On p-competition graphs of loopless Hamiltonian digraphs without symmetric arcs and graph operations

Kuniharu Yokomura
Tokai University, k.yokomura@tsc.u-tokai.ac.jp

Morimasa Tsuchiya
Tokai University, morimasa@keyaki.cc.u-tokai.ac.jp

Follow this and additional works at: https://digitalcommons.georgiasouthern.edu/tag

Part of the Discrete Mathematics and Combinatorics Commons

Recommended Citation
DOI: 10.20429/tag.2022.090203
Available at: https://digitalcommons.georgiasouthern.edu/tag/vol9/iss2/3

This article is brought to you for free and open access by the Journals at Digital Commons@Georgia Southern. It has been accepted for inclusion in Theory and Applications of Graphs by an authorized administrator of Digital Commons@Georgia Southern. For more information, please contact digitalcommons@georgiasouthern.edu.
Abstract

For a digraph D, the p-competition graph $C_p(D)$ of D is the graph satisfying the following: $V(C_p(D)) = V(D)$, for $x, y \in V(C_p(D))$, $xy \in E(C_p(D))$ if and only if there exist distinct p vertices $v_1, v_2, ..., v_p \in V(D)$ such that $x \rightarrow v_i$, $y \rightarrow v_i \in A(D)$ for each $i = 1, 2, ..., p$.

We show the $H_1 \cup H_2$ is a p-competition graph of a loopless digraph without symmetric arcs for $p \geq 2$, where H_1 and H_2 are p-competition graphs of loopless digraphs without symmetric arcs and $V(H_1) \cap V(H_2) = \{\alpha\}$. For p-competition graphs of loopless Hamiltonian digraphs without symmetric arcs, we obtain similar results. And we show that a star $K_{1,p}$ is a p-competition graph of a loopless Hamiltonian digraph without symmetric arcs if $n \geq 2p + 3$ and $p \geq 3$.

Based on these results, we obtain conditions such that spiders, caterpillars and cacti are p-competition graphs of loopless digraphs without symmetric arcs. We also obtain conditions such that these graphs are p-competition graphs of loopless Hamiltonian digraphs without symmetric arcs.

1 Introduction

In this paper we consider finite simple graphs and finite digraphs. For a graph G and $S \subseteq V(G)$, $\langle S \rangle_G$ is the induced subgraph on S of G. For a digraph D and $v \in V(D)$, $\text{Out}_D(v) = \{u : v \rightarrow u \in A(D)\}$ and $\text{In}_D(v) = \{u : u \rightarrow v \in A(D)\}$. A pair of arcs $u \rightarrow v$ and $v \rightarrow u$ is called symmetric arcs.

Definition 1.1. For a digraph D, the p-competition graph $C_p(D)$ of D is the graph satisfying the following:

1. $V(C_p(D)) = V(D)$,
2. For $x, y \in V(C_p(D))$, $xy \in E(C_p(D))$ if and only if there exist distinct p vertices $v_1, v_2, ..., v_p \in V(D)$ such that $x \rightarrow v_i$, $y \rightarrow v_i \in A(D)$ for each $i = 1, 2, ..., p$.

A graph G is called a p-competition graph if there exists a digraph D such that $C_p(D) \cong G$.

The p-competition graphs have been extensively studied. For example, Kim et al. [4] gave a characterization of p-completion graphs of arbitrary digraphs. And Kim et al. [5] dealt with cycles in terms of p-competition graphs of arbitrary digraphs which are allowed to have loops and symmetric arcs. Kim et al. [4] also deal with p-competition graphs of acyclic graphs and loopless digraphs. Kidokoro et al. [2] studied p-competition graphs of loopless digraphs without symmetric arcs. Furthermore, they deal with p-competition graphs in term of the sum operation.

In the first part of this paper, we deal with properties of p-competition graphs with cut vertices and the union of two p-competition graphs. Furthermore, we give some family of p-competition graphs of loopless digraphs without symmetric arcs.

For a digraph D, a directed cycle, or dicycle, is a sequence of arcs of the form $v_1 \rightarrow v_2 \rightarrow v_3 \rightarrow \cdots \rightarrow v_i \rightarrow v_1$, where $v_1, v_2, ..., v_i$ are all distinct. A digraph D is called Hamiltonian if there exists a dicycle, called a Hamiltonian dicycle, which includes every vertex of D. In

In the latter part of this paper, we deal with p-competition graphs of loopless Hamiltonian digraphs without symmetric arcs in terms of cut vertices and the union of two graphs.

Lundgren et al. [6] gave the following results on loopless Hamiltonian digraphs.

Theorem 1.1 (Lundgren et al. [6]).

1. For \(p \geq 2 \) and \(n \geq p + 3 \), \(C_n \) is the p-competition graph of a loopless Hamiltonian digraph.
2. For \(n \geq p + 2 \), \(K_n \) is the p-competition graph of a loopless Hamiltonian digraph.
3. For \(n \geq 2p + 1 \), \(K_n - e \) is the p-competition graph of a loopless Hamiltonian digraph.
4. For \(n \geq p + 3 \), \(P_n \) is the p-competition graph of a loopless Hamiltonian digraph.
5. For \(n \geq p + 3 \), a caterpillar with \(n \) vertices is the p-competition graph of a loopless Hamiltonian digraph.
6. For \(p \geq 2 \) and \(n \geq 2p \), a tree with \(n \) vertices is the p-competition graph of a loopless Hamiltonian digraph.
7. For \(p \geq 2 \) and two p-competition graphs of loopless Hamiltonian digraphs \(G_1 \) and \(G_2 \), \(G_1 \cup G_2 \) is the p-competition graph of a loopless Hamiltonian digraph.

Kidokoro et al. [3] gave some results on p-competition graphs of loopless Hamiltonian digraphs without symmetric arcs as follows.

Theorem 1.2 (Kidokoro et al. [3]). Let \(p \) be a positive integer and \(n \geq 2p + 3 \). Then \(P_n \) is the p-competition graph of a loopless Hamiltonian digraph which has no symmetric arcs.

Lundgren et al. [6] dealt with loopless digraphs and in Theorem 1.1 (5) and (6) they combined p-competition graphs. Kidokoro et al. [3] and Nakada et al. [8] dealt with graph operations. In [2] Kidokoro et al. dealt with p-competition graphs in terms of sum operations. The sum \(G + I \) of two graphs \(G \) and \(I \) is the graph with the vertex set \(V(G + I) = V(G) \cup V(I) \) and the edge set \(E(G + I) = E(G) \cup E(I) \cup \{u, v\} : u \in V(G), v \in V(I) \}. \) They gave the next result.

Theorem 1.3 (Kidokoro et al. [2]). Let \(G \) be a p-competition graph of a loopless digraph with no symmetric arcs, where \(G \) has no isolated vertices. Then \(G + K_n \) is the p-competition graph of a loopless digraph with no symmetric arcs.

Kidokoro et al. [2] showed the next result by Theorem 1.3 and Theorem 2.7

Theorem 1.4 (Kidokoro et al. [2]). Let \(W_n \) be a wheel with order \(n \geq 4 \) and \(p \) be a positive integer with \(n \geq 2p + 4 \). Then \(W_n \) is the p-competition graph of a loopless digraph with no symmetric arcs.

Nakada et al. [8] dealt with full regular \(m \)-ary trees and another graph operation, that is, the union of graphs.

For graphs \(G \) and \(H \), the union of \(G \) and \(H \) is the graph \(G \cup H \) such that \(V(G \cup H) = V(G) \cup V(H) \) and \(E(G \cup H) = E(G) \cup E(H) \). For digraphs \(D \) and \(F \), the union of \(D \) and \(F \) is the digraph \(D \cup F \) such that \(V(D \cup F) = V(D) \cup V(F) \) and \(A(D \cup F) = A(D) \cup A(F) \).
Proof. Let $\overrightarrow{T_{m,n}}$ be a full regular m-ary rooted tree with height n, that is, every non-leaf has exactly m children and the leaves, outdegree 0 vertices, being equidistance n from the root. Let $T_{m,n}$ be the graph obtained from $\overrightarrow{T_{m,n}}$ without directions (see Figure 1). Then $T_{m,n}$ is a tree. The graph $K_{1,m}$ is a full regular m-ary tree with height 1, that is, $T_{m,1}$. Each subtree of $T_{m,n}$ induced by a non-leaf and its children is also a full regular m-ary tree with height 1. Kidokoro et al. [2] gave the following result.

Theorem 1.5 (Kidokoro et al. [2]). Let p be a positive integer and $p \leq \frac{m-1}{2}$. Then $K_{1,m}$ is the p-competition graph of a loopless digraph without symmetric arcs.

Since $T_{m,n}$ is the union of $K_{1,m}$, Nakada et al. [8] obtained the following result by Theorem 1.5.

Theorem 1.6 (Nakada et al. [8]). Let p be a positive integer and $p \leq \frac{m-1}{2}$. Then $T_{m,n}$ is the p-competition graph of a loopless digraph without symmetric arcs.

2 Cut-vertices and p-competition graphs

In this section we consider properties of p-competition graphs with cut-vertices and the union of two graphs. We obtain the following result.

Theorem 2.1. Let $p \geq 2$ be a positive integer. Let H_1 and H_2 be p-competition graphs of loopless digraphs without symmetric arcs and $V(H_1) \cap V(H_2) = \{\alpha\}$. Then $H_1 \cup H_2$ is the p-competition graph of a loopless digraph without symmetric arcs.

Proof. For $i = 1, 2$, let D_i be a loopless digraph without symmetric arcs such that $C_p(D_i) = H_i$ and $V(D_1) \cap V(D_2) = \{\alpha\}$. The digraph $D_1 \cup D_2$ is a digraph with $V(D_1 \cup D_2) = V(D_1) \cup V(D_2)$ and $A(D_1 \cup D_2) = A(D_1) \cup A(D_2)$. Furthermore for $v \in V(D_i) - \{\alpha\}$ ($i = 1, 2$), $Out_{D_1 \cup D_2}(v) = Out_{D_i}(v)$ and $Out_{D_1 \cup D_2}(\alpha) = Out_{D_1}(\alpha) \cup Out_{D_2}(\alpha)$. Since $Out_{D_1}(\alpha) \cap Out_{D_2}(\alpha) = \emptyset$, the digraph $D_1 \cup D_2$ has neither loops nor symmetric arcs.

For $u, v \in V(H_i)$, if $uv \in E(H_i)$, then $|Out_{D_1 \cup D_2}(u) \cap Out_{D_1 \cup D_2}(v)| = |Out_{D_1}(u) \cap Out_{D_1}(v)| \geq p$ and $uv \in E(C_p(D_1 \cup D_2)).$ For $u \in V(H_1) - \{\alpha\}$ and $v \in V(H_2) - \{\alpha\}$, then $|Out_{D_1 \cup D_2}(u) \cap Out_{D_1 \cup D_2}(v)| = |Out_{D_1}(u) \cap Out_{D_2}(v)| \leq 1$ and $uv \notin E(C_p(D_1 \cup D_2))$, because $p \geq 2$. Since for $u \in V(H_i)$ ($i = 1, 2$), $Out_{D_1 \cup D_2}(\alpha) \cap Out_{D_1 \cup D_2}(u) = Out_{D_1}(\alpha) \cap Out_{D_1}(u)$, $u\alpha \in E(H_i)$ if and only if $u\alpha \in E(C_p(D_1 \cup D_2))$.

![Figure 1: A regular m-ary T_{m,1} and T_{m,2}](image-url)
Therefore \(C_p(D_1 \cup D_2) = H_1 \cup H_2 \).

By Theorem 2.1, we have the following result on cut-vertices.

Corollary 2.2. Let \(G \) be a connected graph with a cut-vertex \(\alpha \) and \(B_i \) \((i = 1, 2, \ldots, l) \) be a connected component of \(G - \alpha \). Let \(p \geq 2 \) be an integer. If each induced subgraph \(\langle V(B_i) \cup \{\alpha\} \rangle_G \) is the \(p \)-competition graph of a loopless digraph without symmetric arcs, then \(G \) is the \(p \)-competition graph of a loopless digraph without symmetric arcs.

In [7] Nakada et al. dealt with spiders on \(p \)-completion graphs. The spider \(S_{m,n} \) is the following graph: \(V(S_{m,n}) = \{v_0\} \cup \{v_{i,j} : i = 1, 2, \ldots, m, j = 1, 2, \ldots, n - 1\} \) and \(E(S_{m,n}) = \{\{v_0, v_{i,1}\} : i = 1, 2, \ldots, m\} \cup \{\{v_{i,j}, v_{i,j+1}\} : i = 1, 2, \ldots, m, j = 1, 2, \ldots, n - 2\} \) (see Figure 2).

Note that \(S_{1,n} \sim P_n \), \(S_{2,n} \sim P_{2n-1} \) and \(S_{m,2} \sim K_{1,m} \).

Theorem 2.3 (Nakada et al. [7]). Let \(m \) be an even number and \(p \leq n - 2 \) be a positive integer. Then \(S_{m,n} \) \((m, n \geq 3)\) is the \(p \)-competition graph of a loopless digraph without symmetric arcs.

In [2] Kidokoro et al. gave the following result on paths in terms of \(p \)-competition graphs of loopless digraphs without symmetric arcs.

Theorem 2.4 (Kidokoro et al. [2]). For a positive integer \(p \) and \(n \geq 2 \), \(P_n \) is the \(p \)-competition graph of a loopless digraph without symmetric arcs if and only if \(n \geq 2p + 3 \).

Using Theorem 2.1 and Theorem 2.4, we obtain the following result.

Theorem 2.5. Let \(p \geq 2 \) be a positive integer and \(n \geq 2p + 3 \). Then \(S_{m,n} \) \((m \geq 3, \text{ and } n \geq 7)\) is the \(p \)-competition graph of a loopless digraph without symmetric arcs.

Proof. Let \(F_i \) be a graph with \(V(F_i) = \{\alpha, v_{i,1}, v_{i,2}, \ldots, v_{i,n-1}\} \) and \(E(F_i) = \{\{\alpha, v_{i,1}\}\} \cup \{\{v_{i,j}, v_{i,j+1}\} : j = 1, 2, \ldots, n - 2\} \). Then \(F_i \) is a path \(P_n \) and \(\bigcup_{i=1}^{m} F_i \cong S_{m,n} \).

Since each \(F_i \) is the \(p \)-competition graph of a loopless digraph without symmetric arcs by Theorem 2.4, \(S_{m,n} \) is the \(p \)-competition graph of a loopless digraph without symmetric arcs.
A caterpillar is a tree T with the property that the removal of degree one vertices of T results in a path. Then degree one vertices are called leaves. By Theorem 1.5 and 2.1, we obtain the following result on caterpillars. For a caterpillar G, let $V_{NL}(G)$ be the vertex set of non-leaves of G, that is, the set of vertices whose degrees are greater than or equal to two.

Theorem 2.6. Let $p \geq 2$ be a positive integer and $p \leq \frac{m-1}{2}$. Then a caterpillar whose non-leaves have degrees at least $m + 1$ is the p-competition graph of a loopless digraph without symmetric arcs.

Proof. Let G be a caterpillar and $V_{NL}(G) = \{u_1, u_2, ..., u_n\}$ be the vertex set of non-leaves of G. Then the induced subgraph $(V_{NL}(G))_G$ is a path. We assume that $E((V_{NL}(G))_G) = \{u_iu_{i+1} : i = 1, 2, ..., n - 1\}$ and $V_i = \{v \in V(G) : vu_i \in E(G), v \text{ is a leaf of } G\}$. Then $|V_i| \geq m - 1$ and $F_i = (\{u_i, u_{i+1}\} \cup V_i)_G \cong K_{1,|V_i|+1}$ for $i = 1, 2, ..., n - 1$. Furthermore $|V_n| \geq m$ and $F_n = (\{u_n\} \cup V_n)_G \cong K_{1,|V_n|}$. Since $F_i \cong K_{1,l_i}$ and $l_i \geq m$ for $i = 1, 2, ..., n$, F_i is a p-competition graph of a loopless digraph without symmetric arcs by Theorem 1.5. Since $G \cong \bigcup_{i=1}^{n} F_i$, G is a p-competition graph of a loopless digraph without symmetric arcs by Theorem 2.1. \qed

A nontrivial connected graph without cut-vertices is called a block. A block of a graph G is a subgraph of G, which is itself a block and which is maximal with respect to that property. A cactus is a connected graph in which every block is an edge or a cycle. Thus, for a cactus G, we can obtain an edge partition $E(G) = E(C) \cup E(T)$, where C is union of cycles and T is a forest. Kidokoro et al. [2] also obtained the following result.

Theorem 2.7 (Kidokoro et al. [2]). For a positive integer p and $n \geq 3$, C_n is the p-competition graph of a loopless digraph without symmetric arcs if and only if $n \geq 2p + 3$.

By Theorem 2.7, Theorem 1.5, Theorem 2.4 and Theorem 2.1 we obtain the following result on cacti.

Theorem 2.8. Let $p \geq 2$ be a positive integer. Then a cactus G is the p-competition graph of a loopless digraph without symmetric arcs if there exists an edge partition $E(G) = E(C) \cup E(T)$ such that

1. $E(C) = \bigcup E(C_{\alpha_i})$, where C_{α_i} is a cycle with $\alpha_i \geq 2p + 3$,

2. $E(T) = (\bigcup E(K_{1,\beta_j})) \cup (\bigcup E(P_{\gamma_k}))$ such that

 2.1 each K_{1,β_j} is a maximal subgraph isomorphic to a star graph and $\frac{\beta_j - 1}{2} \geq p$, that is, $\beta_j \geq 2p + 1$,

 2.2 for all $P_{\gamma_k}, \gamma_k \geq 2p + 3$.

Proof. By assumption, $G = (\bigcup C_{\alpha_i}) \cup (\bigcup K_{1,\beta_j}) \cup (\bigcup P_{\gamma_k})$. By Theorem 2.7, Theorem 1.5 and Theorem 2.4, all $C_{\alpha_i}, K_{1,\beta_j}$ and P_{γ_k} are p-competition graphs of loopless digraphs without symmetric arcs.

Since G is a cactus, for any two of $C_{\alpha_i}, K_{1,\beta_j}$ and P_{γ_k}, the intersection of these two has at most one vertex. Therefore, a cactus satisfying the conditions of the theorem is the p-competition graph of a loopless digraph without symmetric arcs by Theorem 2.1. \qed
3 Cut-vertices and p-competition graphs of Hamiltonian digraphs

In this section we consider properties of p-competition graphs of loopless Hamiltonian digraphs without symmetric arcs. We obtain the following result.

Theorem 3.1. Let $p \geq 3$ be a positive integer. Let H_1 and H_2 be p-competition graphs of loopless Hamiltonian digraphs without symmetric arcs and $V(H_1) \cap V(H_2) = \{\alpha\}$. Then $H_1 \cup H_2$ is the p-competition graph of a loopless Hamiltonian digraph without symmetric arcs.

Proof. For $i = 1, 2$, let D_i be a loopless Hamiltonian digraph without symmetric arcs such that $C_p(D_i) = H_i$ and $V(D_1) \cap V(D_2) = \{\alpha\}$. Then $C_p(D_1 \cup D_2) = H_1 \cup H_2$ by the similar way of the proof of Theorem 2.1.

Let $\alpha \rightarrow w_{1,1} \rightarrow w_{1,2} \rightarrow \cdots \rightarrow w_{1,k_1} \rightarrow \alpha$ be a Hamiltonian dicycle of D_1 and $\alpha \rightarrow w_{2,1} \rightarrow w_{2,2} \rightarrow \cdots \rightarrow w_{2,k_2} \rightarrow \alpha$ be a Hamiltonian dicycle of D_2.

Adding an arc $w_{1,k_1} \rightarrow w_{2,1}$ to the digraph $D_1 \cup D_2$, we make a new digraph D^* with $V(D^*) = V(D_1) \cup V(D_2)$ and $A(D^*) = A(D_1) \cup A(D_2) \cup \{w_{1,k_1} \rightarrow w_{2,1}\}$.

Then $Out_{D^*}(v) = Out_{D_1 \cup D_2}(v)$ for $v \in V(D^*)-\{w_{1,k_1}\}$ and $Out_{D^*}(w_{1,k_1}) = Out_{D_1 \cup D_2}(w_{1,k_1}) \cup \{w_{2,1}\}$. For $v \in V(H_2)$, $|Out_{D^*}(w_{1,k_1}) \cap Out_{D^*}(v)| = |(Out_{D_1 \cup D_2}(w_{1,k_1}) \cup \{w_{2,1}\}) \cap Out_{D_1 \cup D_2}(v)| \leq 2$. Thus $C_p(D^*) = H_1 \cup H_2$, because $p \geq 3$.

Since $\alpha \rightarrow w_{1,1} \rightarrow w_{1,2} \rightarrow \cdots \rightarrow w_{1,k_1} \rightarrow w_{2,1} \rightarrow w_{2,2} \rightarrow \cdots \rightarrow w_{2,k_2} \rightarrow \alpha$ is a Hamiltonian dicycle of D^*, $H_1 \cup H_2$ is a p-competition graph of a loopless Hamiltonian digraph without symmetric arcs.

By Theorem 3.1 we have the following result on cut-vertices.

Corollary 3.2. Let G be a connected graph with a cut-vertex α and B_i $(i = 1, 2, \ldots, l)$ be a connected component of $G - \alpha$. Let $p \geq 3$ be an integer. If each induced subgraph $(V(B_i) \cup \{\alpha\})_G$ is the p-competition graph of a loopless Hamiltonian digraph without symmetric arcs, then G is the p-competition graph of a loopless Hamiltonian digraph without symmetric arcs.

Using Theorem 3.1 and Theorem 1.2, we obtain the following result.

Theorem 3.3. Let $p \geq 3$ be a positive integer and $n \geq 2p + 3$. Then $S_{m,n}$ $(m \geq 3, n \geq 9)$ is the p-competition graph of a loopless Hamiltonian digraph without symmetric arcs.

In the proof of Theorem 2.7, Kidokoro et al. [2] constructed the loopless digraph D without symmetric arcs whose p-competition graph is a cycle C_n as follows: $V(D) = \{v_0, v_1, \ldots, v_{n-1}\}$, and $A(D) = \{v_i \rightarrow v_{i+j} : i = 0, 1, \ldots, n-1, j = 1, 2, \ldots, p + 1\}$, where all subscript arithmetic is taken modulo n.

We examine the construction of this digraph D and observe that D has a Hamiltonian dicycle $v_0 \rightarrow v_1 \rightarrow \cdots \rightarrow v_{n-1} \rightarrow v_0$. So, we obtain the following result.

Theorem 3.4. Let p be a positive integer and $n \geq 2p + 3$. Then C_n is the p-competition graph of a loopless Hamiltonian digraph without symmetric arcs.
Since $p \leq \frac{m-1}{2}$ means $m \geq 2p+1$, for a positive integer p and $n \geq 2p+1$, $K_{1,n}$ is the p-competition graph of a loopless digraph without symmetric arcs. By Theorem 1.5.

In the proof of Theorem 1.5, Kidokoro et al. constructed a loopless digraph D_1 without symmetric arcs whose p-competition graph is $K_{1,n}$, where $V(D_1) = \{v_0, v_1, ..., v_{n-1}\} \cup \{u\}$, and $A(D_1) = \{v_i \rightarrow v_{i+j} : i = 0, 1, ..., n-1, j = 1, 2, ..., p\} \cup \{u \rightarrow v_i : i = 0, 1, ..., n-1\}$, where all subscript arithmetic is taken modulo n.

We observe that we can modify D so that it is a Hamiltonian digraph, which we will refer to as D_1. So, we obtain the following result.

Theorem 3.5. Let $p \geq 3$ be a positive integer and $n \geq 2p+3$. Then $K_{1,n}$ is the p-competition graph of a loopless Hamiltonian digraph without symmetric arcs.

Proof. Let $K_{1,n}$ be a star with $V(K_{1,n}) = \{v_0, v_1, ..., v_{n-1}\} \cup \{u\}$ and $E(K_{1,n}) = \{\{u, v_0\}, \{u, v_1\}, ..., \{u, v_{n-1}\}\}$. All subscript arithmetic is taken modulo n. We construct a digraph H which is modified the digraph D_1 as follows

1. $V(H) = \{v_0, v_1, ..., v_{n-1}\} \cup \{u\}$, and
2. $A(H) = \{v_i \rightarrow v_{i+k} : i = 0, 1, ..., n-1, k = 1, 2, ..., p\} \cup \{u \rightarrow v_i : i = 1, 2, ..., n-1\} \cup \{v_i \rightarrow v_{i+2k} : i = n-1, n-2, ..., n-p\} \cup \{v_0 \rightarrow u\}$.

Since $n \geq 2p+3, v_{i-(p+1)} \neq v_{i+k}$ for $i = n-1, n-2, ..., n-p$ and $k = 1, 2, ..., p$. Then $Out_H(v_i) = \{v_{i+k} : 1 \leq k \leq p\} \cup \{v_{i-(p+1)}\}$ for $i = n-1, n-2, ..., n-p$, $Out_H(v_i) = \{v_{i+k} : 1 \leq k \leq p\}$ for $i = n-p-1, n-p-2, ..., 1$, $Out_H(v_0) = \{v_i : 1 \leq i \leq p\} \cup \{u\}$ and $Out_H(u) = \{v_1, v_2, ..., v_{n-1}\}$.

And for $i = 0, 1, ..., n-1$, max\{ $l : v_l \in Out_H(v_i)$ $\} = i+p$. For $i = n-p-1, n-p-2, ..., 0$, $\min\{ l : v_l \in Out_H(v_i) \} = i$ and for $i = n-1, n-2, ..., n-p$, $\min\{ l : v_l \in Out_H(v_i) \} = i - (p+1)$.

Since $n \geq 2p+3, v_{i+(p+1)+p} \notin In_H(v_i)$, and there exist no symmetric arcs between v_i and v_{i+k} for $i = 0, 1, ..., n-1$ and $k = 1, 2, ..., p$. For $i = n-1, n-2, ..., n-p$, max\{ $l : v_l \in Out_H(v_{i+(p+1)}) \} = i - (p+1) + p = i - 1$. Thus $v_{i-(p+1)} \notin In_H(v_i)$ and there exist no symmetric arcs between v_i and $v_{i-(p+1)}$. Therefore H has no symmetric arcs and no loops.

For $i = n-1, n-2, ..., n-p$, $Out_H(u) \cap Out_H(v_i) = \{v_{i+1}, v_{i+2}, ..., v_{i+p}, v_{i-(p+1)}\} - \{v_0\}$ and $|Out_H(u) \cap Out_H(v_i)| = p$ and $\{u, v_i\} \in E(C_p(H))$.

For $i = n-p-1, n-p-2, ..., 0$, $Out_H(u) \cap Out_H(v_i) = \{v_{i+1}, v_{i+2}, ..., v_{i+p}\}$ and $|Out_H(u) \cap Out_H(v_i)| = p$ and $\{u, v_i\} \in E(C_p(H))$.

We consider v_i and v_j for $i, j = n-1, n-2, ..., n-p$. Since $p \geq 3$, we consider that for $i < j$ and $j-i = k$, $Out_H(v_i) \cap Out_H(v_{i+k}) = \{v_{i+k+1}, v_{i+k+2}, ..., v_{i+p}, v_{i-(p+1)}, v_{i+k-(p+1)}\}$ and $k \leq p-1$. If $v_{i+k-(p+1)} \in Out_H(v_i) - \{v_{i+k+1}, v_{i+k+2}, ..., v_{i+p}\}$, then $i+1 \leq i+k-(p+1) \leq i+k$ and thus $p+2 \leq k$, which is a contradiction. So $Out_H(v_i) \cap Out_H(v_{i+k}) \subseteq \{v_{i+k+1}, v_{i+k+2}, ..., v_{i+p}, v_{i-(p+1)}\}$. And $\{|v_{i+k+1}, v_{i+k+2}, ..., v_{i+p}, v_{i-(p+1)}\| = (i+p+1) - (i+k) = p+1 - k \leq p-1$ without the case $k = 1$. So, we consider the case $Out_H(v_i) \cap Out_H(v_{i+k})$. If $i-(p+1) \equiv i+1+p \pmod{n}$, then $i-(p+1) = i+1+p-n$ because $i-(p+1) \leq i+1+p$. Since $n \geq 2p+3, v_{i-(p+1)} \notin In_H(v_i)$.

Next we consider v_i and v_j for $i = n-p-1, n-p-2, ..., 0$ and $j = n-1, n-2, ..., 0$.
For $i < j$, $j - i = k$ and $i,j = n - p - 1,n - p - 2,...,0$, $\text{Out}_H(v_i) \cap \text{Out}_H(v_{i+k}) = \{v_{i+k+1}, v_{i+k+2}, ..., v_{i+p}\}$ and $|\text{Out}_H(v_i) \cap \text{Out}_H(v_{i+k})| = i + p - (i + k) = p - k < p$.

For $i < j$, $j - i = k$, $i = n - p - 1,n - p - 2,...,0$ and $j = n - 1,n - 2,...,n - p$, $\text{Out}_H(v_i) \cap \text{Out}_H(v_{i+k}) \subseteq \{v_{i+k+1}, v_{i+k+2}, ..., v_{i+p}, v_{i+k-(p+1)}\}$ and $|\text{Out}_H(v_i) \cap \text{Out}_H(v_{i+k})| \leq p - k + 1$. So $|\text{Out}_H(v_i) \cap \text{Out}_H(v_{i+k})| \leq p - 1$ without the case $k = 1$. Then $\text{Out}_H(v_i) \cap \text{Out}_H(v_{i+1}) \subseteq \{v_{i+2}, v_{i+3}, ..., v_{i+p}, v_{i-1}\}$ and $\{v_{i+1}\} = \text{Out}_H(v_i) - \{v_{i+2}, v_{i+3}, ..., v_{i+p}\}$. If $v_{i-1} \in \text{Out}_H(v_i) \cap \text{Out}_H(v_{i+1})$, then $v_{i-1} = v_{i+1}$ and $i + 1 = i - p$, which is a contradiction. So $\text{Out}_H(v_i) \cap \text{Out}_H(v_{i+1}) = \{v_{i+2}, v_{i+3}, ..., v_{i+p}\}$ and $|\text{Out}_H(v_i) \cap \text{Out}_H(v_{i+1})| = p - 1 < p$.

Thus $\{v_i, v_j\} \notin E(C_p'(H))$ for $i, j = n - 1, n - 2, ..., 0$.

Therefore $C_p'(H) \cong K_{1,n}$.

Then $v_0 \rightarrow u \rightarrow v_1 \rightarrow v_2 \rightarrow \cdots \rightarrow v_{n-1} \rightarrow v_0$ is a Hamiltonian dicycle. Thus H is the loopless Hamiltonian digraph with no symmetric arcs whose p-competition graphs is $K_{1,n}$.

By Theorem 3.1 and 3.5, we obtain the following result on caterpillars.

Theorem 3.6. Let $p \geq 3$ be a positive integer and $m \geq 2p + 3$. Then a caterpillar whose non-leaves have degrees at least $m + 1$ is the p-competition graph of a loopless digraph without symmetric arcs.

Proof. Let G be a caterpillar, $V_{NL}(G) = \{u_1, u_2, ..., u_n\}$ be a vertex set of non-leaves of G and $V_i = \{v \in V(G) : vu_i \in E(G), v \text{ is a leaf of } G\}$. By a proof similar to that of Theorem 2.6, we obtain $G \cong \bigcup_{i=1}^{n} F_i$, where $F_i = \{\{u_i, u_{i+1}\} \cup V_i\}_G \cong K_{1,|V_i|+1}$ for $i = 1, 2, ..., n - 1$ and $F_n = \{\{u_n\} \cup V_n\}_G \cong K_{1,|V_n|}$. Since $|V_i| \geq m - 1$ for $i = 1, 2, ..., n - 1$ and $|V_n| \geq m$, each F_i is a p-competition graph of a loopless digraph without symmetric arcs by Theorem 3.5. So, G is the p-competition graph of a loopless digraph without symmetric arcs by Theorem 3.1.

By Theorem 3.4, Theorem 3.5, Theorem 1.2 and Theorem 3.1, we obtain the following result on cacti.

Theorem 3.7. Let $p \geq 3$ be a positive integer. Then a cactus G is the p-competition graph of a loopless Hamiltonian digraph without symmetric arcs if there exists an edge partition $E(G) = E(C) \cup E(T)$ such that

1. $E(C) = \bigcup E(C_{\alpha_i})$, where C_{α_i} is a cycle with $\alpha_i \geq 2p + 3$,

2. $E(T) = (\bigcup E(K_{1,\beta_j})) \cup (\bigcup E(P_{\gamma_k}))$ such that

 - (2-1) each K_{1,β_j} is a maximal subgraph isomorphic to a star graph and $\beta_j \geq 2p + 3$,
 - (2-2) for all P_{γ_k}, $\gamma_k \geq 2p + 3$.

Proof. By assumption, $G = (\bigcup C_{\alpha_i}) \cup (\bigcup K_{1,\beta_j}) \cup (\bigcup P_{\gamma_k})$. By Theorem 3.4, Theorem 3.5 and Theorem 1.2, all C_{α_i}, K_{1,β_j} and P_{γ_k} are p-competition graphs of loopless Hamiltonian digraphs without symmetric arcs.

Since G is a cactus, for any two of C_{α_i}, K_{1,β_j} and P_{γ_k}, the intersection has at most one vertex. Therefore, a cactus satisfying the conditions of theorem is a p-competition graph of a loopless Hamiltonian digraph without symmetric arcs by Theorem 3.1.
References

