Autonomous Methods in the Application of Simple Swarm Capabilities

Joseph Watt III
Georgia Southern University, jw10224@georgiasouthern.edu

Follow this and additional works at: http://digitalcommons.georgiasouthern.edu/research_symposium

Part of the Electrical and Computer Engineering Commons, Engineering Science and Materials Commons, and the Materials Science and Engineering Commons

Recommended Citation
http://digitalcommons.georgiasouthern.edu/research_symposium/2016/2016/24

This presentation (open access) is brought to you for free and open access by the Programs and Conferences at Digital Commons@Georgia Southern. It has been accepted for inclusion in Georgia Southern University Research Symposium by an authorized administrator of Digital Commons@Georgia Southern. For more information, please contact digitalcommons@georgiasouthern.edu.
Introduction

Swarm technology is a relatively new aspect to the drone industry. It involves multiple drones being able to communicate with each other and relay this back to the user. From this standpoint one operator can control all of them at once while only giving directions to one or more. This involves the use of different autonomous algorithms, similar to autopilot where programs fly the plane, that relay to one another on what adjustments to make or where to go. This idea is very useful in the idea of search and rescue operations where it might be too dangerous to insert a human. Also in operations that might involve the gathering of data from standpoints where we are less efficient than the robots.

The objective of this research is to find and implement two types of autonomous programs run in multiple Arduino controlled r/c cars. The first being a GPS inputted navigation system with collision avoidance (CoA). The GPS navigation is a system where the user inputs a set of coordinates into the program, the program runs, then the bot follows in the shortest path to that set of coordinates. The collision avoidance system is an algorithm that goes in place when an object is detected a certain distance from the car. Once detected the car will stop for a few seconds to see if the object moves. If the object doesn’t move it will reverse its direction at a certain angle then proceed forward until there is no object blocking the path. The second being a follow behind the user function with CoA. The follow behind function is one bot that keeps a certain distance from the leader and maintains that distance throughout the entirety of the program.

Objective

The idea has changed over time but the final concept is to have the control server with Wi-Fi linked drones. It starts by the server sending the drone leader a control signal (blue) with a GPS coordinated route. From there the drone goes through the route sending back sensor data (black) and also the coordinates of its location with obstacles (red). Once the data goes to the server it then bounces out the signal (red dash) to all of the other drones with different translations to follow the drone leader to cover more ground. Those drones then bounce back data from the different sensors being used and also the coordinates of the obstacles in the area (black).

In this figure it shows how the ground drones will go through an environment. As the drone leader at the top goes through the area it will be sending signals back to the server. Then the server will send out the leader’s path with the coordinates translated five meters in any direction depending on the drone receiving it. This way the drones can cover the most area possible.

Design Process

Given the complexity of aerial drones, the decision was made to use ground drones in the initial phase of the swarm. This process began by gutting out the circuitry in three remote control vehicles, leaving the motors, battery, and chassis. From there an Arduino Uno was placed inside each vehicle along with an Adafruit CC3000 Wi-Fi module, Arduino Ultrasonic Sensor, Parallax V1.2 Motor Shield, and battery pack to control the vehicle. Once the vehicle was completed the process of building the server began. This stage has been the most complex part of the research and has not been completed yet.

Future Work

There is a great amount of work to be done in the future. This includes finishing up the server to make it user friendly and the coding for the drones. Then using the techniques found in the autonomous r/c cars and applying it to drones, which are much harder to control as opposed to ground vehicles, we will implement a similar type of swarm with multiple aerial vehicles in the future. Using this pack formation will be the precursor to swarm operations in data collection or search and rescue, also the possibility of aerial drone to ground swarm capabilities in the mapping of an area.

Other work might include:

- Implementation of cameras for image processing
- Robotic control arms for sampling of an area
- Defensive algorithms
- Aquatic drones

Acknowledgements

A special thank you goes out to The Allen E. Paulson College of Engineering & Information Technology (CEIT) Office of Undergraduate Research (CEIT-OUR) for funding this research.