College of Public Health News

November 3, 2017

Georgia Southern University

Follow this and additional works at: https://digitalcommons.georgiasouthern.edu/coph-news-online

Part of the Public Health Commons

Recommended Citation
Dr. William A. Mase, assistant professor of health policy and management at Georgia Southern University Jiann-Ping Hsu College of Public Health, led a study co-authored with his DrPH students, Ms. Bobbie Jo Newell, Dr. H. Pamela Pagano, and Dr. Jessica Arrazola that assessed the training needs and knowledge gaps across five competency domains among the food protection staff of the Cincinnati Health Department. The five overarching competency domains assessed included 1) scientific knowledge; 2) foodborne illness knowledge, rules, and regulations; 3) temperature and storage; 4) inspection equipment; and 5) communication. A full network workforce assessment was conducted in a 3-year prospective longitudinal study design. Key findings show that competency areas identified as needing attention improved over time. The domain that consistently showed the highest percentage of workforce needing improvement was foodborne illness knowledge, rules, and regulations.

"Assessing Training Needs and Competency Gaps in Food Protection Staff," was recently published in the Journal of Environmental Health.
The Society of Environmental Toxicology and Chemistry (SETAC) Southeastern Region organized their 15th Annual Meeting in Brunswick, Georgia on September 28-30, 2017. At the meeting, they held a competition for student presentations (http://phhp-sesetac.sites.medinfo.ufl.edu). Ms. Imaobong Ekpo, an Environmental Health Sciences Masters of Public Health Student at the Jiann-Ping Hsu College of Public Health at Georgia Southern University and one of the students from Dr. Atin Adhikari’s research team received a second place award for her poster presentation titled: Exposure to nanoparticles including submicron silica dust in a construction site during concrete blasting, authored by Ms. Imaobong Ekpo, Mr. Jefferson Doehling, Dr. Abbas Rashidi, Dr. Aniruddha Mitra, Ms. Alexis Pawlak, Mr. Shane Lewis, Mr. Jacob Schwartz, and Dr. Atin Adhikari. The common idea is that the dust generated during mechanical processes in construction jobsites are mostly large particles formed through blasting, crushing, drilling, grinding, or sawing. However, field data obtained from this preliminary study of Dr. Adhikari’s research team showed that workers were exposed to not only large particles but high levels of nanoparticles. Exposure to nanoparticles and submicron silica dust during construction activities like concrete blasting can be expected irrespective of proximity to the construction event.
Georgia Southern Examines Aerosolized Bacteria and Microbial Activity in Dental Clinics

November 3, 2017

Dr. Atin Adhikari, assistant professor of environmental health sciences at the Jiann-Ping Hsu College of Public health led a study that examined the aerosolized bacteria and microbial activity in dental clinics during cleaning procedures. Use of sharp instruments, handpieces, water-air sprays, and high speed rotary devices during dental cleaning procedures can release oral bacteria, which may cause significant occupational bioaerosol exposure risks. This study aimed at sampling of airborne bacteria and identification of prevalent bacterial genera and testing of overall microbial activity in settled splatter over clinic floors in several US dental clinic rooms during dental cleaning procedures (n = 15).

Culturable airborne bacteria were measured by a Biostage impactor and the diversity and relative abundance of the airborne culturable bacterial community were evaluated by pyrosequencing of 16s rRNA genes. ATP levels were determined in swabbed splatter samples collected from floor surfaces for understanding overall microbial activity and estimating the general cleanliness of the clinic surfaces. Concentrations at the beginning, during, and after dental cleaning procedures were 671±525, 917±1203, and 899±823 CFU/m3, respectively for airborne bacteria and 91±101, 243±129, and 139±77 RLU/sample, respectively for ATP levels on floors. The dominant bacterial phylum was Proteobacteria. A total of 45 bacterial genera were detected, notable among them included Psychrobacter, Pseudomonas, Sporosarcina, and Streptococcus. Several pathogenic bacterial species such as Psychrobacter sp. (including P. pulmonis, and P. faecalis), Streptococcus sp. (including S. thermophilus, S. parasanguinis, and S. oralis), Pseudomonas sp. (including P. graminis) were identified in air samples collected at different stages of the dental cleaning procedures.

The concentration of airborne bacteria in dental clinic rooms did not increase significantly during the cleaning procedures. The diversity of culturable bacteria, however, changed. This change in the diversity and the similarity in major taxa detected in the study to the bacterial taxa reported recently from acute or chronic root canal infections and supragingival plaque samples indicate that oral bacteria from patients can significantly contribute to airborne bacterial load in dental clinics during cleaning procedures.

“Aerosolized bacteria and microbial activity in dental clinics during cleaning procedures,” was recently published in the Journal of Aerosol Science.