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1. Introduction

In this paper all graphs are simple. A dominating set for a graph G is a set of vertices D
such that every vertex of G either lies in D or has a neighbor in D. The domination number
of G, written γ(G), is the size of a smallest dominating set in G. Note that a maximum
independent set is a dominating set, so γ(G) ≤ α(G), where α(G) is the independence
number of G.

If a graph G has no isolates and D is a minimum dominating set in G, then V (G) − D
is also a dominating set in G (owing to the minimality of D); this was first observed by
Ore [10]. In general we say that a dominating set D′ is an inverse dominating set for a
graph G if there is some minimum dominating set D such that D ∩D′ = ∅. A graph with
isolates cannot have an inverse dominating set, but otherwise, given Ore’s observation, we
can define the inverse domination number of a graph G, written γ−1(G), as the smallest
size of an inverse dominating set in G. The Inverse Domination Conjecture asserts that
γ−1(G) ≤ α(G) for every isolate-free G.

The Inverse Domination Conjecture originated with Kulli and Sigarkanti [9], who in fact
provided an erroneous proof. Discussion of this error and further consideration of the con-
jecture first appeared in a paper of Domke, Dunbar, and Markus [3]. It has since been shown
by Driscoll and Krop [4] that the weaker bound of γ−1(G) ≤ 2α(G) holds in general, and
Johnson, Prier and Walsh [7] showed that the conjecture itself holds whenever γ(G) ≤ 4.
Johnson and Walsh [8] have also proved two fractional analogs of the conjecture, and Fren-
drup, Henning, Randerath and Vestergaard [5] have shown that the conjecture holds for a
number of special families, including bipartite graphs and claw-free graphs.

In this paper we prove two main results in support of the Inverse Domination Conjecture.
The first is an improvement on the 2α(G) approximation to the conjecture.

Theorem 1.1. If G is a graph with no isolated vertices and G is not a clique, then γ−1(G) ≤
3
2
α(G)− 1.

Note that if G is a clique and G 6= K1, then trivially γ−1(G) = α(G) = 1, which is why
we must exclude cliques in Theorem 1.1.

Our second main result improves the range of γ(G) for which the conjecture is known.

Theorem 1.2. If G is a graph with no isolated vertices and γ(G) ≤ 5, then γ−1(G) ≤ α(G).

As a corollary of Theorem 1.2 we are also able to obtain the following.

Corollary 1.3. If G is a graph with no isolated vertices and |V (G)| ≤ 16, then γ−1(G) ≤
α(G).

It is worth noting that Asplund, Chaffee, and Hammer [2] have formulated a stronger
form of the Inverse Domination Conjecture. In the strengthened version one requires, for
every minimum dominating set D, the existence of a dominating set D′ with D∩D′ = ∅ and
|D′| ≤ α(G). It is not hard to see that our proof for Theorem 1.1 also works for this stronger
conjecture. However, the same is not true for Theorem 1.2, where we pick our minimum
dominating set D very carefully.

The rest of the paper is organized as follows. In Section 2 we introduce the notion of
an independent set of representatives, or ISR, and explore the connections between ISRs
and inverse domination. (In this section, we also obtain, as a corollary, the inequality
γ−1(G) ≤ b(G) for graphs without isolated vertices, where b(G) is the largest number of
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vertices in an induced bipartite subgraph of G.) In Section 3 we prove Theorem 1.1. In
Section 4 we leverage the machinery of Section 2 to prove Theorem 1.2 and Corollary 1.3.

2. ISRs and Inverse Domination

If (X1, . . . , Xk) is a collection of sets, a set of representatives for (X1, . . . , Xk) is a set
{x1, . . . , xk} such that xi ∈ Xi for each i. If G is a graph and V1, . . . , Vk are subsets of V (G),
an independent set of representatives, or ISR, for (V1, . . . , Vk) is a set of representatives for
the sets V1, . . . , Vk that is also an independent set in G. A partial ISR for V1, . . . , Vk is an
ISR for any subfamily of V1, . . . , Vk.

Several authors have proved various sufficient conditions guaranteeing the existence of
ISRs; many of the proofs are topological in nature. See [1] for a collection of such results. A
fundamental result on ISRs is the following sufficient condition due to Haxell [6]. In what
follows, given a graph G and a set A ⊆ V (G), G[A] denotes the subgraph of G induced by
A. Given a collection of sets (V1, . . . , Vk) and J ⊆ [k], we write VJ for the union

⋃
j∈J Vj.

Theorem 2.1 (Haxell [6]). Let G be a graph and let V1, . . . , Vn be a partition of V (G). If,
for all S ⊆ [n],

γ(G[VS]) ≥ 2|S| − 1,

then G has an independent set v1, . . . , vn such that vi ∈ Vi for each i (that is, (V1, . . . , Vn)
has an ISR).

Our basic idea for using Theorem 2.1 to obtain results on inverse domination is to apply it
to a specific partition of vertices outside D (where D is a minimum dominating set), namely
to what we’ll call a standard partition.

Let G be a graph and suppose that X, Y are disjoint sets of vertices where X dominates
Y . The standard partition of Y , subject to a given ordering (v1, . . . , vn) of X, is the partition
(V1, . . . , Vn) with

Vi = NY (vi) \
⋃
j<i

Vj,

where NY (vi) indicates those neighbors of vi that are in Y . Consider a minimum dominating
set D, and the standard partition of V (G) − D with respect to any ordering of D. If this
partition has an ISR, then the ISR is an independent set disjoint from D that dominates
D. Expanding this independent set to a maximal independent set in G − D would give
an independent dominating set disjoint from D, implying that γ−1(G) ≤ α(G). However,
we cannot always find an ISR for a standard partition of G − D. Instead, we obtain more
technical results.

In the following, given disjoint sets X1, . . . , Xk and S ⊂ X1 ∪ · · · ∪Xk, we write i(S) for
the set {j : S ∩Xj 6= ∅}. When S = {v}, we’ll denote the unique element of i(S) by i(v).

Theorem 2.2. Let G be a graph, let D be a minimum dominating set in G, and let F be a
maximal independent set in D. Let (d1, . . . , dn) be any ordering of D−F , and let (V1, . . . , Vn)
be the standard partition of G − D − N(F ) subject to this ordering. Then there exist two
partial ISRs R1, R2 of (V1, . . . , Vn) such that i(R1) ∩ i(R2) = ∅ and i(R1) ∪ i(R2) = [n].

Proof. Let H be a graph consisting of two disjoint copies of G−D−N(F ), and let W1, . . . ,Wn

be a partition of V (H) obtained by letting each Wi consist of both copies of each vertex in
Vi.
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We will use Theorem 2.1 to obtain an ISR of (W1, . . . ,Wn). Let S be any subset of [n],
and let H ′ = H[WS]. We will show that γ(H ′) ≥ 2 |S|.

Observe that H ′ consists of two disjoint copies of the subgraph G′ := G[VS], so that any
dominating set in H ′ must dominate each of those copies. If γ(H ′) < 2 |S|, then let C be a
minimum dominating set of H ′. We can partition C into C = C1 ∪C2, where C1 dominates
one copy of G′ and C2 dominates the other copy. Without loss of generality |C1| ≤ |C2|, and
since |C| < 2 |S|, this implies |C1| < |S|. Let C ′ be the set of vertices in G′ corresponding
to the vertices of C1, and let D∗ = (D \ {di : i ∈ S}) ∪ C ′. We know that D∗ dominates
V (G) − D, and moreover since F ⊆ D∗ and F dominates D − F , we see that D∗ is a
dominating set of G. Since |D∗| < |D|, this contradicts the minimality of D.

Thus (W1, . . . ,Wn) has some ISR R. We can partition R = R1 ∪ R2 where R1 consists
of the R-vertices in one copy of G′ and R2 consists of the R-vertices in the other copy of
G′. Now R1 and R2 are each independent subsets of G′, and since R is an ISR we see that
i(R1) ∩ i(R2) = ∅ and i(R1) ∪ i(R2) = [n]. �

As an immediate and useful corollary to Theorem 2.2, we get the following.

Corollary 2.3. Let G be a graph, let D be a minimum dominating set in G, and let F be a
maximal independent set in D. Let (d1, . . . , dn) be any ordering of D−F , and let (V1, . . . , Vn)
be the standard partition of G−D−N(F ) subject to this ordering. Then (V1, . . . , Vn) has a
partial ISR of size at least n/2.

Observe that if D is a minimum dominating set in a graph G without isolates, then each
vertex in D has a neighbor in G − D. These neighbors can be used to help build inverse
dominating sets, and our first use of this will be in the following corollary.

Corollary 2.4. Let G be a graph without isolated vertices and let D be a minimum domi-
nating set in G. If b(G) is the largest number of vertices in an induced bipartite subgraph of
G, then γ−1(D) ≤ b(G).

Proof. Let F be a maximal independent set in D, and let R1, R2 be partial ISRs as in
Theorem 2.2. As R1 and R2 are each independent and R1 ∩ R2 = ∅, R1 ∪ R2 induces a
bipartite subgraph of G. Since i(R1) ∪ i(R2) = [n], the set R1 ∪ R2 dominates D − F .
Expand R1 ∪R2 to a maximal set B ⊆ G−D inducing a bipartite subgraph.

The maximality of B implies that B dominates G − F . Let F0 = F − N(B), so that
B dominates G − F0. Observe that B ∪ F0 still induces a bipartite graph, so that b(G) ≥
|B| + |F0|. On the other hand, each vertex v ∈ F0 has some neighbor v′ ∈ V (G) − D.
Augmenting B by adding in such a vertex v′ for each v ∈ F0 yields a inverse dominating set
of size at most |B|+ |F0|, which is at most b(G). �

3. Proof of Theorem 1.1

Theorem 3.1. Let G be a graph, and let D be a minimum dominating set in G. There is a

set T ⊂ V (G)−D such that T is a dominating set in G and |T | ≤ α(G) +
⌊
γ(G)−1

2

⌋
.

Proof. Let F be a maximal independent set in D, and write D − F as {d1, . . . , dn}. Let
(V1, . . . , Vn) be the standard partition of N(D − F ).

Let R be a largest possible partial ISR for (V1, . . . , Vn). By Corollary 2.3, we have |R| ≥
n/2. Expand R to a maximal independent set S in G−D. The set S dominates every vertex
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of V (G)−D and at least n/2 vertices of D − F . We now expand S to dominate the rest of
D.

Let F ′ = F − N(S). Observe that S ∪ F ′ is an independent set, so |S| + |F ′| ≤ α(G).
Expand S to a set S1 by adding an arbitrary (G − D)-neighbor of v′ for each v′ ∈ F ′; we
have |S1| ≤ |α(G)|. Next, expand S1 to a set T by adding an arbitrary (G−D)-neighbor of
w for each w ∈ D−F −N(S1); note that |D − F −N(S1)| ≤ n/2, so |T | ≤ α(G) +n/2. As
n ≤ γ(G)− 1 and |T | is an integer, this implies that

|T | ≤ α(G) +

⌊
γ(G)− 1

2

⌋
.

Since T is a dominating set in G, the theorem is proved. �

The following lemma is more general than is necessary for proving Theorem 1.1, but stating
it in this generality will be useful for later results.

Lemma 3.2. If a graph G has a minimum dominating set D and an independent set S such
that S −D dominates D − S, then γ−1(G) ≤ α(G).

Proof. Let S1 = S − D and let S2 = S ∩ D. Expand S1 to a maximal independent set S ′1
of G −D. Now S ′1 dominates G −D. Let S ′2 be the set of vertices in D not dominated by
S ′1. Observe that S ′2 ⊂ S2, since by hypothesis S1 dominates D − S2. Hence S ′1 ∪ S ′2 is an
independent set, so that α(G) ≥ |S ′1|+ |S ′2|.

Since D is a minimum dominating set of G and G has no isolated vertices, each vertex
of D has a neighbor outside of D. Let T be the vertex set obtained from S ′1 by adding
in, for each v ∈ S ′2, a neighbor of v outside of D. Now T is a dominating set in G and
|T | ≤ |S ′1|+ |S ′2| ≤ α(G). Hence γ−1(G) ≤ α(G). �

The proof of Theorem 1.1 now follows easily. If G has a minimum dominating set D that
is independent, then we can choose S = D to vacuously meet the hypothesis of Lemma 3.2,
and hence γ−1(G) ≤ α(G) ≤ (3/2)α(G)−1. Otherwise, γ(G) ≤ α(G)−1, so by Theorem 3.1,
we have

γ−1(G) ≤ α(G) +

⌊
γ(G)− 1

2

⌋
≤ α(G) +

⌊
α(G)− 2

2

⌋
≤ 3

2
α(G)− 1.

4. Proof of Theorem 1.2

Our proof of Theorem 1.2 relies on a careful choice of minimum dominating set. For
shorthand, it will be convenient to speak of the independence number of a dominating set
D to refer to the independence number of the induced subgraph G[D], and likewise to write
α(D) for α(G[D]). We will consider a dominating set D in a graph G to be optimal if it
is of minimum size and, among minimum-size dominating sets, has greatest independence
number and, subject to that, has the fewest edges in the induced subgraph G[D]. In order
to build inverse dominating sets in a graph G, we previously used the fact that any vertex
v in a minimum dominating set D has a neighbor in G−D (provided G is isolate-free). In
some arguments, it is helpful if such a neighbor is private with respect to D; that is, if we
are able to choose w ∈ V (G) − D with N(w) ∩ D = {v}. In fact, the choice of a private
neighbor for v is always possible when D is a minimum dominating set, unless v is isolated
in G[D]. The following lemma tells us that if D is optimal, we can improve on this.
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Lemma 4.1. Let G be an isolate-free graph and let D be an optimal dominating set in G. If
v ∈ D is not an isolated vertex in G[D], then v has at least 2 private neighbors with respect
to D.

Proof. Let Gv be the subgraph of G induced by the private neighbors of v. We in fact
show γ(Gv) > 1. Suppose to the contrary that Gv has a dominating vertex w. Let D′ =
(D− v)∪ {w}. Every vertex of G−D′ is either v itself, hence dominated by w, or a private
neighbor of v, hence dominated by w, or a vertex of G − D that is not a private neighbor
of D, hence dominated by D − v. Thus, D′ is a dominating set. Furthermore, as w was
a private neighbor of v, the vertex w is an isolated vertex in D′. In particular, for any
maximum independent set S in D, we see that (S−v)∪{w} is also a maximum independent
set in D′, so D′ has at least as large an independence number as D did. As w is isolated in
D′ but v was not isolated in D, we see that D′ has fewer edges than D, contradicting the
optimality of D. �

Lemma 4.2. Let G be an isolate-free graph and let D be an optimal dominating set in G.
Suppose that the number of isolates in G[D] is a. Then either G has an independent set S
such that S −D dominates D − S, or all of the following are true:

(1) a+ 1 ≤ α(D) ≤ |D| − 3,
(2) |V (G)|+ a ≥ 3 |D|, and
(3) |D| ≥ a+ 5.

Proof. Assuming that G has no such independent set S, we prove each part of the conclusion
separately.

(1) If D is an independent set, then taking S = D gives the desired independent set. Hence
a+ 1 ≤ α(D) ≤ |D| − 1, and we may choose a vertex d∗ ∈ D that is not isolated in G[D]. If
α(D) = |D| − 1, then letting v∗ be a private neighbor of d∗ and taking S = (D − d∗) ∪ {v∗}
gives the desired independent set.

Hence we may assume that α(D) = |D| − 2. Let {d1, . . . , dn} be an ordering of D with
{d1, . . . , dn−2} independent, and let (V1, . . . , Vn) be the standard partition of N(D) with
respect to this ordering.

If there is a pair of nonadjacent vertices vn−1 ∈ Vn−1, vn ∈ Vn, then taking S =
{d1, . . . , dn−2, vn−1, vn} yields an independent set S such that S − D dominates D − S.
Otherwise, there is a complete bipartite graph between Vn−1 and Vn. Taking v∗n−1 and v∗n
to be private neighbors of dn−1 and dn respectively, we see that {d1, . . . , dn−2, v∗n−1, v∗n} is a
dominating set in G having independence number n− 1, contradicting the optimality of D.

(2) Let A be the set of a isolated vertices in D. Notice that if |N(A)| < |A|, then
(D−A)∪N(A) is a dominating set of size less than D, which is impossible. Hence, |N(A)| ≥
|A|. We count |A| as well as |N(A)| and then apply Lemma 4.1, which implies that |V (G)| ≥
|D|+ a+ 2(|D| − a) = 3 |D| − a.

(3) Suppose |D| ≤ a+ 4. By (1) we get |D| − 3 ≥ a+ 1, so in fact |D| = a+ 4. Moreover,
by (1), this means that α(D) = a+ 1, so G[D] ∼= aK1 +K4.

Write D = {d1, . . . , dn} with d1, . . . , dn−4 isolated in G[D], and let (V1, . . . , Vn) be the
standard partition of V (G)−D with respect to this ordering. Suppose first that there is an
independent set S0 in G−D hitting at least three of the sets {Vn−3, . . . , Vn}. Then define S
to be S0 ∪ {d1, . . . , dn−4}; note S is independent. Out of the four vertices in D− S, at most
one is not dominated by S −D. However, if such a vertex exists, then we can add it to S as
well, without violating independence. Thus, we may assume that no such set S0 exists.
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If the pair (Vn−3, Vn−2) is joined by a complete bipartite graph, then we may take v∗n−3
and v∗n−2 to be private neighbors of dn−3 and dn−2 respectively. Now

(D \ {dn−3, dn−2}) ∪ {v∗n−3, v∗n−2}
is a dominating set of G of size |D| containing the independent set

{d1, . . . , dn−4, v∗n−3, dn−1}
of size n− 2, contradicting the optimality of D.

Otherwise, there is a pair of nonadjacent vertices vn−3 ∈ Vn−3 and vn−2 ∈ Vn−2. Since,
by assumption, this pair cannot be extended to an independent set that also hits one of the
sets Vn−1 or Vn, we see that {vn−3, vn−2} dominates Vn−1 ∪ Vn. Thus

{d1, . . . , dn−4} ∪ {dn−3, dn−2, vn−3, vn−2}
is a dominating set in G containing the independent set

{d1, . . . , dn−4, vn−3, vn−2},
contradicting the optimality of D. �

In the remainder of the section we will prove the inverse domination conjecture for graphs
G with γ(G) ≤ 5. In light of the following lemma, it will suffice to prove the conjecture for
graphs with domination number exactly 5.

Lemma 4.3. Let k be a positive integer. If γ−1(G) ≤ α(G) for every isolate-free graph G
with γ(G) = k, then γ−1(G) ≤ α(G) for every isolate-free graph G with γ(G) ≤ k.

Proof. Let G be an isolate-free graph with γ(G) ≤ k, and let t = k − γ(G). Let G′ be
the disjoint union of G and t copies of K2. Now γ(G′) = γ(G) + t = k, so by hypothesis,
γ−1(G′) ≤ α(G′) = α(G) + t. In particular, in G′ we can choose a minimum dominating set
D′ and a second disjoint dominating set T ′ with |T ′| ≤ α(G′). Observe that D′ and T ′ must
each contain one vertex from every added copy of K2. Hence, letting D = D′ ∩ V (G) and
T = T ′∩V (G), we see that |D| = |D′|− t = γ(G) and |T | ≤ α(G′)− t = α(G). Furthermore,
D and T are dominating sets in G. Hence, γ−1(G) ≤ α(G). �

We wish to strengthen the conclusion of Theorem 2.2 by eliminating the maximal inde-
pendent set F inside D, and instead finding a pair of ISRs that jointly dominate the entire
minimum dominating set D. When γ(G) = 5 and α(D) ≤ 2, we are able to do this.

Lemma 4.4. Let D be an optimal dominating set in an isolate-free graph G. Suppose that
|D| = 5, that α(D) ≤ 2, and that G[D] has no isolated vertices. Then there is an ordering
(d1, . . . , d5) of D and a pair of independent sets R1 and R2 such that R1 is an ISR for
(V1, V2, V3) and R2 is an ISR for (V4, V5), where (V1, . . . , V5) is the standard partition of
G−D with respect to this ordering.

Proof. Choose d1, d2 ∈ D so that {d1, d2} is an independent set, if possible. (Thus, d1d2 ∈
E(G) only if D is a clique.) Note that since α(D) ≤ 2, the set {d1, d2} contains a maximal
independent set in D, hence dominates D − {d1, d2}. This implies that there are at least 3
edges from {d1, d2} to the rest of D.

First we argue that there is an independent set {r1, r2} with ri ∈ Vi. If not, then V1 and
V2 are joined by a complete bipartite graph. Let v∗1 and v∗2 be private neighbors of d1 and d2
respectively. Observe that {v∗1, v∗2} ∪ (D \ {d1, d2}) is a dominating set of D. Furthermore,

6

Theory and Applications of Graphs, Vol. 8, Iss. 2 [2021], Art. 5

https://digitalcommons.georgiasouthern.edu/tag/vol8/iss2/5
DOI: 10.20429/tag.2021.080205



there are no edges between {v∗1, v∗2} and D\{d1, d2}. This implies that |E(D′)| ≤ |E(D)|−2,
contradicting the optimality of D. (Note that α(D′) ≥ α(D) since α(D) ≤ 2.)

Now, since D is a minimal dominating set of G, there is some vertex r3 ∈ V (G) not
dominated by {d1, d2, r1, r2}. As {d1, d2} dominates D, we have r3 ∈ V (G) − D. Choose
d3 to be a neighbor of r3 in D. Let R1 = {r1, r2, r3}, and let d4 and d5 be the remaining
vertices of D, ordered arbitrarily. Observe that R1 is an ISR for (V1, V2, V3) in the standard
partition of V (G)−D with respect to this ordering. It remains to find the desired R2.

We claim that there are nonadjacent vertices r4, r5 each with ri ∈ Vi. If not, then V4 and
V5 are joined by a complete bipartite graph. Let v∗4 and v∗5 be private neighbors of d4 and
d5 respectively. Now D′ = {d1, d2, d3, v∗4, v∗5} is a dominating set in D. Furthermore, since
{d1, d2} is a dominating set in D, there are at least two edges in the cut [{d1, d2, d3}, {d4, d5}],
while by contrast there are no edges joining {v∗4, v∗5} with {d1, d2, d3}. Hence |E(D′)| ≤
|E(D)| − 1, contradicting the optimality of D. (Again α(D′) ≥ α(D) since α(D) ≤ 2.) �

Theorem 4.5. If G is an isolate-free graph with γ(G) = 5, then G has a minimum domi-
nating set D such that γ−1(D) ≤ α(G).

Proof. Let D be an optimal dominating set in G. By Lemma 3.2 and by parts (1) and
(3) of Lemma 4.2, we may assume that α(D) ≤ 2 and that D has no isolated vertices. In
particular, since D is not an independent set, we have α(G) ≥ 6, a fact we will use later.

By Lemma 4.4, we see that there is an ordering (d1, . . . , d5) of D and a pair of independent
sets R1, R2 such that R1 is an ISR for (V1, V2, V3) and R2 is an ISR for (V4, V5), where
(V1, . . . , V5) is the standard partition of G−D for the given ordering. Among all such pairs
(R1, R2), choose R1 and R2 to minimize the number of edges from R1 to R2.

If (V1, . . . , V5) has a partial ISR of size 4, then we immediately get the desired conclusion:
taking R to be such an ISR, we see that R dominates all of D except possibly for a single
vertex w ∈ D, so we win by letting S = R ∪ {w} (or S = R) and applying Lemma 3.2.

Thus, (V1, . . . , V5) has no partial ISR of size 4, which implies that R1 is a maximal partial
ISR of this family, and so R1 dominates V4 ∪ V5.

Let T be the set of vertices in G that are not dominated by R1 ∪ R2. If T = ∅ then we
immediately have the desired conclusion, as R1 ∪ R2 is an inverse dominating set of size
γ. Thus we may assume that T is a nonempty subset of V (G) − D, and in particular,
T ⊆ V1 ∪ V2 ∪ V3.

Write R1 = {r1, r2, r3} with ri ∈ Vi. We claim that if T intersects Vj for some j ∈ {1, 2, 3},
then the corresponding vertex rj is not adjacent to any vertex of R2. Otherwise, let r′j ∈
T ∩ Vj, and let R′1 = (R1 \ {rj})∪ {r′j}. Now R′1 is an ISR of (V1, V2, V3) and, since r′j is not
dominated by R1 ∪ R2, there are fewer edges between R′1 and R2 than there were between
R1 and R2. This contradicts the choice of R1 ∪R2, establishing the claim.

In particular, the above claim implies that |i(T )| = 1, since if |i(T )| ≥ 2, then taking
distinct j, k ∈ i(T ), we see that R2 ∪ {rj, rk} is a partial ISR of (V1, . . . , V5) having size 4,
contradicting our earlier claim that the largest such partial ISR has size 3.

Let k be the unique index in i(T ). Let R∗ = (R1 ∪ R2) \ {rk}. We next claim that any
vertex of

⋃
j 6=k Vj not dominated by R∗ is adjacent to all of T . Otherwise, let vj be such a

vertex that is not adjacent to all of T , with vj ∈ Vj.
Let vk be a vertex of T not adjacent to vj. If j ∈ {1, 2, 3}, then let R′2 = R2 ∪ {vj, vk}.

Now R′2 is an independent set, since R2 ⊂ R∗ and neither vj nor vk is dominated by R∗ (by
choice of vj and because vk ∈ T ). As i(R2) = {4, 5} this implies that R′2 is a partial ISR of
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(V1, . . . , V5) having size 4, contradicting the earlier claim that the largest such ISR has size
3. If instead j ∈ {4, 5}, then taking R′1 = (R1 \ {rk})∪{vj, vk} gives the same contradiction.

Hence, any vertex of
⋃
j 6=k Vj not dominated by R∗ is adjacent to all of T . If there is any

vertex of
⋃
j 6=k Vj not dominated by R∗, then let w be such a vertex; now R1∪R2∪{w} is an

inverse dominating set of size 6, where α(G) ≥ 6, and we are done. Hence, we may assume
that R∗ dominates

⋃
j 6=k Vj.

In this case, letD′ = R∗∪{dk}. Since R∗ dominates
⋃
j 6=k Vj, we see that D′ is a dominating

set of G. Since k ≤ 3, the set {dk, r4, r5} is an independent set: if dk were adjacent to r4,
this would imply r4 ∈ Vk, contradicting r4 ∈ V4, and likewise for r5. This contradicts the
optimality of D. �

Corollary 4.6. If |V (G)| ≤ 16 then γ−1(G) ≤ α(G).

Proof. Let G be some graph with γ−1(G) > α(G), and let D be an optimal dominating set
in G. Let a be the number of isolated vertices in G[D]. By Lemma 3.2, there cannot be any
independent set S such that S −D dominates D − S, so by Lemma 4.2, we have:

(2) |V (G)|+ a ≥ 3 |D|, and
(3) |D| ≥ a+ 5.

By Theorem 4.5 and Lemma 4.3, we have γ(G) ≥ 6, so that |D| ≥ 6. If a = 0 then (2) yields
|V (G)| ≥ 18. Otherwise, a ≥ 1, and then (2) combined with (3) yields |V (G)| ≥ 2a + 15 ≥
17. �
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