Effect of Natural Products Against Growth of Three Allergenic and Toxigenic Molds

Brittany Loadholt
Georgia Southern University, bl01985@georgiasouthern.edu

Teyaijah Givens
Georgia Southern University, tg02130@georgiasouthern.edu

Nosa Lloyd Nwaonumah
Georgia Southern University, nn00400@georgiasouthern.edu

Bushra Shah
Georgia Southern University, bs06779@georgiasouthern.edu

Atin Adhikari
Georgia Southern University, aadhikari@georgiasouthern.edu

Follow this and additional works at: https://digitalcommons.georgiasouthern.edu/research_symposium

Part of the Epidemiology Commons

Recommended Citation
Loadholt, Brittany; Givens, Teyaijah; Nwaonumah, Nosa Lloyd; Shah, Bushra; and Adhikari, Atin, 'Effect of Natural Products Against Growth of Three Allergenic and Toxigenic Molds' (2016). Georgia Southern University Research Symposium. 29.
https://digitalcommons.georgiasouthern.edu/research_symposium/2016/2016/29

This presentation (open access) is brought to you for free and open access by the Conferences & Events at Digital Commons@Georgia Southern. It has been accepted for inclusion in Georgia Southern University Research Symposium by an authorized administrator of Digital Commons@Georgia Southern. For more information, please contact digitalcommons@georgiasouthern.edu.
Introduction

- Dampness and fungal exposures in buildings are widespread, with estimates ranging from 18% to 50% of buildings being affected. Of the 21.8 million people reported to have asthma in the USA, approximately 4.6 million cases are attributable to dampness and mold exposure in the home.
- Several fungal genera from damp environments were reported to be associated with allergy and/or asthma and some species can release mycotoxins in the environment.

Purpose

In this study, we have evaluated three plant based products - tea tree oil, grape fruit seed extracts, and natural vinegar - against growth of three specific allergenic and toxic mold species (*Aspergillus versicolor*, *Penicillium brevicompactum*, and *Stachybotrys chartarum*).

Methods

- Spore solutions (10^4–10^7 spores/mL) of these three mold species were prepared from pure cultures and 200 µL of solutions were spread over malt extract agar plates.
- Three 20 µL drops of different dilutions of three above-mentioned natural products were applied on agar plate surfaces immediately after spore solution inoculation.

Results

- Inhibition zones on agar plates were examined after the incubation of plates for 96 hours at 30±2°C

Conclusion

- We found that up to 10 times dilutions of grape fruit seed extracts developed 18-50 mm zones of inhibition for all mold species, up to two times dilutions of tea tree oil completely inhibited all three species but 5X dilution was effective for *S. chartarum*. Natural vinegar, on the other hand, inhibited *S. chartarum* and *P. brevicompactum* only and the inhibition zones for mold growth on agar surfaces were 18-28 mm.

Acknowledgements

- Thanks for the support from my research team and graduate assistants for completing the task effectively while also learning from each other.

Introduction

- This study was supported by the Faculty Research Committee FY16 (2015-16) Research Seed Funding Award (PI: Dr. Atin Adhikari), Georgia Southern University.
- A special thanks to Dr. Atin Adhikari for his supervision and support throughout this project.

Figure 1: The effect of grapefruit seed extract on *S. chartarum*

Figure 2: The effect of tea tree oil on *P. brevicompactum*

Figure 3: Box plot showing the effect of grapefruit seed extract on *A. versicolor*

Figure 4: Box plot showing the effect of grapefruit seed extract on *P. brevicompactum*

Figure 5: Box plot showing the effect of grapefruit seed extract on *S. chartarum*

Figure 6: Box plot showing the effect of vinegar on *P. brevicompactum*

Figure 7: Box plot showing the effect of vinegar on *S. chartarum*