1. Neighborhood color set of vertices of the form v0vi:

NC(v0v1) = N5

NC(v0v2) =

{
{1, 2, 4} if |SG(v2)| ≤ m− 2

N3 ∪ {5, 6} if |SG(v2)| ∈ {m− 1,m}
i ≥ 3 : NC(v0vi) = N3 ∪ {i+ 1}
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2. Neighborhood color set of vertices of the form vi:

NC(v1) = Nm

NC(v2) =


{2, 3} if |SG(v2)| = 0

{2, 3} ∪ {β1, β2, ..., β|SG(v2)|} if 0 < |SG(v2)| ≤ m− 2
Nm if |SG(v2)| ∈ {m− 1,m}

i ≥ 3 : NC(vi) =


{1, 2} if |SG(vi)| = 0

{1, 2} ∪ {γ1, γ2, ..., γ|SG(vi)|} if 0 < |SG(vi)| ≤ m− 2
Nm if |SG(vi)| ∈ {m− 1,m}

3. Neighborhood color set of vertices of the form vivi,j:

(a) i = 1: NC(v1v1,1) = {1, 5};NC(v1v1,2) = {1, 4};
for j ≥ 3 : NC(v1v1,j) = {1, 4, 5, αj−2}

(b) i = 2

i. If |SG(v2)| = 1: NC(v2v2,1) = {3, 4, β1}
ii. If 2 ≤ |SG(v2)| ≤ m− 2: NC(v2v2,j) = {2, 3, 4, βj}
iii. If |SG(v2)| ∈ {m− 1,m} : NC(v2v2,1) = {3, 6};NC(v2v2,2) = {3, 5};

for j ≥ 3 : NC(v2v2,j) = {3, 5, 6, δj−2}
(c) i ≥ 3:

i. If 0 < |SG(vi)| ≤ m− 2: NC(vivi,j) = {1, i+ 1, γj}
ii. If |SG(vi)| ∈ {m− 1,m}: NC(vivi,1) = {1};

for j ≥ 2 : NC(vivi,j) = {1, i+ 1, εj−1}

4. Neighborhood color set of vertices of the form vi,j:

(a) i = 1: NC(v1,1) = {1, 4};NC(v1,2) = {1, 5}; for j ≥ 3 : NC(v1,j) = {1}
(b) i = 2:

i. If 0 < |SG(v2)| ≤ m− 2: NC(v2,j) = {2, 4}
ii. If |SG(v2)| ∈ {m− 1,m}: NC(v2,1) = {3, 5};NC(v2,2) = {3, 6};

for j ≥ 3 : NC(v2,j) = {3}
(c) i ≥ 3:

i. If 0 < |SG(vi)| ≤ m− 2: NC(vi,j) = {1, i+ 1}
ii. If |SG(vi)| ∈ {m− 1,m}: NC(vi,1) = {1, i+ 1}; for j ≥ 2 : NC(vi,j) = {1}

To complete the proof that c is indeed a total set m-coloring of G, we use the computed
total neighborhood color sets above to verify the total set coloring condition for the remaining
adjacencies. For distinct i, ` ∈ Ndeg v0 , it is easy to see that NC(v0vi) 6= NC(v0v`). Moreover,
it is clear that NC(v0v1) 6= NC(v1) = Nm and that NC(v0vi) 6= NC(vi) = Nm when i ≥ 2
and |SG(vi)| ∈ {m − 1,m}. On the other hand, when |SG(v2)| ≤ m − 2, we have 4 in
NC(v0v2) but not in NC(v2), which implies that NC(v0v2) 6= NC(v2). Similarly, when
i ≥ 3 and |SG(vi)| ≤ m− 2, we have i+ 1 in NC(v0vi) but not in NC(vi).
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Algorithm 1 Constructing a total set m-coloring c of a graph G as in Lemma 3.1

1: c(v0)← 2
2: c(v0v1)← 1, c(v1)← 1 . Start: coloring first branch
3: c(v1v1,1)← 4, c(v1,1)← 1
4: c(v1v1,2)← 5, c(v1,2)← 1
5: Suppose Nm r {4, 5} = {α1, α2, ..., αm−2}.
6: for j ← 3 to m do
7: c(v1v1,j)← 1, c(v1,j)← αj−2
8: end for . End: coloring first branch
9: c(v0v2)← 3 . Start: coloring second branch

10: if |SG(v2)| ≤ m− 2 then
11: c(v2)← 4
12: if |SG(v2)| > 0 then
13: Suppose Nm r {3, 4} = {β1, β2, ..., βm−2}.
14: for j ← 1 to |SG(v2)| do
15: c(v2v2,j)← 2, c(v2,j)← βj
16: end for
17: end if
18: else . i.e. |SG(v2)| ∈ {m− 1,m}
19: c(v2)← 3
20: c(v2v2,1)← 5, c(v2,1)← 3
21: c(v2v2,2)← 6, c(v2,2)← 3
22: Suppose Nm r {5, 6} = {δ1, δ2, ..., δm−2} such that δm−2 = 3.
23: for j ← 3 to |SG(v2)| do
24: c(v2v2,j)← 3, c(v2,j)← δj−2
25: end for
26: end if . End: coloring second branch
27: for i← 3 to deg v0 do . Start: coloring remaining branches
28: c(v0vi)← 1
29: if |SG(vi)| ≤ m− 2 then
30: c(vi)← i+ 1
31: if |SG(vi)| > 0 then
32: Suppose Nm r {1, i+ 1} = {γ1, γ2, ..., γm−2}.
33: for j ← 1 to |SG(vi)| do
34: c(vivi,j)← 1, c(vi,j)← γj
35: end for
36: end if
37: else . i.e. |SG(vi)| ∈ {m− 1,m}
38: c(vi)← 1
39: c(vivi,1)← i+ 1, c(vi,1)← 1
40: Suppose Nm r {i+ 1} = {ε1, ε2, ..., εm−1} such that εm−1 = 1.
41: for j ← 2 to |SG(vi)| do
42: c(vivi,j)← 1, c(vi,j)← εj−1
43: end for
44: end if
45: end for . End: coloring remaining branches
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Now, when |SG(v2)| = 1, we have NC(v0v2) = {1, 2, 4} 6= {3, 4, β1} = NC(v2v2,1). Aside
from this case, we have NC(v0vi) 6= NC(vivi,j), where i ∈ Ndeg v0 and j ∈ N|SG(vi)|, because
their cardinalities do not match.

Next, it is clear that Nm = NC(v1) 6= NC(v1v1,j) for any j ∈ Nm. Moreover, when
i ≥ 2 and |SG(vi)| ∈ {m − 1,m}, it is also clear that Nm = NC(vi) 6= NC(vivi,j) for any
j ∈ N|SG(vi)|. On the other hand, when |SG(v2)| ≤ m − 2, we have 4 in NC(v2v2,j), for any
j ∈ N|SG(v2)|, but not in NC(v2). Similarly, when i ≥ 3 and |SG(vi)| ≤ m− 2, we have i+ 1
in NC(vivi,j), for any j ∈ N|SG(vi)|, but not in NC(vi).

Due to mismatch of cardinalities, we can also conclude that NC(vi) 6= NC(vi,j) for any
i ∈ Ndeg v0 and j ∈ N|SG(vi)|. Now, note that when λ ∈ {α, β, γ, δ, ε} and j 6= h, then λj 6= λh.
Then it is also evident in the total neighborhood color sets that for each i ∈ Ndeg v0 , we have
NC(vivi,j) 6= NC(vivi,h) for any distinct j, h ∈ N|SG(vi)|.

Finally, it can be easily verified that NC(vivi,j) 6= NC(vi,j) for any i ∈ Ndeg v0 and
j ∈ N|SG(vi)|. For example, when i ≥ 3 and 0 < |SG(vi)| ≤ m − 2, we have NC(vivi,j) =
{1, i + 1, γj} 6= {1, i + 1} = NC(vi,j) because γj /∈ {1, i + 1} for any j ∈ N|SG(vi)|. This
concludes the proof that the coloring c constructed by Algorithm 1 is a total set m-coloring
of G.

The following is an extension of Lemma 3.1 to the case where the degree of the root
vertex of the height-2 tree G is equal to ∆(G)− 1; that is, the root vertex and the internal
vertex with maximal degree have the same number of children.

Corollary 3.2. Let G be a tree of height 2 with root v0. If there is an internal vertex w such
that ∆(G) = degw = 1 + deg v0 ≥ 7, then G is total set (degw − 1)-colorable.

Proof. Without loss of generality, we assume that w = v1 and we set m = |SG(v1)| =
deg v0 = −1 + deg v1. If G is a double-star (i.e. only v0 and v1 have children), then G is
isomorphic to Sm,m−1. The desired conclusion then follows from Proposition 3.3.

We now assume that G is not a double-star. Then there must be at least one i ∈ Nmr{1}
for which |SG(vi)| ≥ 1. So we can assume that |SG(vm)| ≥ 1.

Let H be the subgraph of G induced by the vertices v0, v1, v2, ..., vm−1, and the vertices of
the form vi,j, where i ∈ Nm−1 and j ∈ N|SG(vi)|. Then H satisfies the assumptions of Lemma
3.1; thus, we have a total set m-coloring of H.

We now extend the coloring c of H to a coloring c′ of G. We define c′ using Algorithm 2.
It is evident from Algorithm 2 that the coloring c of H and the coloring c′ of G induce

the same total neighborhood color sets for the elements in H, except possibly for v0. From
here, is is straightforward to check that c′ is indeed a total set m-coloring of G.

In Figure 2, a tree satisfying the assumptions of Corollary 3.2 is shown together with
a total set 7-coloring generated by Algorithm 2. Note that the coloring of the subgraph
induced by the vertices v0, v1, v2, ..., v6, and the children of v1, v2, ..., v6 was, as indicated in
Algorithm 2, generated using Algorithm 1.
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Algorithm 2 Constructing a total set m-coloring c for a graph G as in Corollary 3.2

1: for x ∈ V (H) ∪ E(H) do
2: c′(x)← c(x) . c as constructed by Algorithm 1
3: end for
4: c′(v0vm)← 1
5: if |SG(vm)| ≥ 2 then
6: c′(vm)← 1
7: c′(vmvm,1)← 4, c′(vm,1)← 1
8: c′(vmvm,2)← 6, c′(vm,2)← 1
9: Suppose Nm r {4, 6} = {α1, α2, ..., αm−2} such that α1 = 5.

10: for j ← 3 to |SG(vm|) do
11: c′(vmvm,j)← 1, c′(vm,j)← αj−2
12: end for
13: else . i.e. |SG(vm)| = 1
14: c′(vm)← 4, c′(vmvm,1)← 6, c′(vm,1)← 1
15: end if

Figure 2: A tree of height 2 with a total set 7-coloring generated by Algorithm 2
.

Finally, with Theorem 2.2, Lemma 3.1, and Corollary 3.2, we obtain the following result.

Theorem 3.3. Let G be a tree of height 2 with root v0. If there is an internal vertex w such
that ∆(G) = degw ≥ 1 + deg v0 ≥ 7, then χs(T (G)) = ∆(G)− 1.

Given the results discussed in this paper, the authors suggest the following problems:

1. Can we establish other lower bounds, similar to (2), that are applicable to graphs with
no pendant vertices?

2. Are ∆(G) colors always sufficient to construct a total set coloring of any tree G?
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