Effects of Serum Levels of Vitamin A and Precursors on Colorectal Cancer Mortlaiy

Chimuanya Okoli
Georgia Southern University, co01775@georgiasouthern.edu

Follow this and additional works at: https://digitalcommons.georgiasouthern.edu/research_symposium

Part of the Epidemiology Commons

Recommended Citation
Okoli, Chimuanya, "Effects of Serum Levels of Vitamin A and Precursors on Colorectal Cancer Mortlaiy" (2016). Georgia Southern University Research Symposium. 5.
https://digitalcommons.georgiasouthern.edu/research_symposium/2016/2016/5

This presentation (open access) is brought to you for free and open access by the Conferences & Events at Digital Commons@Georgia Southern. It has been accepted for inclusion in Georgia Southern University Research Symposium by an authorized administrator of Digital Commons@Georgia Southern. For more information, please contact digitalcommons@georgiasouthern.edu.
INTRODUCTION

Colorectal cancer is the abnormal growth of cells in the colon and/or rectum. It is the third most common cancer in the world, with nearly 1.4 million new cases diagnosed in 2012 (WHO, 2016).

- Vitamin A (i.e., retinoid) and A-carotenoids are essential for normal cell functioning and arrest, and eventually apoptosis which can inhibit tumor cell growth. A-carotenoids, precursors of Vitamin A, are also important for maintenance of optimum physiological levels of this potent antioxidant.
- Vitamin A is naturally found in milk, eggs, cheese, fish, liver, broccoli, sweet potatoes, peppers, and carrots.

OBJECTIVE

- **Objective:** Examine the relationship between serum vitamin A (and its precursors) and colorectal cancer mortality rates.
- **Hypothesis:** Serum vitamin A and precursors reduce colorectal cancer mortality.

METHODS

- A retrospective cohort study was conducted with 14,358 adults (19 years or older) who participated in phase II of the National Health and Nutrition Examination Survey III (1991-1994) (NHANES III).
- Data were collected via in-home interviews and visits by participants to a mobile examination center for blood sample collection.
- Characteristics such as family income, educational attainment, marital status, race and ethnicity, alcohol consumption, cigarette smoking, self-reported health, type of resident, body size, cancer status at baseline, vegetable consumption, and fruit/ juice consumption were examined.
- Trained technicians collected serum samples from study participants for Vitamin A analysis. This served as baseline and was correlated with the National Death Index database between 1991-2006.
- Hazard ratio (HR) estimates for all-cause and cancer-related deaths among individuals with different serum vitamin A levels were obtained from Cox Proportional Hazards Regression.

RESULTS

Table 1. Adjusted Hazard Ratio of Death Caused for A-carotenoid Using 3-Level Categorization

<table>
<thead>
<tr>
<th>Cause of Death</th>
<th>Serum Level</th>
<th>Adjusted Hazard Ratio1</th>
<th>Adjusted Hazard Ratio2</th>
</tr>
</thead>
<tbody>
<tr>
<td>All Cancer</td>
<td>Low vs. High</td>
<td>1.91 (1.56-2.33)</td>
<td>1.82 (1.48-2.24)</td>
</tr>
<tr>
<td></td>
<td>Medium vs. High</td>
<td>1.36 (1.13-1.63)</td>
<td>1.33 (1.11-1.60)</td>
</tr>
<tr>
<td>Colorectal Cancer</td>
<td>Low vs. High</td>
<td>2.86 (1.51-5.41)</td>
<td>2.92 (1.49-5.71)</td>
</tr>
<tr>
<td></td>
<td>Medium vs. High</td>
<td>1.86 (1.03-3.38)</td>
<td>1.89 (1.03-3.45)</td>
</tr>
<tr>
<td>Breast Cancer</td>
<td>Low vs. High</td>
<td>2.36 (1.05-5.33)</td>
<td>2.01 (0.88-4.61)</td>
</tr>
<tr>
<td></td>
<td>Medium vs. High</td>
<td>1.28 (0.62-2.63)</td>
<td>1.16 (0.56-2.40)</td>
</tr>
</tbody>
</table>

Note: 1. Unadjusted for fruits and vegetables; 2. Adjusted for fruits and vegetables.

Table 2. Adjusted versus Unadjusted Hazard Ratios of Deaths Associated with Low Levels of Selected Micromutrients (25% as cutoff) 14358 Adults, NHANES III follow-up study 1988-2006

<table>
<thead>
<tr>
<th>Causes of Death</th>
<th>Unadjusted Hazard Ratio (25% cutoff)</th>
<th>Adjusted Hazard Ratio (25% cutoff)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vitamin A</td>
<td>A-carotenoid</td>
<td>Vitamin A</td>
</tr>
<tr>
<td>All Cancer</td>
<td>1.41 (1.16-1.71)</td>
<td>1.93 (1.63-2.30)</td>
</tr>
<tr>
<td>Colorectal Cancer</td>
<td>1.84 (1.02-3.30)</td>
<td>2.34 (1.37-3.99)</td>
</tr>
<tr>
<td>Breast Cancer</td>
<td>1.17 (0.53-2.58)</td>
<td>2.26 (1.18-4.33)</td>
</tr>
</tbody>
</table>

Note: Adjusted for age, sex, race, family income, education attainment, alcohol drinking, and cigarette smoking.

TOXICOLOGICAL & PUBLIC HEALTH IMPLICATIONS

- Colorectal cancer is a serious public health issue. In 2011, a total of 135,260 individuals were diagnosed with colorectal cancer and 51,783 people died from it (CDC, 2014).
- Optimum physiological levels of vitamin A could substantially reduce cancer mortality without any adverse health outcomes or incurring major financial costs.
- Findings from this study can be utilized to conduct further toxicological studies research on the effect(s) of vitamin A and its precursors on colorectal cancer mortality and determine the safe and effective dose for prevention.
- Study outcomes can be used to design an epidemiologic study that assesses colorectal cancer mortality rates related to use of Vitamin A supplements at varying doses.
- Findings from this research can be utilized to develop intervention strategies for colorectal cancer management, including educational interventions.

STRENGTHS AND LIMITATIONS

- **Strengths:**
 - To our knowledge, this is the first study performed on a nationally representative U.S. population to examine serum vitamin A and colorectal cancer mortality rates.
 - Due to the large sample size of this study, we were able to obtain informative risk estimates (Hazard Ratios) even when the data were adjusted for multiple potential confounders.
 - We selected study participants from the community (extending beyond clinical populations) to achieve a true representation.

- **Limitations:**
 - Data about past vitamin A use was not included in this study.
 - Failed to include the elderly in institutionalized facilities.
 - Look into effect on sensitive population e.g. pregnant women, HIV and other immunocompromised individuals.
 - Serum vitamin A levels and its precursor A-carotenoids were measured only once during the study.
 - Look into effect on sensitive population e.g. pregnant women, HIV and other immunocompromised individuals.

CONCLUSIONS

- Results indicate that levels of serum Vitamin A and A-carotenoids are significantly associated with the risk of colorectal cancer mortality among adults, even after adjusting for fruits and vegetables.
- Results suggest that consumption of foods that are rich in retinol and A-carotenoids are beneficial in reducing the risk of colorectal cancer mortality.
- Public health professionals should work to develop intervention strategies for colorectal cancer prevention and management.
- Further research is warranted to investigate the toxicological implications of this phenomenon and determine the most effective Vitamin A dosage for colorectal cancer patients.

REFERENCES