Georgia Southern University

Georgia Southern Commons

Interdisciplinary STEM Teaching & Learning Conference (2012-2019) 2012 Interdisciplinary STEM Conference (March 9, 2012)

Mar 9th, 3:00 PM - 3:45 PM

STEM II Initiative-Updates from Participating Institutions (Part 2)

Pamela Gore Georgia Perimeter College

Dabney Dixon Georgia State University, ddixon@gsu.edu

Charles Kutal University of Georgia

Farooq Khan University of West Georgia, fkhan@westga.edu

Myrna Gantner University of West Georgia, mgantner@westga.edu

Follow this and additional works at: https://digitalcommons.georgiasouthern.edu/stem

Part of the Higher Education Commons, and the Science and Mathematics Education Commons

Recommended Citation

Gore, Pamela; Dixon, Dabney; Kutal, Charles; Khan, Farooq; and Gantner, Myrna, "STEM II Initiative-Updates from Participating Institutions (Part 2)" (2012). *Interdisciplinary STEM Teaching & Learning Conference* (2012-2019). 13. https://digitalcommons.georgiasouthern.edu/stem/2012/2012/13

This event is brought to you for free and open access by the Conferences & Events at Georgia Southern Commons. It has been accepted for inclusion in Interdisciplinary STEM Teaching & Learning Conference (2012-2019) by an authorized administrator of Georgia Southern Commons. For more information, please contact digitalcommons@georgiasouthern.edu.

USG STEM INITIATIVE: OVERVIEW AND LESSONS LEARNED

Dr. Nathan W. Moon

Associate Director for Research Center for Advanced Communications Policy (CACP) Georgia Institute of Technology Project Director / Lead Evaluator STEM Initiative Policy and Programmatic Support Project Office of Educational Access and Success University System of Georgia

Introduction

- Launched by Chancellor as Presidential Initiative in 2007
- Led by Office of Educational Access and Success (OEAS, formerly EPIR)
- Building on, advancing successful USG programs (e.g. Georgia PRISM)
- STEM I Initiative: 2007-2011
- STEM II Initiative: 2011-present

Initiative Overview, Pt. 1

Three Objectives (abbreviated)

- 1. To increase P-12 student preparation for and interest in STEM in college,
- 2. To increase the success rates and number of students in college who pursue the STEM disciplines, and
- 3. To increase the number of teachers who are prepared in science and mathematics.

Initiative Overview, Pt. 2

Strategies and Implementation

- 12 strategies, including key programs
 - Academy for Teachers (AFT)
 - Mathematics, Engineering, Science Achievement (MESA)
 - Fostering Our Community's Understanding of Science (FOCUS)
 - Mini-grants for P-16 Learning Communities

Annual budget: ~\$2.6 million - \$2.8 million

All funds go back to USG institutions

Evaluation of STEM I Initiative

- Formative evaluation late 2010
- Summative evaluation late 2011
- Based on initial evaluation findings, STEM I Initiative revised, re-competed as STEM II Initiative in early 2011
- 5 returning institutions, 2 newcomer institutions

Key Evaluation Findings – Student Success Rates

Among participating institutions, FY2007-FY2011

- Total increase in STEM majors by *minimum* of 7.84%, up to a *maximum* of 66.18%
- Increase in A/B/C rates in biology (1.4%), chemistry (3.0%), mathematics (1.1%), and physics (1.5%)
- Increase in STEM degree completion: 1.71% (with controls); 19.71% (without controls)

Key Evaluation Findings – Teacher Preparation

Among Six Baccalaureate Institutions, FY2007-FY2011

- STEM education majors increased by 40.56% (from 633 to 946)
- STEM education degrees increased by 37.67% (from 215 to 296)

Key Evaluation Findings – Ongoing Challenges

- Comparability and reliability of data collected
- Outputs-oriented indicators regarding programs;
 Need for outcomes-oriented indicators
- Despite overall progress, variable institutional performance

STEM II Initiative Competition

Two RFPs Released in December 2010

- Category 1 Returning institutions (5 selected)
- Category 2 Newcomer institutions (2 selected)
- Total of 28 proposals received
- Review panel included USG leadership, USG university president, outside reviewer

Priorities for STEM II Initiative

- Emphasis on innovation (newcomers) and refinement and scaling of best practices (returners)
- Higher priority placed upon institutional programs
- Dissemination of findings for benefit of entire USG

Update on the STEM II Initiative at Columbus State University

Tim Howard, Director Math & Science Learning Center

> Kim Shaw, Co-Director UTeach Columbus

Components of the CSU Project

- Service learning course
- Peer instruction study
- Faculty SoTL mini-grants

Service Learning Course

Hired a New Master Teacher, Gail Sinkule
National Board certified
30+ years of K-12 experience
Former president of GSTA
Taught to a broad spectrum of socioeconomic backgrounds
First offering of course Spring 2012

Service Learning Course

Step 1: Inquiry Approaches to Teaching (*new*)

- Teach math/science lessons in elementary schools
- Students from any major
- One credit hour
- Meets UTeach Columbus requirement
- Spring 2012 enrollment 32 (25% above goal)

Step 2 course planned for Fall 2012

Peer Instruction Study

Investigators: Cindy Henning, Tim Howard, Kathleen Hughes, Kim Shaw

- 19 Peer Instruction Leaders (PILs)
- About 1400 students served
- Core courses in BIOL, CHEM, MATH, PHYS, STAT

Peer Instruction Design

- Matched-pair design
- PIL assigned to one lab section
- PIL attends lectures, lab
- PIL meets with instructor at least 4 times
- Help sessions available to all students with that instructor, both in Peer Instruction section and in control section
- Data collection ongoing to determine effectiveness on larger scale

Faculty SoTL Mini-grants

Funding to support

- Participation in efforts to strengthen student learning and achievement
- Contributing scholarship that promotes student learning and achievement
- Development and/or implementation of new instructional methods or techniques
- Projects that promote the success and recruitment of traditionally underrepresented groups

Faculty SoTL Mini-grants

Zdeslav Hrepic: Methodology and/or Technology: Making a Difference in Improving Students' Problem Solving Skills

Rajeev Dabke: Development of Undergraduate Curriculum in the Area of Experimental Physical Chemistry

John Barone: Use of a Writing Consultant in a Science Course

Kathleen Hughes: Evaluation of Two Peer-Assisted Learning Strategies in BIOL 2221

Reaping Additional Benefits

- UTeach Columbus \$1.4 million grant
- Robert Noyce Teacher Scholarship program – \$1.2 million grant from NSF
- SoTL STEM Seminar
- Math & Science Teachers Council (MAST)
- Math & Science Learning Center
- Higher profile for STEM Education efforts

JMBUS STA

For Additional Information See our poster following this session!

Contact us!

 Tim Howard <u>Tim.Howard@ColumbusState.edu</u>

Kim Shaw

shaw_kimberly@ColumbusState.edu

Georgia Gwinnett College School of Science & Technology STEM Initiative II Program

Dr. Thomas Mundie, Pl Dr. Judy Awong-Taylor, Dr. Allíson D'Costa, Dr. Greta Giles, Dr. David Pursell, Dr. Clay Runck, Co-Pls

School of Science and Technology

USG STEM Initiative II

Core Goals

- 1. Promote K-12 student preparation for and interest in majoring in STEM in college.
- 2. Increase the success of STEM majors in college.
- 3. Advance the production of science and mathematics teachers for the schools, which in turn will lead to improved preparation of K-12 students in science and mathematics.

Strategies

- 1. Establish a structured mini-grant program targeted toward STEM faculty
- 2. Develop a service learning course to provide STEM undergraduates the opportunity to gain teaching experience in science and math at K-12 level
- 3. Institution-specific strategies that address instructional needs specific to the institution in the area of STEM through <u>innovative</u> approaches

GGC SST STEM Initiative Strategies

Strategy 3

SST 4-yr URE Committee

Early and active involvement in systematic investigation and research.

Promote the success of STEM students

Strategy 1

Structured "mini grant" program → Fund 4-yr URE Mini-Grants

School of Science and Technology

4-Year Undergraduate Research Experience

Communication

Scientific communication requires good listening and note-taking skills, the ability to find information from current primary literature sources, and the skills to disseminate information in both written and oral form using proper scientific formatting.

- Ability to search for appropriate materials using both traditional (journals, books) and electronic libraries
- Ability to read, understand, and follow complex directions and instructions, including lab/equipment manuals and system references;

Critical Thinking and Quantitative Reasoning

Scientists must collect and analyze data using proper statistical significance, controls, and mathematical analyses. They must apply these same quantitative reasoning skills to literature and peer submissions .

- Ability to follow a scientific/technical methodology, to apply mathematical or IT solutions, and to adapt the methodology/models if necessary;
- Ability to problem-solve or trouble- shoot an experiment/ experimental procedure / equipment using appropriate resources

Creativity:

Scientists exhibit creativity through the development of research projects, including the generation and testing of a hypothesis and the troubleshooting skills necessary to overcome experimental obstacles.

> Ability to design and implement research projects

Collaboration:

Scientists must act in a global, diverse, and multidisciplinary context and follow universal moral and ethical principles at all times. They are leaders in their community and must always act in good faith.

- Ability to participate or take lead in a research team setting;
- > Ability to follow required regulations and to act ethically during research.

Research Skills for Math Majors

<u>Senior</u>

Synthesis of all freshmen, sophomore, junior experiences

<u>Junior</u>

- > Writing reports more advanced
- Read research articles
- Propose research problems

<u>Sophomore</u>

- Visualization for 3D and other types of functions
- > Analyze and model data
- ➢ Writing reports
- Proof writing

<u>Freshmen</u>

- Visualization for 2D of Polynomial functions
- Use technology (Computer algebra system like Maple)
- > Analyze, model data Optimization Problems

Strategy 1: SST's 4-Yr URE Mini-Grant Program

Three Categories of 4-yr URE Mini-Grants

- Course-imbedded research projects that promote the 4-yr URE model (*Priority*)
- Individual or small group Undergraduate Research (STEC 4500) Projects aligned with the 4-yr URE model
- Development, implementation, and research of innovative instructional strategies that pertain to the Scholarship of Teaching and Learning (SoTL)

Strategy 1: SST's 4-Yr URE Mini-Grant Program

Project Types

- Pilot Projects (involve one section to test an idea; one semester; funds used for supplies)
- Small Scale Projects (involve 2-3 sections; 1-2 faculty; 1-2 semesters; funds for supplies/equipment; possible funds to support decrease in teaching load)
- Large Scale Projects (involve multiple sections; 2 or more faculty; 2-3 semesters; etc.)
- Collaboration: strongly encouraged within disciplines & between schools

Funded Projects

➤ 22 funded mini-grants

GGC SST STEM Grant Strategies

Develop a service learning course

- Aligned with GGC's mission
- Provide opportunities for GGC's STEM majors to gain teaching experience at the K-5 level
- > Promote research-based science projects
- Curriculum Repository
 - ➤ Virtual Labs
 - ➤ Resources

Assessment & Data Collection

Strategy 3 & 1: Assessment of 4-yr URE & Mini-Grant Program

Assessment of 4-Yr URE Program using Mini-Grants

- 1. Student attitudinal surveys
- 2. Course content assessment
- ➢ 3. Faculty Attitudinal Survey
- 4. Student Performance Data (BOR)

Strategy 2: Assessment of Service Learning Course

Assessment of Service Learning Course

- > 1. Student attitudinal survey
- > 2. Course content assessment
 - 3. Student Performance Data (BOR)

Georgia College

USG STEM Initiative Programs Rosalie A. Richards

Georgia College

- Georgia's Public Liberal Arts University
- three locations: Milledgeville, Macon, Warner Robins
- over 6,000 students (~5,000 undergraduates) Four STEM II Components
- STEM Faculty Mini-grant program
- Service Learning Project FOCUS
- STEM Retention Initiative
- STEM Faculty lines

Faculty Mini-grant Program

GOALS

- to stimulate innovative projects that improve instruction and student learning in STEM and in programs that lead to initial teacher certification in these areas
- o to foster collaborations among faculty within/external to GC
- o to seed projects that are competitive for external funding
 - o grants up to \$7,000
 - o 57 projects funded since 2008o annual STEM Symposium

Examples of Projects Funded: 2011-12

- Assessing learning gains and the role of Tutoring Services in successful completion of students in an introductory physics course – Hauke Busch, Lori Robinson
- Peer-teaching in computer science through videos –
 Gita Phelps
- Isolating, identifying and characterizing bacteriophages: new course designs that target STEM educators, K-12 and undergraduate students – Amanda Chase, Samuel Mutiti
- From Shallow to Deep: revising the Introduction to Environmental Science Lab Manual with a focus on local water issues – Caralyn Zehnder

Impact of Mini-grant Program

Numerous presentations and publications

- North American Diatom Symposium, 2009
- o Physics Teacher, 2011

External funding

- o SENCER Grant, 2010
- Robert Noyce Scholarship Program NSF

- Support for innovation

 more than a dozen STEM/STEM Ed. courses
 revised, novel instructional materials developed
- Student learning → FY07 FY11, DWF rates decreased from 27% to 20% across courses in STEM disciplines
- Impact on over 3,000 K-16 faculty, teachers and students

Service Learning Initiative -

- provide service learning emerication stem and stem education majors in area schools
- work with host teachers to develop learning experiences for K-12 students

BENEFITS OF Project FOCUS

- Inquiry-based, hands-on STEM instruction
- Learning about schools and community
- Interest in teaching as a career
- Developing habit of service to the community

STEM Retention Initiative

Supplemental Instructors - advanced undergraduate students in targeted STEM courses

- SIs meet with classes
- SIs provide bi-weekly tutoring support for students enrolled in course
- departments collect data on effectiveness of SIs in their courses.
 - e.g. multi-year study in biology showed 50% reduction in DFW rates using SIs

Supplemental Instructor Program

- SIs in 55 sections of introductory STEM courses in FY12
- faculty SI coordinator (Lori Robinson), regular meetings
- professional development for SIs
- maintaining student logs and examining student performance data and feedback
- debriefings at end of each semester

STEM Faculty Lines

- three faculty lines in mathematics, middle grades education, and physics
- increases in number of majors and degrees conferred in STEM and STEM Education
- Some data
 - o FY07-FY11, 24% increase in STEM and STEM education majors
 - o 81% increase in STEM degrees conferred
 - o 11% increase in STEM Ed. degrees

Cultural Shift and Sustainability:

 Collaboration with institutional programs - connecting to campus initiatives: Service Learning, Academic Outreach, Millegeville YES, Science Education Center, Middle Grades Ed, STEM departments and institutional initiatives (e.g. GC1Y courses)

Acknowledgement:

- College of Arts & Sciences
- College of Education
- Center for Program Evaluation and Development
- Science Education Center

STEM II Initiative at Georgia Perimeter College

Pamela J. W. Gore Kouok Law

Georgia Perimeter College

- Five locations + online
- 26,470 students Fall 2011
- 3rd largest institution in the Univ System of GA
- GA's largest freshman class -15,700 students
- The college of choice for more Georgia students

STEM II Faculty Mini-Grants

- Encouraging faculty collaboration
- Producing innovating educational materials
- Offering field research experiences for students in STEM gateway courses
- 8 mini-grants funded
- \$4500
- More in review

STEM II Faculty Mini-Grants

- 1. Kim Bennekin Fostering meaningful interaction in online college algebra courses
- 2. Behnaz Rouhani Identifying students' misconceptions in Calculus
- **3.** Amy Cook Lecture slides for Principles of Chemistry I and II
- 4. Amy Cook Teaching demonstration videos for Principles of Chemistry II

STEM II Faculty Mini-Grants

- 5. Ilse Ricketts Introduction to Science Laboratory Bootcamp
- 6. Allison Wolf More effective Resources – better results
- 7. Jonathan Lochamy Discover Life Research Interns
- 8. Carmen Hall Undergrad research at Snapfinger Creek Mitigation Bank

STEM Peer-Led Undergraduate Study (PLUS) Tutors

- Hired 6 tutors
- 10 hours/week
- 1-2 per campus
- CHEM 1211
- CHEM 1212

Workshops and Seminars for Faculty and K-12 Teacher Professional Development

Project MESA

- Preparing educationally disadvantaged STEM majors (female, minorities, low-income, 1st generation) to transfer and graduate from a fouryear institution with a math-based degree.
- Assists students in:
 - developing academic and leadership skills,
 increasing educational performance, and
 gaining confidence in their ability to compete professionally

GPC MESA Students & Faculty

MESA Conference 2012

GPC MESA Scholars

	Summer	Fall	Spring	Total
FY-2008		49	55	70
FY-2009	35	96	115	142
FY-2010	32	79	53	110
FY-2011	24	69	71	95
FY-2012	28	77	85?	125?
TOTAL	119	370	379?	542?

GPC MESA Transfers

	Summer	Fall	Spring	Total
FY-2008	1	5	6	12
FY-2009	9	24	16	49
FY-2010	8	24	20	52
FY-2011	15	16	14	45
FY-2012	11	30	24	65
FY-2013	12?	32?	28?	72?
TOTAL	56	131	108	295

GPC MESA Transfer Chart

GPC-MESA Cumulative GPA

FY	2007*	2008	2009	2010	2011	2012
CGPA≥3.5	20.5%	30.0%	31.0%	25.5%	37.9%	?
3.0≤CGPA<3.5	31.8%	21.4%	22.5%	35.5%	28.4%	?
2.5≤CGPA<3.0	20.4%	25.7%	19.0%	18.2%	21.1%	?
2.0≤CGPA<2.5	9.1%	18.7%	20.4%	13.6%	9.5%	?
CGPA<2.0	18.2%	4.3%	7.1%	7.3%	3.2%	? hat Will Change Your Life

GPC-MESA STEM Grades

STEM Course	MESA #	MESA ABC	MESA ABC %	
Math-1111	14	10	71.4%	
Math-1113	20	19	95.0%	
Math-2431	35	20	74.3%	
Math-2432	17	11	64.7%	
Phys-1111	15	11	73.3%	
Phys-1112	1	1	100.0%	
Phys-2211	16	16	100.0%	
Phys-2212	20	18	90.0%	
Chem-1211	28	24	85.7%	
Chem-1212	20	20	100.0%	
TOTAL	186	156	83.9%	
				College

Culture Shift and Stimulus for External Funding

The USG STEM Initiative stimulated GPC faculty to collaborate and apply for external funding, resulting in nearly \$3.5 million in new funding to promote student success over the next five years.

Grant-Funded STEM Programs at GPC

- **STEP** (Science, Technology, Engineering, and Mathematics Talent Expansion Program)
- **ENLISTEM** (Educate and Nurture Leadership in Science Technology Engineering and Mathematics) scholarship program
- **PSLSAMP** (Peach State Louis Stokes Alliance for Minority Participation Scholars Program)
- BreakThru STEM Accessibility Alliance

New Executive Director of STEM Dr. Cynthia Lester

 Providing collegewide coordination of STEM grants and grant-related activities

Two Years That Will Change Your Life

llege

We thank you for your support.

math + science = success

STEM Education at Georgia State University: Innovation and Administration

Dabney W. Dixon

STEM BUDGET

STEM MINI-GRANTS

PI(s)	Project
Xiaochun He	Advanced Hands-on Real-world Technology Development for Physics
Iman Chahine and Margo Alexander	Building Technology-Supported Environments for Teaching Undergraduate Mathematics Courses to Early Childhood and Middle Level Prospective Teachers
Marcus Germann and Valerie Miller	Calculus for Biological Sciences
Jeremiah Harden and Joan Comar	Computer-based Homework in Organic Chemistry
Sumith Doluweera and Brett Criswell	Creating a Formula for Preparing Better Physics Teachers in Georgia
Timothy Hawthorne and Dajun Dai	Enhancing STEM Education through Field-Based Problem Solving and Real-World Applications of Geographic Information Systems
Sutandra Sarkar and Gigi Ray	Freshmen Chemistry-based Problems in Mathematics
Saeid Belkasim and Raj Sunderraman	Improving Student Learning Using an Online Tutoring Community
Mark Grinshpon, Iman Chahine, and Robert Clewley	Improving Supplementary Calculus Instruction through Enhanced Coordinated Support of Student Assistants
Stephanie Behm-Cross, Nermin Bayazit, and Christopher Jett	Learning to Teach Mathematics in Hybrid University and Field Spaces
Mark Grinshpon, Iman Chahine, and Robert Clewley	Monitoring and Assessing Weekly Homework to Improve Student Learning and Success Rates in Calculus Courses
Anu Bourgeois and Raj Sunderraman	Online Portal for Computer Science Education Visualization Tools
Yanqing Zhang	Portable Multi-course Lab for Enhancing the Research Ability of Undergraduate Students
John Evans, Gigi Ray, and Therese Poole	Redesign of College Physics for Biological Science Majors
Lisa Martin-Hansen and Chris Atchison	Refining and Examining a Collaboratively Taught Earth Science Course for Future Middle School Teachers
Marion Reeves and Chris Atchison	Revising ISCI 2001 to Better Support Future Elementary Teacher Science Understanding
Iman Chahine, Mark Grinshpon, and Robert Clewley	Using Hybrid Instructional Support in Precalculus Concepts to Advance Undergraduate Students' Success in Calculus
Brian Thoms	What Limits the Learning of Students in Introductory Physics Courses at GSU?

STEM MINI-GRANTS

PI(s)	Project		
Xiaochun He	Advanced Hands-on Real-world Technology Development for Physics		
Iman Chahine and Margo Alexander	Building Technology-Supported Environments for Teaching Undergraduate Mathematics Courses to Early Childhood and Middle Level Prospective Teachers		
Marcus Germann and Valerie Miller	Calculus for Biological Sciences		
Jeremiah Harden and Joan Comar Organic Chen	nistry ased Homework in Organic Chemistry		
Sumith Doluweera and Brett Criswell	Creating a Formula for Preparing Better Physics Teachers in Georgia		
Timothy Hawthorne and Dajun Dai	Enhancing STEM Education through Field-Based Problem Solving and Real-World Applications of Geographic Information Systems		
Sutandra Sarkar and Gigi Ray	Freshmen Chemistry-based Problems in Mathematics		
Saeid Belkasim and Raj Sunderraman	Improving Student Learning Using an Online Tutoring Community		
Mark Grinshpon, Iman Chahine, and Robert Clewley	Improving Supplementary Calculus Instruction through Enhanced Coordinated Support of Student Assistants		
Stephanie Behm-Cross, Nermin Bayazit, and Christopher Jett	Learning to Teach Mathematics in Hybrid University and Field Spaces		
Mark Grinshpon, Iman Chahine, and Robert Clewley	Monitoring and Assessing Weekly Homework to Improve Student Learning and Success Rates in Calculus Courses		
Anu Bourgeois and Raj Sunderraman	Online Portal for Computer Science Education Visualization Tools		
Yanqing Zhang	Portable Multi-course Lab for Enhancing the Research Ability of Undergraduate Students		
John Evans, Gigi Ray, and Therese Poole	Redesign of College Physics for Biological Science Majors		
Lisa Martin-Hansen and Chris Atchison	Refining and Examining a Collaboratively Taught Earth Science Course for Future Middle School Teachers		
Marion Reeves and Chris Atchison	Revising ISCI 2001 to Better Support Future Elementary Teacher Science Understanding		
Iman Chahine, Mark Grinshpon, and Robert Clewley	Using Hybrid Instructional Support in Precalculus Iman Cahine Undergraduate Students' Success in Calculus		
Brian Thoms	What Limits the Learning of Students in Introductory Physics Courses at GSU?		

DATA ANALYSIS FOR ON-LINE ORGANIC CHEMISTRY HOMEWORK

The Effectiveness of OWL Homework in Organic Chemistry II

Fall 2011 MVVF 3:00pm-4:10pm

DATA ANALYSIS FOR ON-LINE ORGANIC CHEMISTRY HOMEWORK

- STEM Office provides data analysis for the online-homework
- Data collection and analysis begins immediately after the homework is due
- The STEM Office works to provide 24-hour turnaround
- List of the easiest and hardest problems for each assignment as well as the average student score and percent of students completing the assignment

Assignment	% Who Attempted	Average Grade	Most Missed Question
Chapter 1			1.6-1.10d TUT - Determining Shapes of Molecules
Homework Questions	92%	90%	(Tutor)
			9460 - There are four different substances with
End of Chapter Questions	82%	74%	the formula C5H10 that contain a ring with 3
			carbons. Draw them.
Chapter 2			2.9 - Answer questions a-c about the Brønsted
Homework Questions	86%		acid-base reaction below
End of Chapter Questions	68%	64%	9720 - What is the pH of a 5.00E-2 M solution of acetylsalicylic acid, pKa = 3.52.

SUPPLEMENTAL INSTRUCTION

- Peer-assisted study sessions; leaders attend same classes as students
- Offered for historically difficult courses, including Organic Chemistry and Calculus
- SI leaders trained in proactive learning and study strategies and facilitation skills
- Approximately 8 SI leaders are funded by the GSU STEM Office each semester

Course GPA (\geq 5 sessions/semester)

EXTRA GRADING TO FREE UP FACULTY FOR WEEKLY SI/TA SESSIONS

- Well-trained and prepared teaching assistants and supplemental instructors are a key factor in the success of students in traditionally difficult courses
- The STEM Office is funding extra grading hours for instructors in these courses
- Graders are paid for an extra 2 hours of grading per week and an extra 5 hours of grading for each exam given in the course
- The extra grading hours free up the instructors to hold weekly meetings with TAs and SI Leaders for their courses
- The weekly meetings consist of a review of the material covered in the course that week and instruction on how to best present that material to students in review and SI sessions
- TAs and SI Leaders are paid for the time they spend in these meeting each week

- Approximately 80 students and 5 teachers from Clayton County
- Lectures (45 min)
- Lab tours by ugrad STEM majors:
 - Mass Spectrometry Facility
 - Biology laboratory
 - VizWall
- Students were also given a Glactone demonstration and teachers were provided with copies of the program for classroom use
- The event closed panel

9:30am

9:35am

9:50am

9:55am

10:15am

11:40pm

AP Science Visit November 11, 2011 Georgia State University.

Schedule of Events

	Arrive at Petit Science Center (PSC), Room 101
	Welcome Dr.Timothy Renick,Associate Provost for Academic Programs
	Introduction of Speakers Dr. Dabney Dixon, Coordinator of STEM Education Initiatives
	Science Talk Dr. Donald Hamelberg, Assistant Professor of Chemistry
7	Lab Tours, Glactone Demonstration, and Viz Wall Viewing (a schedule of tours will be provided upon arrival)
	Lunch and Student Panel Discussion
	Closing <mark>Rema</mark> rks Dr. Dabney Diver
4	Studen
	A CONTRACTOR
	and the second

How is performance a function of the prerequisite course?

What majors take Calculus I?

How does major affect performance?

DIRECTING STEM MAJORS TO TAKE APPROPRIATE MATH COURSES

- Science majors were taking Introduction to Mathematical Modeling (MATH 1101), a course designed for non-science students
- The STEM Office collaborated with the Office of Graduate and Scheduling Services to create a registration restriction that restricts science majors registering for the course

- Most pre-med Biology majors are under the impression that Calculus is required for Medical School; this is no longer generally the case
- The STEM Office has worked to make pre-med advisors aware of this
- To help students make informed decisions, we have begun to email all Biology majors enrolled in Calculus I prior to each semester to make them aware that it is not a required course

ADVISING EXCEL SPREADSHEET

12	Georgia <u>Sta</u>	teUnivers	ity Dep	artment of	Chemistry		
Undergraduate Advising Worksheet							
10	Name			-Required C	lasses-		
	Email			Chem 1211K	dimmett-		
	Date prepared			Math 1113	Alterrarit.		
	Academic Years	20125	- 2015	Chem 1212K	allow .		
		P Optional Fifth Year		5446 2211	33AT		
2012	Fall	Spring	Summer	Chem 2010	(Instanti)		
	Chem 1212K	Math 2211		61ath 2212	-Demension-		
				Chem 2400	Sider .		
		_		Chem 3100	Met		
				Physics 2211K	dimonst.		
2013	Fall	Spring	Summer	Chem 3410	Alighteett		
	chem 2408	Chem 3100		Physics 2212K	Alumination .		
				Chem 3110	Annwette		
				Chem 4000	dimment.		
				Chem 4110	Ammenti		
	Fall	Spring	Summer	Chem 4010	-Demonstra		
-		Recom.		Chem 4120	Alternatio		
2014				Chem 4160	dimments .		
C-1				Chem 4190	dimments.		
				-ACS Certifi	cation		
	Fall	Spring	Summer	Chem 4330	dimont.		
ഹ				Chem 4170	shuwett.		
201				Chem 4210	Channess.		
				Chem 4600	Abroanti.		
	Fall	Spring	Summer				

- Gives students a visual picture of their plans to graduation (courses in the major only)
- Can require students to fill out before seeing advisor
- Especially useful if not all courses are taught in all semesters
- Useful in majors with many prerequisites for a given course (e.g., Chemistry)

OVERNIGHT STEM INCEPT

- INCEPT is the new student orientation required for all incoming freshmen
- Recognizing the need for math and chemistry placement testing prior to advising, the STEM office worked with INCEPT staff to develop an overnight program
- Math and Chemistry exams are held the first morning
- Immediate grading provides results to students just before dinner on the first day (colored cards outline their course options)
- Advising takes place on the second day
- The event was a success and a second Overnight Incept has been scheduled for summer 2012

STEM WEBSITE

- Portal for Georgia State's undergraduate STEM majors
- Calendar of Events highlights STEM speakers, seminars, and club meetings, as well as local and regional STEM events
- Showcases USG funded STEM mini-grants and other funded STEM projects at Georgia State
- Lists of Summer Internships and Paid Programs
- Georgia State's College of Education is currently constructing a second STEM website that will highlight the College's STEM projects and faculty

Part, parented Martin

Frequenties assession in terms

Name Table

With thanks to: Dr. Susan Swars Dr. Timothy Renick Dr. Charles Derby Dustin Butts Luna Liu

The USG STEM Initiatives Program of the Board of Regents of the State of Georgia

The University of Georgia

The University of Georgia STEM Initiative II Projects, Programs, and Partnerships Charles Kutal and Nancy Vandergrift

UGA Office of STEM Education

Four Tenure-Track Faculty Hired

- Mathematics David Gay
- Engineering Education Joe Walther
- Science Education Ji Shen
- MS Science Education Ajay Sharma
- Awards: NSF CAREER, NSF REESE

STEM Mini-Grants Program

- Encouraging innovative instruction in introductory STEM courses
- Contribute to the Scholarship of Teaching
 and Learning
- Approximately 10 mini-grants awarded
 each year
- Amount awarded per grant = \$9,000

- Norris Armstrong Moving from an Instructor-Centered to a Student-Centered Class in Introductory Biology
- Fanbin Kong Development of a Video Game as a Tool to Teach "Heat Transfer" Fundamentals in Undergraduate Courses at UGA
- Leidong Mao Lab-on-a-Chip Teaching Module for Undergraduate Students at UGA

STEM Learning Communities

UGA Faculty and K-12 Educators Work Collaboratively

- Meet on a regular basis
- Discuss, share, and implement ways to improve teaching and student learning
- 8-10 funded each year

A.P. Calculus Learning Community

The Mean of A.P. Calculus Students' Scores of Teachers in A.P. Calculus LC

State of LC	School Year	AP Calc LC	State	Nation
Prior to LC	2004-05	2.00	2.80	2.94
Began 12/05	2005-06	2.63	2.85	3.02
Second Year	2006-07	3.73	2.82	2.92
Third Year	2007-08	3.35	2.70	3.01

Fostering Our Community's Understanding of Science Project FOCUS

- Service-learning course
- STEM undergraduates teach inquirybased lessons in K-5 classrooms
- This year:
 - 114 undergraduate students enrolled
 - 8 elementary schools served

2012 Regional STEM Institute on Teaching and Learning

Saturday, April 14 Classic Center, Athens, GA

Presentations and Discussions:

- The importance of STEM Education Reform
- Leveraging the NSF Broader-Impacts Criterion
- Contributions to the Scholarship of Teaching and Learning

Provide Campus-Wide Leadership for STEM Activities

- Clearinghouse of STEM opportunities
- Partner with local school districts
- Proposals submitted: CIRTL, NSF STEP
- Website: www.ose.uga.edu

Acknowledgements

- USG STEM Initiative II
- The University of Georgia

STEM Initiative at West Georgia: Our Story

Farooq A. Khan Myrna W. Gantner Satyanarayana Swamy-Mruthinti

UWG UWise

STUDENTS

- Summer Bridge Program (Summer)
- Follow-up Interdisciplinary Course (Fall)
- Research and Peer Mentoring (Spring)
- UTeach Connection (Step 1 and 2 Courses)
- FACULTY
 - Mini-Grants (Fall and Spring)
 - UTeach Connection (Teaching)

Summer Bridge Program

- 2 weeks in early August
- 100 incoming freshmen interested in majoring in STEM
- The summer program's designed outcomes:
 - Give students a taste of what's to come as a STEM major
 - Students build bonds among themselves and with faculty

Summer Bridge Findings

- Overall Sense of Accomplishment
- "Summer Bridge Program taught [me] that effort can make things possible."
- Math Instruction
 - Statistically significant improvement in pre-post math scores (t=7.80, p=.000), although 2 weeks too short
 - Males outperformed females
 - Each group improved (males, females, whites, nonwhites)
 - Whites made the greatest gains
 - Nonwhites made the least gains

XIDS Seminar Course (Fall)

- Students:
 - 81% (N=79) of Summer Bridge participants (N=98) enrolled in Fall XIDS 2002
- Design:
 - 8 weeks Informal dialogue with invited speakers, professors
 - 6 weeks Selected from 2 tracks
 - STEM communication (anticipated Uteach enrollment)
 - STEM discipline-specific activities
- Learning goals:
 - Increased awareness of STEM careers, to include teaching
- Significant result:
 - 38% of XIDS students (N=30) enrolled in UTeach Step 1 course
 - These students are giving serious consideration to teaching as a career
 - UTeach is a national replication program designed to prepare secondary teachers in mathematics and science

A Success Story!

Where would you place teaching (elementary, middle, or high school) a STEM subject as a potential career?

West Georgia

Faculty Mini-Grants

Biology Podcasts for intro biology labs

Chemistry

Vernier data collection in intro chemistry labs Video, ItunesU in chemistry labs

Computer Science

Learning videos for intro CS Robots as a teaching tool in introductory CS

Mathematics

App based learning Software Tutoring Online tutoring

Physics

Worships in Intro Physics Recitations in intro Physics

STEM Education

Calculator-Based Learning for Pre-service teachers

Initial Lessons Learned

- 2012 adjustments based on lessons learned from 2011:
 - Build more time and structure into Summer Bridge
 - Provide students with intense writing instruction within the context of STEM critical thinking
 - Purposefully address learning styles and pedagogy for 2012
 Summer Bridge, particularly for those with least gains in 2011 Summer Bridge
 - Create informal, safe environment for faculty development
- STEM Communication in XIDS linked to motivation for UTeach enrollment

Next Steps for 2012-2013

- Double length of Summer Bridge Program from 2 to 4 weeks
- Summer Bridge: 2 credit-bearing courses (Areas B and C)
 - Writing-intensive STEM connection
 - Education faculty will co-teach with Science and Math faculty
 - Strengthened coordination of XIDS content
- Continue with structured peer-mentoring in Fall and Spring

Acknowledgements

Board of Regents of the University System of Georgia STEM 2 Initiative

COSM Faculty Collaborators Biology (Heidi Banford and Nancy Pencoe) Chemistry (Sharmistha Basu-Dutt, Anne Gaquere, Victoria Geisler) Computer Science (Michael Orsega, Duane Yoder) Geosciences (Brad Deline, Karen Tefend) Mathematics (Ayona Chatterjee, David Leach, Scott Sykes, Mohammad Yazdani) Physics (Ajith de Silva, Javier Hasbun)

COE Faculty Collaborators Judy Cox, Jill Drake, Gail Marshall, Thomas Thrasher

