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CHAPTER 1

INTRODUCTION

Finance is one of the fastest growing and continuously evolving areas of modern bank-

ing. The widespread reaches of finance touch and shape the world on a global as well

as personal scale. Given the importance and ubiquitous nature of the area it is nec-

essary and curious to understand such a field through the eyes of mathematics. With

mathematics as the essential foundation, we can attempt to uncover the mechanics

behind one of the modern world’s largest driving forces.

Figure 1.1: Many assets on the Stock Market – as here in Frankfurt – are modelled

using the Black-Sholes equation. Source [1]

In order to understand and analyze the construction of financial instruments

we will discuss what is arguably the most impactful mathematical model in modern

finance: the Black-Scholes Equation. The Black Scholes equation is a partial differ-

ential equation that was developed in the 1970’s as a tool to value the price of a call

or put option over time. Acclaimed for it simplicity and accessibility, the equation

transformed markets and catalyzed advances in the field of financial mathematics.

Moreover, the Black-Scholes equation has a very curious origin as it is also a two

dimensional heat equation. From this connection stems a direct correlation between



the price fluctuations of an option and the movement of heat through a conducting

medium. We will verify this connection, motivating future exploration towards the

exact translation of financial phenomena into natural phenomena and vice versa [3].
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CHAPTER 2

STOCHASTIC DIFFERENTIAL EQUATIONS

Stochastic differential equations serve as an essential and powerful tool for modeling

the evolution and behavior of natural phenomena. In order to analyze and under-

stand the models of such phenomena, particularly in finance, we must first introduce

the foundations upon which such models are constructed. A stochastic differen-

tial equation is simply a differential equation where one or more of the terms is a

stochastic process. A stochastic process can be defined as a set of random vari-

ables which express the evolution or development of a system over time. The random

variables that define a stochastic process are variables that are subject to changes

in value due to chance. Stochastic differential equations are effective in modeling real

world systems largely due to the employment of random variables. These variables

essentially account for just that, randomness. This allows for probabilistic analysis

of patterns which yield important information about the behavior and trends of the

system.

Given the defining characteristics of a stochastic differential equation it is not

hard to imagine the far reaching applications in the field of Finance. Stochastic

differential equations are particularly useful in considering the price fluctuations of

an asset. An asset is an economic resource, tangible or intangible that be used to

produce economic value. In considering the movement of such an asset, a reason-

able assumption is that fluctuations in the value of an asset can be a consequence

of a deterministic portion as well as a random portion. It is the modeling of the

random portion of the asset price that lends itself nicely to stochastic differential

equations. Another intrinsic property of assets which allows for the use of such dif-

ferential equations is the type of stochastic process exhibited. In finance nearly all

stochastic processes are considered a Markov process. A Markov property is simply a



stochastic differential equation that possesses the Markov property. In the realm

of asset valuation, this means that the future value of a asset is completely indepen-

dent of the past asset value. The Markov property is an interesting characteristic in

financial models because it implies that all past information of an asset is encoded in

the present value. This concept is known as market efficiency and is a fundamental

principle in the field of Finance. This implication highlights a profound consequence

which is that, based on the Markov property, it is impossible to beat or outperform

the market as all relevant information is considered and incorporated by nature of

the asset itself.

2.1 Stochastic Differential Equations and the Black-Scholes Equation

Now that we have laid the general framework for the purpose and application of

stochastic differential equations, we will now view the the stochastic process in the

light of the Black-Scholes equation. The Black-Scholes equation surfaced as a revolu-

tionary tool used in the valuations of European call/put options. The equation derives

it use from a simple construction and accessible variables, but would be meaningless

if not for the stochastic process which is employed. The essence of the Black-Scholes

equations stems from the stochastic dynamic of options, as well as other financial

derivatives. The exact origins of the Black-Scholes equation will be presented through

the derivation in the next chapter, but for now we will consider the stochastic differ-

ential equation at the core of the Black-Scholes equation.

dS = σSdX + µSdt

This equation is a simple model describing the evolution of an asset price, S,

over time. More precisely, the equation yields an infinitesimal change in S by an

amount dS given a number of variables. We observe that dS is composed of two
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portions, and as discussed earlier, one is random and the other predictable. It is the

random portion σSdX that makes the equation stochastic. An equation is stochastic

if at least one term is a stochastic process. Here σdX is the stochastic process in the

equation where: σ is the volatility of the asset.

Figure 2.1: Evolution of the Dow Jones Index over the last twelve month. Apparent in

the picture is the global variations together with the fluctuations due to the stochastic

part. Source [2]

The volatility is a value that encodes the instability or risk of return associated

with the asset. This makes sense if we consider an asset with 0 volatility, meaning

absolutely no risk. Letting σ = 0 eliminates the random portion of the equation

leaving an asset model that is wholly deterministic. However, it is the term dX which

is most interesting in discussing the stochastic nature of the differential equation.

The dX term is a sample of a random variable from a normal distribution. What

distinguishes a random variable from a variable in the usual mathematical sense is

that a random variable can take on many different values which each come with an

associated probability. The values that can be associated to a random variable come

from a distribution, which in this case is a normal distribution. In the context of this

stochastic differential equation, dX is a time continuous stochastic process called a

Wiener process which is defined by the following properties:
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• dX is a random variable from a normal distribution.

• The mean of dX is 0.

• The variance of dX is dt

The Wiener process, also called Brownian motion, is a type of stochastic

process that exhibits the Markov property. Brownian motion, a particular type of

Markov process, is considered a stochastic process given that is defined as a physical

phenomenon. Brownion motion is the random movement of a particle suspended

in fluid caused by collision with fast moving molecules on the fluid. Many financial

models consider this movement as a defining characteristic of the asset being modeled.

We define dX, the Brownian motion, explicitly,

dX = φ
√
dt

Where φ is a random variable from a standardized normal distribution and
√
dt is the

standard deviation of the distribution. This is evident if we consider the properties

of dX above and the fact the the standard deviation is simply the square root of

the variance. In considering dX, the stochastic process, the standard deviation and

variance give essential information on the distribution of values, however we must

look at the sample space from which these value come as well as how probabilities

are associated with each value. This is given by a probability density function which

is a function that describes the likelihood of a random variables to take on a given

value. The probability density function in this case is that of a standardized normal

distribution.

This distribution is characterized by a few properties; the distribution has 0

mean, unit variance and has the probability density function:

1

2π
e−

1
2
φ2
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Figure 2.2: A normal distribution [4]

Given the probability density function, the probability of a random variable landing

in a certain range is given by the integral of the variable’s probability density function

over the range.

1

2π

∫ ∞
−∞

F (φ)e−
1
2
φ2dφ

This expression also defines the expectation operator of a random variable.

E[F (·)] =
1

2π

∫ ∞
−∞

F (φ)e−
1
2
φ2dφ

The expected value of a random variable is the average long term value after a large

number of repetitions. The expectation operator allows us to look at the average

value that a random variable will take on over a period of time. Let us consider the

expectation operator in the context of the random variable φ,

E[φ] = 0

and

E[φ2] = 1

These properties are logical if we recognize that φ is drawn from a standardized

normal distribution that has a zero mean and unit variance. The second property

follows directly given a formal definition of the variance. The variance of a random

7



variable φ is defined as the expected value of of the squared deviation from the mean.

Following this definition,

V ar[φ] = E[(φ− E[φ])2]

= E[φ2 − 2φE[φ] + E[φ]2]

= E[φ2]− 2E[φ]E[φ] + E[φ]2 (by linearity of the operator)

= E[φ2]− 2E[φ]2 + E[φ]2

= E[φ2]− E[φ]2

= E[φ2] (as E[φ] = 0)

Now we can consider the expected value in terms of the stochastic differential

equation in order to gain insight into the long term behavior of the asset price.

E[dS] = E[σSdX + µSdt] = µSdt (since E[dX] = 0)

This yields an important implication considering the fact the µSdt is entirely de-

terministic. This implies that ”on average” the next value for S in a sequence of

infinitesimal time increments is higher than the previous value by an amount µSdt.

In other words, by taking the expected value of the stochastic differential equation,

we are able to calculate, on average, by just how much the asset in question will

grow. This is an important consequence because it means that, given the necessary

conditions, we can forecast the general behavior of an asset.

We are also able to compute another useful quantity defined by the expectation

operator which is the variance of dS. The variance is useful because it describes

the average distance of each value in a distribution from the mean. But. before

considering the variance of dS, an important result must be defined: Itô’s Lemma

is a fundamental identity used in the treatment of random variables that relates a

change in a function containing a random variable to a change in the random variable
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itself. Itô’s Lemma is essential because it defines how to differentiate functions of

two variables that contain a Brownian motion. In other words, Itô’s Lemma is to a

random variable as the chain rule to a deterministic variable. Before continuing, we

will present an informal, but revealing derivation contextualizing this important result

in the case of our particular stochastic differential equation as well as the derivation

of the Black-Scholes equation presented in the next chapter.

Consider f(t, dX) where f is a function of time as well as a random variable dX,

keeping consistent with the notation used. By Taylor expansion to degree 2,

df =
∂f

∂t
dt+

∂f

∂dX
dX +

1

2

(
∂2f

∂t2
dt+

∂2f

∂dX2
dX

)2

=
∂f

∂t
dt+

∂f

∂dX
dX +

1

2

∂2f

∂t2
dt2 +

∂2f

∂t2∂dX2
dtdX +

1

2

∂2f

∂dX2
dX2

+ Higher Order Terms

Keeping only first degree dt terms and dX terms with degree ≤ 2.

df =
∂f

∂t
dt+

∂f

∂dX
dX +

1

2

∂2f

∂dX2
dX2

=

(
∂f

∂t
+

1

2

∂2f

∂dX2

)
dt+

∂f

∂dX
dX

Here it becomes clear that through the Taylor expansion Itô’s Lemma creates

a link between the function and the random variable allowing manipulations with

random variables to be a possibility. Now that the process is clear, we can understand

Itô’s Lemma as a tool in considering the variance of dS,

V ar[dS] = E[dS2]− E[dS]2
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If we expand dS2 and apply Itô’s Lemma,

dS2 = σ2S2dX2

= σ2S2dt (given that dX2 −→ dt as dt −→ 0)

This implies,

V ar[dS] = E[σ2S2dt]− E[µ2S2dt2]

= E[σ2S2dt] (as dt −→ 0)

= E[dS2]

In other words, if we consider the distribution of small changes in the asset S

the distance of these random variables away from the mean will be E[dS2].

Faced with the question of how to most accurately model natural phenomena,

a universal challenge presents itself across all applications. The problem is how to

address the ever present element of randomness that occurs in real life. In the context

of financial assets, while there are some elements of an asset price that can be easily

accounted for, it is known that random fluctuations exist and cannot be ignored.

This is evident in simply looking at plots of stock prices; how can these sharp, jagged

movements that characterize sudden changes in the value of a derivative be accounted

for in a mathematical model. The answer is through the use of a stochastic process.

We have discussed the applications and importance of such processes given the con-

struction of random variables. Random variables are the tools that are available to

10



model the element of randomness that exists. These variables are subject to proba-

bilistic analysis which allows for a wealth of information to be extracted. While such

analysis does not imply predictability, it does shed light on the long term behavior

and quantitative trends through statistical tools.
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CHAPTER 3

THE BLACK-SCHOLES EQUATION

3.1 History of the Black-Scholes Equation

In this chapter we will examine the Black-Scholes equation which is a powerful partial

differential equation that evaluates the price of a financial derivative. The impact of

the Black-Scholes equation cannot be over stressed as it forever changed the face of

modern Finance and financial markets. Here we will consider where the Black-Scholes

originated from and the consequences. As the name suggests, the Black-Scholes

equation was first published by two economists Fischer Black and Myron Scholes

in their 1973 paper ”The Pricing of Options and Corporate Liabilities”. Black, a

financial consultant, and Scholes, a young assistant professor of Finance, conceived

the idea for the model at MIT in the early 1970’s. In the paper Black and Scholes

derive a partial differential equation which serves as a model for the valuation of an

option over a period of time. In addition to Black and Scholes, Robert Merton is also

credited with the success of the model as he was the first to publish a paper deepening

the mathematical understanding of the model. In 1997, both Merton and Scholes

received the Nobel Prize in Economics for their work on the Black-Scholes model.

Black had passed away two years prior, but was recognized for his contributions.

Before the Black-Scholes equation invaded financial markets, few people traded

in financial derivatives as traders could only speculate as to their value. Having no

way to value these derivatives created risk that made the practice of trading with

these options nothing more than a gamble. The reason that Black-Scholes had such a

profound impact on financial markets was because the model was able to value these

financial derivatives. Options were no longer bets on an asset, but could be considered

assets themselves. People were able to trade on these options now knowing what their

value was. This innovation spawned the creation of derivatives markets and options



exchanges that are worth $710 trillion today. In the remaining portions of the section

we will present and explain the pieces of the Black-Scholes equation and its origins

to better understand just how this machinery transformed modern financial markets.

3.2 The Evolution of an Asset

Before delving into the behavior of an asset we will first expound on the meaning and

implications of a financial asset and its properties. As mentioned earlier, an asset is

an economic means that maintains a value which motivates market behavior. Assets

come in many different shapes and sizes and can be used in many different ways.

People buy, trade, and sell assets all under the premise that doing so will produce

positive economic value. Assets can be thought of as a kind of economic currency,

and similar to paper currency the value changes with time, sometimes drastically.

Consider a common type of asset, stock. A stock is a type of asset that represents

partial ownership of a corporation. If I buy $20 worth of stock I possess an asset that

can be used to make a profit because my stock has value. However the question of

how much profit can be made exists because the value of the shares fluctuate. I can

maximize my profit if I know when and how the value of my stock will change. Price

optimization is the aim in all financial markets and would not be possible without

mathematical models. An elementary example is presented to solidify such a relevant

circumstance. If the company for which I own stock creates a new successful product

the value of my shares of stock will go up. Conversely if the company reports low

quarterly earnings the share price will go down. We can see from the image on the next

page a graphical representation depicting changes in the value of a particular asset,

which in this case is Coca-Cola stock. Notice how sporadic and random portions of

the graph are. This behavior is precisely the characteristic that makes mathematical
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models so difficult. Financial mathematical models attempt to model the evolution

of an asset in order to forecast future values and identify important trends.

Figure 3.1: Plot of KO stock price with respect to time [5]

Consider an asset price S whose evolution we will try to model. In order to

look at this phenomenon we will associate a return, or the relative change in price.

Lets say at time t the value of the asset is S and on a subsequent time interval,

t + dt, we have S + dS. This represents a change in S by and infinitesimal amount

dS over an infinitesimal interval of time, dt. In modeling our return on the asset we

consider dS relative to S, as this scaling preserves proportion, giving dS
S

. The most

basic financial models break down the return into two portions: the random portion

and the deterministic portion, where the latter is analogous to a risk free return on

investment. This portion we denote µdt and is typically a constant in basic financial

models, however µ can be a function in more complex models. The second portion

contains the randomness of the asset price denoted σdX. Here σ is the volatility

of the asset which is formally defined as a measure of the standard deviation of the

returns of the asset. More informally, the volatility of an asset can be thought of

as the amount of risk associated with the value of an asset. Asset prices are not

static and some fluctuate more so than others which creates an element of risk when

14



investing; σ accounts for this risk. The standard deviation, which defines volatility,

is defined as the dispersion of data points, which represent historical returns, from

the mean. In other words, given the historical returns of an asset over a period of

time and considering their distribution we can see the volatility. The volatility will

be expressed through the dispersion of data points from the mean. So the greater

the dispersion the higher the volatility. Asset volatility is an important and curious

topic for which we will devote more time later in the chapter. Note that σ is then

scaled by dX which is a random sample from a normal distribution. The choice of a

sample from a normal distribution results from the modeling of a random and volatile

phenomenon. It is obvious that seemingly random fluctuations exist in the market,

but the distributions cannot be predicted. However, it is known, by the Central Limit

Theorem, that given sufficiently many random variables the average will converge to

a normal distribution. It is for this reason that dX is defined as a random variable

from a normal distribution. Bringing the portions together to model our return we

have the stochastic differential equation,

dS

S
= σdX + µdt

This equation is an example of a random walk. A random walk is defined as a

sequence of discrete random steps. Random walks are used in many different fields,

but are omnipresent in Finance. Figure 3.1 is an example of a random walk as the

graph is composed of a connected series of discrete points. Random walks are useful

because they are strictly a mathematical construction that tracks real life phenomena.

This makes sense given the model above as we observe the relation between our

variables. Given S over a time interval dt, we consider dS as a step in the sequence.

A known fact it that prices in financial markets follow a random walk. However, it

is important to note precisely what this means. Random walks do not forecast asset

prices deterministically, but they are able to reveal interesting information about

15



Figure 3.2: A lognormal distribution [6]

asset behavior in a probabilistic sense. The fact that random walks are ”memoryless”

characterizes their importance in such models. Random walks are indeed a Markov

process which exhibit the necessary properties. We can now consider the random walk

of the stochastic differential equation discussed. If an asset S follows the random walk

given by this equation then the random variable’s probability density function is that

of a slightly skewed normal distribution called a lognormal distribution. A lognormal

distribution of a random variable is continuous distribution whose natural log is

normally distributed. A lognormal distribution is assumed in the case of the Black-

Scholes particularly because it does not allow for negative values. This is rather

intuitive for the reason that we cannot have a negative asset price.

3.3 Black-Scholes Derivation

In deriving and analyzing the Black- Scholes equation we will first look at the stochas-

tic differential equation from which it stems,

dS

S
= σdX︸︷︷︸

Random

+ µdt︸︷︷︸
Deterministic

(3.1)

Here, µdt is the average rate of growth of the asset price, which is predictable.
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This portion of the equation is also known as ”the drift”. Conversely, σdX measures

the volatility of the underlying asset and is entirely random.

In order to better understand the mechanics of (3.1) we will take a function of S,

which represents the value of the underlying asset. We can take f(S) and expand the

function, df = df
dS
dS + 1

2
d2f
dS2dS

2 + ... . In doing this we see that varying S by a small

amount dS is the same as varying f(S). This concept is crucial in not only deriving,

but also understanding the derivation of the Black Scholes equation. Furthermore,

this idea captures the significance of Ito’s Lemma, which serves a an essential tool in

the derivation.

df =
df

dS
dS +

1

2

d2f

dS2
dS2 + ... (3.2)

In addition to this expansion, we will introduce one more result that is key in

the derivation. We claim that dX2 converges to dt as dt tends to 0.

In other words, for smaller dt, (as the time interval decreases), the more dX2

behaves like dt. Now looking at 3.1:

dS2 = (SσdX + Sµdt)2

= σ2S2dX2 + 2µσS2dXdt+ µ2S2dt2

Given that dX =
√
dt,

= σ2S2dt+ 2µ σS2dt
3
2 + µ2σ2dt2

as dX =
√
dt

We see that σ2S2dX2 is the ”leading” term as we are interested in a small dt.

This results from the idea that analyzing the behavior of dS over the smallest time

interval will result in the most accurate evaluation of the asset. So,

17



dS2 = σ2S2dX2 + ...︸︷︷︸
Insignificant higher order terms

⇒ dS2 = σ2S2dX2

Here the dots indicate the higher order terms not considered given that the

leading term yields the smallest dt. Now substituting this into 3.2 we have,

df =
df

dS
(SσdX + Sµdt) +

1

2

d2f

dS2
σ2S2dt

= σSdX
df

dS
+ µS

df

dS
dt+

1

2

d2f

dS2
σ2S2dt

= σSdX
df

dS
+

(
µS

df

dS
+

1

2

d2f

dS2
σ2S2

)
dt

Again, in using Itô’s lemma what we have done is related a small change in a the

function of a variable to a small change in the variable itself. It is worth mentioning

that this exact process can be done with a function of two variables say f(S, t) for

example. Where the independent variables are S, the value of the underlying asset,

and t, time. The following is the above result for V (S, t), where V is the value of a

portfolio,

dV = σS
∂V

∂S
dX +

(
µS

∂V

∂S
+

1

2
σ2S2∂

2V

∂S2
+
∂V

∂t

)
dt

From here we will derive the Black-Scholes equation. To do this let us construct

a portfolio:

Π = V −∆S

This portfolio consists of one option V and we assign to ∆ a number which scales

the underlying, S. This scaling value will consequently adjust the value of the option

18



and this the portfolio itself. We will discuss a value for ∆ later on, however a natural

choice will emerge which will play an important role in the final steps of the derivation.

Given our definition of the above portfolio we can say that the jump in the value of

this portfolio in one time step is:

dΠ = dV −∆dS

Substituting dV and dS above yields,

dΠ = σS
∂V

∂S
dX + µS

∂V

∂S
dt+

1

2
σ2S2∂

2V

∂S2
dt+

∂V

∂t
dt−∆SσdX −∆Sµdt

= (σS
∂V

∂S
−∆Sσ)dX +

(
µS

∂V

∂S
+

1

2
σ2S2∂

2V

∂S2
+
∂V

∂t
+ ∆Sµ

)
dt

= σS(
∂V

∂S
−∆)dX︸ ︷︷ ︸

random portion

+

(
µS

∂V

∂S
+

1

2
σ2S2∂

2V

∂S2
+
∂V

∂t
+ ∆Sµ

)
dt

We can now see how a natural choice for ∆ emerges which will eliminate the

random component present in the natural walk. Clearly, this leaves us will solely the

deterministic component allowing us to better forecast asset behavior.

∆ =
∂V

∂S

⇒ dΠ =

(
∂V

∂t
+

1

2
σ2S2∂

2V

∂S2

)
dt

Here we consider a more subtle concept of supply and demand called arbitrage.

Arbitrage is the process of continuously buying and selling assets in order to profit

from differences in price. Because arbitrage exists in the marketplace we can equate

the return of a portfolio Π with a riskless, return from an investment, denoted rΠdt.
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⇒ rΠdt =

(
∂V

∂t
+

1

2
σ2S2∂

2V

∂S2

)
dt

Substituting our portfolio and our ∆ into the above equation yields,

r(V −∆S)dt =

(
∂V

∂t
+

1

2
σ2S2∂

2V

∂S2

)
dt

⇔ ∂V

∂t
+

1

2
σ2S2∂

2V

∂S2
+ rS

∂V

∂S
− rV = 0

Finally, we have derived the Black-Scholes equation presented above.

3.4 Implied Volatility and the ’Smile’

Apart from the Black-Schole’s new and innovative approach for valuation of options,

the equation has many other auxiliary effects. Many of these consequences are worth

noting, however here we will focus on the concept of implied volatility and an unusual

phenomenon known graphically as the ’smile’.

The Black-Scholes became such a powerful tool largely in part as a result of its

accessible and simple construction. To illustrate this we will look at the variables

present in the equation. The factors that are considered in the model of such an

option are the stock price, the exercise price, the interest rate, the time to expiration,

and the volatility. Most of these variables are self explanatory, however we require

one definition. The exercise price of an option, also known as the strike price, is the

value at which the owner of an option is entitled to buy or sell the asset. These are

all reasonable and relevant variables to utilize due particularly to their availability.

The stock price, exercise price, interest rate, and time to expiration are all current

quantities that are known, making them easily employable. However the volatility is
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an important factor that is not so easily employed. A direct measurement of volatility

is inherently difficult to obtain given the nature of the factor. The volatility is not a

constant value. This highlights a major flaw in the Black-Scholes model because in

the equation σ is a constant. Regardless, the past volatility is of no use in considering

the present volatility over the life of the option. Yet, it is true that options are being

quoted and traded in the market on the basis of this volatility. This means that

even though we may not know the volatility the market does. In considering this

fact we can again employ the Black-Scholes equation only this time from a different

angle. We need the stock price, exercise price, interest rate, and time to expiration,

which are easy enough to locate as they are constantly quoted or prescribed in the

option contract. Next we find the option price that is quoted in the market, and

work backwards. Instead of solving for the option price, we are solving for the market

implied volatility. This is possible as there exists a one to one correspondence between

implied volatility and market price. This directly proportional relation between the

two factors serves as the ground from which we are able to draw the market implied

volatility. This result is powerful in that it allows us to quantify and analyze an

elusive, but essential variable in the valuation of options.

While this technique does shed light on the markets view of volatility, an in-

teresting phenomenon can be observed that highlights a flaw in the model. To best

see the discrepancy between the Black-Scholes model and the real world phenomenon

we introduce the ’smile’. The ’smile’ is the resulting curve when implied volatility

and and strike price are plotted accordingly. According to the Black-Scholes model,

given the same strike price and maturity date, volatility should be held constant.

In other words according to the model, implied volatility should be static across all

strike prices, all else held constant. This is not the case. In reality if we plot strike

price and volatility we see an upward sloping curve that looks like a smile, hence the
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Figure 3.3: A description of the volatility smile. [7]

name. This suggest that the deeper we are in or out of the money yields in increase in

volatility, but this can never happen in the model, which again stresses an important

flaw in the model. The ’smile’ is a popular topic of current research.
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CHAPTER 4

THE HEAT EQUATION

The significance of partial differential equations in financial modeling is enormous

given that PDE’s function as the machinery which makes these models possible. The

importance of PDE’s is logical considering that most often there are many dynamic

factors which constitute the value of an continuously evolving asset. In order to

contextualize PDE’s in the light of Finance we begin by examining the well known

heat equation. A basic but enlightening example of a partial differential equation, the

heat equation is to PDE’s what the logistics equation is to ODE’s. The heat equation

is a partial differential equation that models heat flow through a medium over time.

∂u

∂t
= k

∂2u

∂x2

Solutions to this equation, u(x, t), describe the temperature at a certain point of

the medium as a function of space and time.

Before we present a derivation we must first introduce several necessary assump-

tions and laws essential in the derivation. The assumption that is made in considering

the one dimensional heat equation is that we have long, thin uniform metal bar that

is perfectly insulated on its sides such that the only way for heat to escape is at the

ends. Furthermore, we assume that there is no heat source within the metal bar itself.

Given the nature of the equation we can see that the flow of heat through the metal

bar depends only on the distance x and the time t.

In figure 4.1; A metal bar of length l rests on the x-axis, denoting the spacial

component, with time t on the vertical axis. Given our assumption of perfect insu-

lation, heat can only be lost or gained at the boundaries 0 and l. In this instance

we will assume that heat flows from left to right. Furthermore, given non-uniform

temperature in the rod heat will flow from areas of higher temperature to areas of



Figure 4.1: Heat traveling along a rod. [8]

lower temperature. We are able to exploit these characteristics to derive the heat

equation.

First, we introduce the formula for the Transfer of Heat Energy.

dE = c m du

Where c is the specific heat of the substance. The specific heat is defined as the

amount of energy needed to raise the temperature by one unit. Here m is the mass of

the object and du is the change in temperature of the object. This formula relates the

heat energy lost or gained in an object to the temperature change and consequently

highlights the subtle but important distinction between heat energy and temperature.

Heat energy is a measure of total energy due to molecular motion in an object.

Temperature can be thought of as a measure of heat energy which is defined as the

measure of the average energy of molecular motion. Next, we will introduce Fourier’s

Law of Heat Transfer.

dE

dt
∝ k A

du

dx

This law states the fact the the change in energy with respect to time is proportional

to the change in temperature with respect to space. Furthermore, Fourier’s Law can

be expanded stating an equality.

dE = k A
du(x, t)

dx
dt
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Here, we clearly see that now we have another expression for dE defined through the

change in temperature as a function of two variables.

Lastly we must define the Law of Conservation of Energy. Conservation

of Energy states that the total energy of an isolated system remains constant or is

conserved; that is, energy can neither be created nor destroyed in such a system, only

transferred. The law of conservation of energy combined with our initial assumptions

create the first step in deriving the heat equation.

Consider an arbitrary, thin cross-sectional slice of the metal rod with length dx.

We define the temperature at the left end of the slice, u(x, t), and the right end

u(x + dx, t). Through conservation of energy we are able to equate expressions for

the change in heat energy in the rod.

(
kA

du(x, t)

dx
− kAdu(x+ dx, t)

dx

)
dt = c m du(x, t)

On the left, we now have the net heat in the rod for a time increment dt by Fourier’s

Law. On the right we will rewrite the formula for the transfer of heat energy given

that m = ρ V , where ρ is the density of the metal and V is the volume. A step

further, we can write V = A dx. This gives an equivalent expression m = ρ A dx.

Substituting into the above equation.
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(
kA

du(x, t)

dx
− kAdu(x+ dx, t)

dx

)
dt = c ρ A dx du(x, t)

d

dx
k

(
du(x, t)− du(x+ dx, t)

dx

)
= c m

du(x, t)

dt

d

dx

(
du(x, t)− du(x+ dx, t)

dx

)
=
c m

k

du(x, t)

dt

(Consolidating all constants as γ and taking the limit as dx→ 0 we get by linearity:)

lim
dx→0

d

dx

(
du(x, t)− du(x+ dx, t)

dx

)
= γ

du(x, t)

dt

d

dx
lim
dx→0

(
du(x, t)− du(x+ dx, t)

dx

)
= γ

du(x, t)

dt

d2u(x, t)

dx2
= γ

du(x, t)

dt
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CHAPTER 5

CORRESPONDENCE

Given what we know about the Black-Scholes equation and the heat equation it is now

possible to analyze the correlation between the two equations. The well known heat

equation has many parallels with the Black-Scholes equation. This similarity is the

reason why such a profound correspondence exists. We are able to gain perspective

into the Black-Scholes equation by exploring it in the form of the heat equation and

ultimately deriving a solution. In order to do this we will first convert the Black-

Scholes equation into the heat equation.

∂V

∂t
+

1

2
σ2S2∂

2V

∂S2
+ rS

∂V

∂S
− rV = 0, 0 ≤ S, 0 ≤ t ≤ T

Given S as the value of the underlying, t representing time, and E as the strike

price of the call option, the equation has a terminal boundary condition giving the

price of the call option.

V (S, T ) = f(S) = max(S − E, 0)

Also, V (0, t) = 0 considering that the option becomes worthless if the value of

the underlying drops to 0. Without any manipulations we can compare the Black-

Scholes equation and the heat equation noticing the biggest similarity is that both

equations contain a first order derivative with respect to time and up to a second

order derivative with respect to space, considering S as the spacial equivalent. An

initial and well motivated transformation of variables will highlight the likeness.

S = ex, t = T − τ

σ2



V (S, t) = v(x, τ) = v

(
ln(S),

σ2

2
(T − t)

)
Calculating the respective derivatives present in the original equation.

∂V

∂t
=

∂v

∂τ

∂τ

∂t
= −σ

2

2

∂v

∂τ

∂V

∂S
=

∂v

∂x

∂x

∂S
=

1

S

∂v

∂x

∂2V

∂S2
=

∂

∂s

(
∂v

∂S

)
=

∂

∂S

(
1

S

∂v

∂x

)
= − 1

S2

∂v

∂x
+

1

S

∂

∂x

∂x

∂S

∂v

∂x

= − 1

S2

∂v

∂x
+

1

S2

∂

∂x

∂v

∂x

= − 1

S2

∂v

∂x
+

1

S2

∂2v

∂x2

Substituting the new derivatives back into the Black-Scholes equation and group-

ing like terms.

∂v

∂τ
=
∂2v

∂x2
+

(
2r

σ2
− 1

)
∂v

∂x
− 2r

σ2
v

Since we have combined parameters we can now let κ = 2r
σ2 and replace τ with t.

Also, we redefine the boundary conditions and the domain of the new variables.

∂v

∂t
=
∂2v

∂x2
+ (κ− 1)

∂v

∂x
− κv

We now have an equation with constant coeffecients that is defined on the interval

−∞ < x < ∞. Note that the old interval 0 < S < ∞ is still defined on the new
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interval. The time interval is rescaled with a new upper bound 0 ≤ t ≤ σ2

2
T . An added

consequence of the substitution is the transformation of the Black-Scholes terminal

boundary condition to an initial condition relevant to the heat equation. From our

substitution of S.

v(x, 0) = V (ex, T ) = f(ex) = max(ex − E, 0)

At this point it is noticeable that the new equation is quite similar to the heat

equation, the biggest exception being the two terms on the right hand side of the

equation. We eliminate these terms through one more substitution of variables.

v(x, t) = eαx+βt︸ ︷︷ ︸
φ

(x, t)︸ ︷︷ ︸
u

= φu

We will again compute the corresponding derivatives.

∂v

∂t
= βφu+ φ

∂u

∂t

∂v

∂x
= αφu+ φ

∂u

∂x

∂2v

∂x2
=

∂

∂x

(
αφu+ φ

∂u

∂t

)
= α2φu+ 2αφ

∂u

∂x
+ φ

∂2u

∂x2

Substituting the derivatives into the recently transformed PDE we gather like

terms and can cancel the common eαx+βt as it is an exponential function which is

always positive.

∂u

∂t
=
∂2u

∂x2
+ [2α + (k − 1)]

∂u

∂x
+ [α2 + (k − 1)α− k − β]u
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Since α and β are arbitrary constants we choose them appropriately in order to

eliminate the ∂u
∂x

and u terms.

α = −k − 1

2

β = α2 + (k − 1)α− k = −(k + 1)2

4

Subsequently α and β create coeffecients of 0 which eliminate the ∂u
∂x

and u terms

respectively. The equation is then reduced to the one dimensional heat equation.

∂u

∂t
=
∂2u

∂x2
, −∞ < x <∞, 0 ≤ t ≤ σ2

2
T

We now need to transform the initial condition.

u(x, 0) = e−αxv(x, 0) = e−αxf(ex)

For a call option with strike price E, f(x) = max(x− E, 0), so

u(x, 0) = e−αxf(ex) = e−αxmax(ex − E, 0)

We can now employ the well known heat equation solution representation formula

for the Black-Scholes equation.

u(x, τ) =
1

2
√
πτ

∫ ∞
−∞

u0(s)e−
(x− s)2

4τ
ds

In order to integrate we perform a change of variables. Let z = (s−x)√
2τ
⇒ dz =

− 1√
2τ
dx

u(x, τ) =
1

2
√
π

∫ ∞
−∞

u0(z
√

2τ + x)e−
z2

2
dz
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Note that u0(s) is positive only if the argument s > 0, that is z
√

2τ+x > 0 or z >

− x√
2τ

. On this domain u0 > 0. Given that u(x, 0) = e−αxmax(ex − 1, 0).

u0 = e−
(k−1)

2

(
ex − 1

)
= e

(k+1)
2

(x+z
√

2τ) − e
(k−1)

2
(x+z
√

2τ)

Given the new construction of u0 we consider two separate integrals.

1

2
√
π

∫ ∞
− x

2τ

e
(k+1)

2
(x+z
√

2τ)e−
z2

2 dz︸ ︷︷ ︸
I1

− 1

2
√
π

∫ ∞
− x

2τ

e
(k−1)

2
(x+z
√

2τ)e−
z2

2 dz︸ ︷︷ ︸
I2

We now have two separate integrals I1 and I2 which we can evaluate. We will

evaluate I1 first. Working in the exponent of I1 we complete the square to simplify

the process.

(k+1)
2

(x+ z
√

2τ)− z2

2

= −z
2

2
+

(k + 1)
√

2τz

2
+

(k + 1)x

2

=

(
− 1

2

)(
z2 − (k + 1)

√
2τz

)
+

(k + 1)x

2

=

(
− 1

2

)(
z2 − (k + 1)

√
2τz +

(k + 1)2τ

2

)
+

(k + 1)2τ

4
+

(k + 1)x

2

=

(
− 1

2

)(
z − (k + 1)

√
τ

2

)2

+
(k + 1)2τ

4
+

Putting the exponent back into I1 we can pull out the last two terms as they are

constants with respect to z.

e
(k+1)2τ

4 + e
(k+1)x

2

√
2π

∫ ∞
− x

2τ

e−
1
2

(z−(k+1)
√

τ
2

)2dz
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One more change of variables is required to complete the integral.

y = z −
√
τ

2
(k + 1) =⇒ dy = dz

e
(k+1)2τ

4 + e
(k+1)x

2

√
2π

∫ ∞
− x

2τ
−
√

τ
2

(k+1)

e−
y2

2 dz

Drawing from chapter 2, notice that the integrand is just the probability density

function of a normal distribution. The integral can be represented as the cumulative

distribution function of a normal random variable, d. The cumulative distribution

function, φ, of a normal random variable, d, is the probability that φ will take a

value less than or equal to d. For our particular instance we consider the cumulative

distribution function in a continuous case which is just the area under the probability

density function from −∞ to x.

φ(d) =
1√
2π

∫ d

−∞
e−

y2

2 dy

Therefore,

I1 = e
(k+1)2τ

4 + e
(k+1)x

2 φ(d1), where d1 =
x

2τ
+

√
τ

2
(k + 1φ(d2)

I2 is computed the exact same way except that (k + 1) is replaced with (k − 1).

Therefore, the solution to this heat equation initial value problem.

u(x, τ) = e
(k+1)2τ

4 + e
(k+1)x

2 φ(d1)− e
(k−1)2τ

4 + e
(k−1)x

2 φ(d2)

We now must retrace our steps and undo each change of variables, starting with

v(x, τ) = e−
(k+1)2τ

4
− (k+1)x

2 u(x, τ). Combined and simplifying the left hand side.

v(x, τ) = exφ(d1)− e−τkφ(d2)
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Replacing x = ln(S) and τ = σ2

2
(T − t) and V (S, t) = v(x, τ). Also, note k = 2r

φ2

V (S, t) = Sφ(d1)− e−r(T−t)φ(d2)

The last modification needed is the transformation of d1 and d2 back in terms of

initial variables. We do this the exact same was as their coefficients.

d1 =
ln(S) + (r + σ2

2
)(T − t)

σ
√
T − t

d2 =
ln(S) + (r − σ2

2
)(T − t)

σ
√
T − t

The end result is the Black-Scholes formula for the price of European call option

with strike price K at time T , if the current time, underlying price, interest rate, and

volatility are t, S, r, σ respectively. Most of the time the formula is not presented in

the full closed form solution, but rather piecemeal or:

Vc(S, t) = S · φ(d1)− e−r(T−t) · φ(d2)
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CHAPTER 6

CONCLUSION

To conclude, we have presented the powerful applications of such mathematical mod-

els as well as their tremendous implications in finance. Using mathematical tools the

substance behind such models can be deconstructed, reconstructed, and improved

allowing for a better understanding and utility. In deconstructing the Black-Scholes

equation we rebuild the structure with a new face and name which is that of the

familiar heat equation. This connection alone highlights intriguing properties shared

by the Black-Scholes equation and the heat equation, both as parabolic partial differ-

ential equations. Much more room is left for future exploration in the area motivated

by the relation between mathematical finance and natural phenomena.
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