Mar 13th, 2:00 PM - 2:45 PM

Guided Inquiry in an Upper Level Vs. Lower Level Undergraduate Course

Laura DeLong Frost
Georgia Southern University, ldelong@georgiasouthern.edu

Follow this and additional works at: http://digitalcommons.georgiasouthern.edu/sotlcommons

Part of the Curriculum and Instruction Commons, Educational Assessment, Evaluation, and Research Commons, Educational Methods Commons, Higher Education Commons, and the Social and Philosophical Foundations of Education Commons

Recommended Citation

This presentation (open access) is brought to you for free and open access by the Programs and Conferences at Digital Commons@Georgia Southern. It has been accepted for inclusion in SoTL Commons Conference by an authorized administrator of Digital Commons@Georgia Southern. For more information, please contact digitalcommons@georgiasouthern.edu.
Guided Inquiry in an Upper Level vs. Lower Level Undergraduate Course

Laura Frost
Department of Chemistry
Georgia Southern University
Statesboro, GA

Background

Conventional
- Teaching is telling
- Knowledge is facts
- Learning is recall

New Paradigm
- Teaching is enabling
- Knowledge is understanding
- Learning is an active reconstruction of subject matter

Outline

- Guided Inquiry Defined
- Learning through Constructivism
 - (how high is the level of learning?)
- Inquiry Instruction
 - Varieties: POGIL vs. Team-Based Learning
- Assessing Student Learning
 - Is it Working?

Definitions: What is Inquiry Based Instruction?

“The creation of a classroom where students are engaged in essentially open-ended, student-centered, hands-on activities.” Colburn 2000.

Levels of inquiry can be distinguished by the amount of information given to the student

In the lab, Bell, Smentana and Binns define these levels as:

<table>
<thead>
<tr>
<th>Level</th>
<th>Question</th>
<th>Method</th>
<th>Solution</th>
</tr>
</thead>
<tbody>
<tr>
<td>Confirmation</td>
<td>x</td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>Structured</td>
<td>x</td>
<td>x</td>
<td></td>
</tr>
<tr>
<td>Guided</td>
<td></td>
<td>x</td>
<td></td>
</tr>
<tr>
<td>Open</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Translated to the classroom,

<table>
<thead>
<tr>
<th>Level</th>
<th>Topic</th>
<th>Data</th>
<th>Concept</th>
</tr>
</thead>
<tbody>
<tr>
<td>Confirmation</td>
<td>x</td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>Lecture</td>
<td>x</td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>Structured</td>
<td>x</td>
<td>x</td>
<td></td>
</tr>
<tr>
<td>Lect.-Interact.</td>
<td>x</td>
<td>x</td>
<td></td>
</tr>
<tr>
<td>Guided</td>
<td>x</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Discovery</td>
<td>x</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Open</td>
<td>x</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Guided Inquiry is based on the Constructivist Model of Information Processing

Five Key Ideas about Learning (Bransford, et. al.)

People learn by:
- Constructing their own understanding based on their prior knowledge, experiences, skills, attitudes, and beliefs.
- Following a learning cycle of exploration, concept formation, and application.
- Connecting and visualizing concepts and multiple representations.
- Discussing and interacting with others.
- Reflecting on progress and assessing performance.

Implementation Tools for Inquiry
- Learning teams
- Guided-inquiry activities to develop understanding
- Questions to promote critical thinking
- Problem solving
- Reporting
- Metacognition
- Individual accountability

Learning Levels: Gagné and Briggs (1974)

Lowest to Highest
- Information
 - Recall
- Concepts
 - Classifies
- Rules (simple)
 - Demonstrates
- Higher Rules (complex)
 - Generate

What level of learning is expected?
- Introductory Course
 - Does not assume prior knowledge of concepts from which to build
- Upper Level Course
 - Assumes prior knowledge in the discipline on which to build.

A typical implementation involves the Learning Cycle (Karplus, Piaget)

Exploration Concept Invention Application

Five Key Ideas about Learning (Bransford, et. al.)

People learn by:
- Constructing their own understanding based on their prior knowledge, experiences, skills, attitudes, and beliefs.
- Following a learning cycle of exploration, concept formation, and application.
- Connecting and visualizing concepts and multiple representations.
- Discussing and interacting with others.
- Reflecting on progress and assessing performance.

Implementation Tools for Inquiry
- Learning teams
- Guided-inquiry activities to develop understanding
- Questions to promote critical thinking
- Problem solving
- Reporting
- Metacognition
- Individual accountability

Learning Levels: Gagné and Briggs (1974)

Lowest to Highest
- Information
 - Recall
- Concepts
 - Classifies
- Rules (simple)
 - Demonstrates
- Higher Rules (complex)
 - Generate

What level of learning is expected?
- Introductory Course
 - Does not assume prior knowledge of concepts from which to build
- Upper Level Course
 - Assumes prior knowledge in the discipline on which to build.
The level you reach in class differs

- **Intro. course**
 - Exploration
 - Concept
 - Invention
 - Application
 - Lowest
- **Upper level course**
 - Exploration
 - Concept
 - Invention
 - Application
 - Highest

Implementation Similarities

- **Groups**: 4-5 students
- **Roles**: Manager, Recorder, Presenter, Spy/Technician
- **Metacognition**: Feedback sheet
- **Attitude**: Initial discomfort

Implementation Differences

<table>
<thead>
<tr>
<th></th>
<th>Introductory Course</th>
<th>Upper Level Course</th>
</tr>
</thead>
<tbody>
<tr>
<td>Learning</td>
<td>Discover concepts during class, reinforce after class</td>
<td>Discover concepts prior to class, apply concepts during class</td>
</tr>
<tr>
<td>Prof’s Job</td>
<td>Facilitate learning</td>
<td>Clarify assignment and facilitate learning</td>
</tr>
<tr>
<td>Source of Information</td>
<td>Activities</td>
<td>Textbook, assignments, professor (some)</td>
</tr>
<tr>
<td>Accountability</td>
<td>Daily quizzes</td>
<td>Assignments due prior to class</td>
</tr>
</tbody>
</table>

Guided Inquiry Methods Necessarily Vary with Level of Course

- **Cooperative vs. Team-based**
 - Process Oriented Guided Inquiry Learning (POGIL) www.pogil.org
 - Team-based Learning (TBL) teambasedlearning.apsc.ubc.ca

AREA OF AGREEMENT

<table>
<thead>
<tr>
<th></th>
<th>Cooperative Learning</th>
<th>Team-Based Learning</th>
</tr>
</thead>
<tbody>
<tr>
<td>Group work in or out of class?</td>
<td>In-class</td>
<td>In-class</td>
</tr>
</tbody>
</table>

AREAS OF DIFFERENCE

<table>
<thead>
<tr>
<th></th>
<th>Cooperative Learning</th>
<th>Team-Based Learning</th>
</tr>
</thead>
<tbody>
<tr>
<td>Group duration?</td>
<td>Change groups</td>
<td>Keep groups entire term</td>
</tr>
<tr>
<td>Size of groups?</td>
<td>4 or lower</td>
<td>5-7</td>
</tr>
<tr>
<td>Assign roles?</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>Concern with process skills?</td>
<td>Critical</td>
<td>Nice, not critical</td>
</tr>
<tr>
<td>Grade group work?</td>
<td>Maybe</td>
<td>Critical</td>
</tr>
<tr>
<td>Ensure prompt feedback on group and individual performance?</td>
<td>Nice, not critical</td>
<td>Critical</td>
</tr>
<tr>
<td>Use peer assessment?</td>
<td>Maybe</td>
<td>Critical</td>
</tr>
</tbody>
</table>

Is It Working?

Courses: CHEM 1140/5541

Student Learning

- Course Grades
- Final Exam Grades
- Common Final Exam Questions
- Cognitive Analysis
- Topic Analysis

Student Perceptions

- Formative Evaluations
- SALG survey

Michaelsen et al. Team-Based Learning, 2002
Final Grade Distribution
CHEM 1140
Lecture-Interactive (N=285 students)
- D: 7%
- F: 8%
- A: 20%
- C: 25%
- B: 40%

Inquiry (N=271 students)
- D: 3%
- F: 6%
- A: 32%
- C: 23%
- B: 36%

Final Grade Distribution
CHEM 5541
Lecture-Interactive (N=45 students)
- D: 11%
- F: 7%
- A: 19%
- C: 41%
- B: 27%

Inquiry (N=34 students)
- D: 9%
- F: 3%
- A: 18%
- C: 41%
- B: 29%

DFW Rates – CHEM 1140
Lecture-Interactive (5 sem, N=304)
DFWs: 20%, 8% were W

Inquiry 1st time (POGIL)
DFWs: 24%, 9% were W

Inquiry 2nd-6th time combined
DFWs: 14%, 8% were W

DFW Rates – CHEM 5541
Lecture-Interactive (2 sem, N=45)
DFWs: 31%, 13% were W

Inquiry 1st time (1 sem, N=34)
DFWs: 18%, 6% were W

Summary Final Grades
At both levels
- More students passing the class
- DFW rates overall lowered

Final Exam Score – CHEM 1140
(6 semesters of inquiry data, all questions)
Lecture-Interactive Average (N=274)
$60\% \pm 16$

POGIL Average (N=266)
$65\% \pm 13$

Significant 99% confidence level
Final Exam Score – CHEM 5541
(One semester of inquiry data, common questions)
Lecture-Interactive Average (N=43)
66.7% ± 2.4
POGIL Average (N=34)
70.5% ± 2.7
Looks higher, but not statistically different

Summary Final Exam Scores
• Introductory course final exam score higher
• Upper level course, higher trend.

Common Final Exam Questions
Learning Level

Intro. Course: Common Final Exam Questions Grouped by Learning Level

The Later Final Exams Were More Difficult

The Later Final Exams Were More Difficult
Conclusion 1 – Final Exam Analysis

- **LEARNING LEVEL**
 Inquiry did as well often better than L-I
 In the Intro course demonstrate problem solving.

- **TOPIC**
 Inquiry overall learned more at both levels

Assessing Student Perceptions
Formative

Can we correct students’ difficulties with guided inquiry learning?
Formative Evaluation of Intro. Sections

Formative Evaluation Parameters

<table>
<thead>
<tr>
<th></th>
<th>F06</th>
<th>Sp07</th>
<th>Su07</th>
<th>F07</th>
<th>Sp08</th>
</tr>
</thead>
<tbody>
<tr>
<td>N</td>
<td>67</td>
<td>31</td>
<td>30</td>
<td>30</td>
<td>32</td>
</tr>
</tbody>
</table>

Q1: What has been the most **positive** part of your group work experience in this class?
Q2: What has been the most **negative** part of your group work experience in this class?
Q3: If you could **change** anything about the way this course is designed, what would you change?

Formative Evaluation of Intro. Sections

<table>
<thead>
<tr>
<th>Positive</th>
<th>F06</th>
<th>Sp07</th>
<th>Su07</th>
<th>F07</th>
<th>Sp08</th>
</tr>
</thead>
<tbody>
<tr>
<td>Socialization</td>
<td>26%</td>
<td>16%</td>
<td>13%</td>
<td>27%</td>
<td>22%</td>
</tr>
<tr>
<td>Learning Process</td>
<td>21%</td>
<td>32%</td>
<td>23%</td>
<td>27%</td>
<td>9%</td>
</tr>
<tr>
<td>Problem Solving</td>
<td>53%</td>
<td>52%</td>
<td>53%</td>
<td>47%</td>
<td>50%</td>
</tr>
</tbody>
</table>

1 Making friends, meeting nice/new people
2 Staying focused/alert, learning to work w/group, team skills
3 Help in interpreting and figuring out problems in groups

Formative Evaluation of Intro. Sections

<table>
<thead>
<tr>
<th>Negative</th>
<th>F06</th>
<th>Sp07</th>
<th>Su07</th>
<th>F07</th>
<th>Sp08</th>
</tr>
</thead>
<tbody>
<tr>
<td>Group Process</td>
<td>12%</td>
<td>32%</td>
<td>23%</td>
<td>17%</td>
<td>31%</td>
</tr>
<tr>
<td>Learning Process</td>
<td>22%</td>
<td>26%</td>
<td>37%</td>
<td>33%</td>
<td>37%</td>
</tr>
<tr>
<td>Worksheets</td>
<td>23%</td>
<td>29%</td>
<td>7%</td>
<td>17%</td>
<td>16%</td>
</tr>
<tr>
<td>Explanations</td>
<td>26%</td>
<td>---</td>
<td>7%</td>
<td>30%</td>
<td>---</td>
</tr>
</tbody>
</table>

1 Rudeness, feeling inadequate
2 Group lack of knowledge, socialization instead of on-task, loss of learning and lack of feedback
3 Lost in worksheets, hard, no confirmation of answers, hard to get used to these
4 Not enough explanation, guidance, clarity on if we are doing it right

Formative Evaluation of Intro. Sections

<table>
<thead>
<tr>
<th>Change</th>
<th>F06</th>
<th>Sp07</th>
<th>Su07</th>
<th>F07</th>
<th>Sp08</th>
</tr>
</thead>
<tbody>
<tr>
<td>Explanations</td>
<td>55%</td>
<td>46%</td>
<td>27%</td>
<td>60%</td>
<td>47%</td>
</tr>
<tr>
<td>Groups</td>
<td>22%</td>
<td>23%</td>
<td>10%</td>
<td>20%</td>
<td>41%</td>
</tr>
</tbody>
</table>

1 Add more instructor explanations, more teacher/student interaction
2 No more groups, lecture and then group work

Formative Evaluation of Intro. Sections

<table>
<thead>
<tr>
<th></th>
<th>F06</th>
<th>Sp07</th>
<th>Su07</th>
<th>F07</th>
<th>Sp08</th>
</tr>
</thead>
<tbody>
<tr>
<td>N</td>
<td>67</td>
<td>31</td>
<td>30</td>
<td>30</td>
<td>32</td>
</tr>
</tbody>
</table>

Conclusion 3

Formative
Can we correct student difficulties with guided inquiry learning?
- Not sure

Assessing Student Perceptions Summative

What do students see as good about Guided Inquiry Learning?
Student Perception of Learning

• Student Assessment of Learning Gains

[Image of a survey format]

1. How much did the following aspects of the class help your learning?

- The instructional approach in this class
- How the class topics, activities, reading, and assignments fit together
- The pace of the class

1.4 Please comment on how the INSTRUCTIONAL APPROACH in this class helped you learn:

POGIL higher

Upper Level Class: Student Perception of Learning (N=25)

How much did each of the following aspects of the class help your learning?
- Resources (online, textbook) (79%)
- Class Activities (60%)
- Instructional Approach (55%)

Conclusion 4

• Majority of students think the approach helped them learn.

Conclusion Summary

LEARNING
- Levels
 Inquiry did as well often better as L-I and in intro course demonstrate problem solving.
- Topics
 Inquiry overall learned more at both levels

STUDENT PERCEPTIONS
Students want more explanation
Inquiry approach perceived as helpful to learning

Acknowledgements

• Kristie Collins
• Josh Farrell
• Ludy Goodson
• GSU Department of Chemistry
• Center for Excellence in Teaching
• POGIL Project Consultants
References

Slavin, R.E., “Research for the Future: Research on Cooperative Learning and Achievement: What we know, what we need to know”, Contemporary Educational Psychology, 21, 1996.