2012

Estimation of Parameters in Weighted Generalized Beta Distribution of the Second Kind

Yuan Ye
University of Houston

Broderick O. Oluyede
Georgia Southern University, boluyede@georgiasouthern.edu

Marvis Pararai
Indiana University of Pennsylvania

Follow this and additional works at: https://digitalcommons.georgiasouthern.edu/math-sci-facpubs

Part of the Mathematics Commons

Recommended Citation
https://digitalcommons.georgiasouthern.edu/math-sci-facpubs/142

This article is brought to you for free and open access by the Department of Mathematical Sciences at Digital Commons@Georgia Southern. It has been accepted for inclusion in Mathematical Sciences Faculty Publications by an authorized administrator of Digital Commons@Georgia Southern. For more information, please contact digitalcommons@georgiasouthern.edu.
Estimation of Parameters in Weighted Generalized Beta Distributions of the Second Kind

Yuan Ye1, Broderick O. Oluyede2 and Mavis Pararai3

Abstract
This paper applies the class of weighted generalized beta distribution of the second kind (WGB2) as descriptive models for size distribution of income. The properties of WGB2 including mean, variance, coefficient of variation(CV), coefficient of skewness(CS), coefficient of kurtosis(CK) are presented. Other properties including top-sensitive index, bottom-sensitive index, mean logarithmic deviation(MLD) index and Theil index obtained from generalized entropy(GE) are applied in this paper. WGB2 proved to be in the generalized beta-F family of distributions, and maximum likelihood estimation(MLE) is used to obtain the parameter estimates. WGB2 is fitted to U.S. family income (2001-2009) data with different values of the parameters. The empirical results show the length-biased distribution provides the best relative fit.

Mathematics Subject Classification : 62F10
Keywords: WGB2, Income distribution, Entropy, Beta-F family, MLE

1 Introduction

Generalized beta distribution of the second kind (GB2) has been widely used in income distribution. It provides a good description of income distri-
bution and captures the characteristics of size distribution of income such as: skewness, has a peak in low-middle range, and long right hand tail [7]. McDonald [7] adopted different distributions as models for size distribution of income, and found that GB2 provides the best relative fit.

Weighted distribution provides an approach to dealing with model specification and data interpretation problems. Fisher [3] and Rao [12] introduced and unified the concept of weighted distribution. Cox [1] and Zelen [17] used it to present length biased sampling. The usefulness and applications of weighted distribution to biased samples in various areas including medicine, ecology, reliability, and branching processes can also be seen in Nanda and Jain [9], Gupta and Keating [2], Oluyede [10] and in references therein.

Suppose Y is a non-negative random variable with its natural pdf $f(y; \theta)$, θ is a parameter, then the pdf of the weighted random variable Y^w is given by:

$$f^w(y; \theta, \beta) = \frac{w(y, \beta)f(y; \theta)}{\omega}, \quad (1)$$

where the weight function $w(y, \beta)$ is a non-negative function, that may depend on the parameter β, and $0 < \omega = E(w(Y, \beta)) < \infty$ is a normalizing constant.

This paper applies the class of WGB2 as descriptive models for the size distribution of income. The properties of WGB2 such as moments and generalized entropy (GE) are presented in Section 2. Section 3 applies WGB2 in the size distribution of income. WGB2 is fitted to U.S. family income data (2001-2009) with different values of the parameter k in Section 4. The parameter estimates of WGB2 are obtained and empirical results are presented. Section 5 contains an application of the results to US family nominal income for the years 2001 to 2009.

2 The Distribution and Special Cases

Weighted generalized beta distribution of the second kind (WGB2) with polynomial weight function $w(y) = y^k$ is a very flexible five-parameter distribution. The probability density function (pdf) of WGB2 is given by:

$$g_{\text{WGB2}}(y; a, b, p, q, k) = \frac{a q a p + k - 1}{b a p + k B(p + \frac{k}{a}, q - \frac{k}{a})[1 + (\frac{y}{b})^a]^{p+q}}, \quad (2)$$

where $y > 0$, $a, b, p, q > 0$ and $-ap < k < aq$.

WGB2 includes GB2 as a special case, it also includes several other weighted distributions as special or limiting cases: WGG (weighted generalized gamma), WB2 (weighted beta of the second kind), WSM (weighted Singh Maddala),
Figure 1: Graph Tree

WD (weighted Dagum), WG (weighted gamma), WW (weighted Weibull) and WE (weighted exponential). The distribution tree is given below:

Jones and Faddy [5] introduced the concept of generalized beta-F distribution:

\[g_F(y; \alpha, \beta) = B(\alpha, \beta)^{-1} f(y)[F(y)]^{\alpha-1}[1 - F(y)]^{\beta-1}, \]

where \(f(y) \) is the derivative of \(F(y) \), \(B(\alpha, \beta) = \frac{\Gamma(\alpha)\Gamma(\beta)}{\Gamma(\alpha+\beta)} \) is the beta function.

Sepanski and Kong [14] applied the generalized beta-F family in size distribution of income and obtained the parameter estimates. They concluded that log-F followed by GB2 provides the best relative fit.

3 Related Results

From our previous work, we obtain the moments of WGB2 with weight function \(w(y) = y^k \), that is

\[E_{G_{WGB2}}(Y^j) = \frac{b^j B(p + \frac{k}{a} + \frac{j}{a}, q - \frac{k}{a} - \frac{j}{a})}{B(p + \frac{k}{a}, q - \frac{k}{a})}. \]

(3)

The corresponding mean and variance are given by

\[\mu_{G_{WGB2}} = E_{G_{WGB2}}(Y) = \frac{b B(p + \frac{k}{a} + \frac{1}{a}, q - \frac{k}{a} - \frac{1}{a})}{B(p + \frac{k}{a}, q - \frac{k}{a})}, \]

(4)
and

\[Var_{WGB2}(Y) = b^2 \left[\frac{B(p + \frac{k+2}{a}, q - \frac{k+2}{a})}{B(p + \frac{k}{a}, q - \frac{k}{a})} - \left(\frac{p + \frac{k+1}{a} - \frac{k+1}{a}}{p + \frac{k}{a} - \frac{k}{a}} \right)^2 \right] . \]

respectively. The coefficient of variation (CV) is given by

\[CV_{WGB2} = \sqrt{\frac{B(p + \frac{k+2}{a}, q - \frac{k+2}{a})B(p + \frac{k}{a}, q - \frac{k}{a})}{B^2(p + \frac{k+1}{a}, q - \frac{k+1}{a})}} - 1. \]

Similarly, the coefficient of skewness and coefficient of kurtosis are

\[CS = \frac{E[Y^3] - 3\mu E[Y^2] + 2\mu^3}{\sigma^3}, \]

and

\[CK = \frac{E[Y^3] - 4\mu E[Y^3] + 6\mu^2 E[Y^2] - 3\mu^4}{\sigma^4}, \]

where

\[\mu = \mu_{WGB2}, \quad \sigma = \sqrt{Var_{WGB2}(Y)}, \quad E[Y^2] = \frac{b^2 B(p + \frac{k}{a} + \frac{2}{a}, q - \frac{k}{a} - \frac{2}{a})}{B(p + \frac{k}{a}, q - \frac{k}{a})}, \]

\[E[Y^3] = \frac{b^3 B(p + \frac{k}{a} + \frac{3}{a}, q - \frac{k}{a} - \frac{3}{a})}{B(p + \frac{k}{a}, q - \frac{k}{a})}, \quad \text{and} \quad E[Y^4] = \frac{b^4 B(p + \frac{k}{a} + \frac{4}{a}, q - \frac{k}{a} - \frac{4}{a})}{B(p + \frac{k}{a}, q - \frac{k}{a})}. \]

The generalized entropy (GE) is widely used to measure inequality trends and differences. It is primarily used in income distribution. Generalized entropy \(I(\alpha) \) for WGB2 is given by:

\[I(\alpha) = \frac{B(p + \frac{k}{a} + \frac{\alpha}{a}, q - \frac{k}{a} - \frac{\alpha}{a}) B^{-\alpha}(p + \frac{k}{a} + \frac{1}{a}, q - \frac{k}{a} - \frac{1}{a}) - B^{1-\alpha}(p + \frac{k}{a}, q - \frac{k}{a})}{\alpha(\alpha - 1)B^{1-\alpha}(p + \frac{k}{a}, q - \frac{k}{a})}, \]

where \(\alpha \neq 0 \) and \(\alpha \neq 1 \). The bottom-sensitive index is \(I(-1) \), and the top-sensitive index is \(I(2) \). Moreover, the mean logarithmic deviation (MLD) index and Theil index are:

\[I(0) = \log \frac{B(p + \frac{k+1}{a}, q - \frac{k+1}{a})}{B(p + \frac{k}{a}, q - \frac{k}{a})} - \frac{\psi(p + \frac{k}{a})}{a} - \frac{\psi(q - \frac{k}{a})}{a}, \]

and

\[I(1) = \frac{\psi(p + \frac{k+1}{a})}{a} - \frac{\psi(q - \frac{k+1}{a})}{a} - \log \frac{B(p + \frac{k+1}{a}, q - \frac{k+1}{a})}{B(p + \frac{k}{a}, q - \frac{k}{a})}. \]

respectively.
4 Estimation of Parameters

For WGB2 with weight function \(w(y) = y^k \), the pdf can be written as:

\[
g_w(y; a, b, p, q) = B^{-1}\left(p + \frac{k}{a}, q - \frac{k}{a} \right) \left(\frac{y}{b} \right)^a \left[1 + \left(\frac{y}{b} \right)^a \right]^{-(p+q)}.\]

If we set \(F(y) = 1 - (1 + (\frac{y}{b})^a)^{-1} \), then \(f(y) = \frac{a b}{y} \left(\frac{y}{b} \right)^{-a} \left[1 + (\frac{y}{b})^a \right]^{-2} \) and

\[
g_w(y; a, b, p, q) = B^{-1}\left(p + \frac{k}{a}, q - \frac{k}{a} \right) f(y) [F(y)]^{p+\frac{k}{a}-1} [1 - F(y)]^{q-\frac{k}{a}-1}. \tag{12}\]

Clearly, this distribution belongs to the beta - F class of distributions with \(F(y) = 1 - \left[1 + (\frac{y}{b})^a \right]^{-1} = \frac{y^a}{b^a + y^a}. \tag{13}\)

Let \(\theta = (a, b, p, q)^T \) be a column vector of parameters associated with the income distribution. The income distribution is given by:

\[
P_i(\theta) = B^{-1}\left(p + \frac{k}{a}, q - \frac{k}{a} \right) \int_{F(y_{i-1})}^{F(y_i)} t^{p+\frac{k}{a}-1} (1 - t)^{q-\frac{k}{a}-1} dt, \tag{14}\]

where \(P_i(\theta) \) denotes the estimated proportion of the population in the \(i^{th} \) interval of the \(r \) income groups defined by the interval \(I_i = [y_{i-1}, y_i] \). The multinomial likelihood function for the data is given by:

\[
N! \prod_{i=1}^{r} \frac{[P_i(\theta)]^{n_i}}{n_i!},
\]

where \(n_i, i = 1, 2, ..., r \) denotes the observed frequency in the \(i^{th} \) group and \(N = \sum_{i=1}^{r} n_i \). We maximize:

\[
L(\theta) = \sum_{i=1}^{r} n_i \ln P_i(\theta),
\]

where \(P_i(\theta) = \int_{F(y_{i-1})}^{F(y_i)} h(t) dt \), and \(h(t) = B^{-1}(p + \frac{k}{a}, q - \frac{k}{a}) t^{p+\frac{k}{a}-1} (1 - t)^{q-\frac{k}{a}-1} \). Sepanski and Kong [14] pointed out that obtaining \(P_i \) by computing the cdf of a beta random at \(F(y_{i-1}) \) and \(F(y_i) \) can reduce the complexity of programming required to calculate the integrations.

The first derivative with respect to \(\theta = (a, b, p, q)^T \) are:

\[
\frac{dL(\theta)}{d\theta} = \sum_{i=1}^{r} \frac{n_i}{P_i(\theta)} \frac{dP_i(\theta)}{d\theta}. \tag{15}\]
The partial derivative equations of $P_i(\theta)$ with respect to a, b, p, q are given by:

\[
\frac{\partial P_i(\theta)}{\partial a} = h(F(y_i)) \frac{b^a y_i^a (\ln y_i - \ln b)}{(b^a + y_i^a)^2} - h(F(y_{i-1})) \frac{b^a y_{i-1}^a (\ln y_{i-1} - \ln b)}{(b^a + y_{i-1}^a)^2} + \int_{F(y_i)}^{F(y_{i-1})} \frac{k h(t)}{a^2} \left[\Psi \left(p + \frac{k}{a} \right) - \Psi \left(q - \frac{k}{a} \right) + \ln \frac{1-t}{t} \right] dt,
\]

(16)

\[
\frac{\partial P_i(\theta)}{\partial b} = -ab^a \left[1 - \frac{h(F(y_i)) y_i^a}{(b^a + y_i^a)^2} - \frac{h(F(y_{i-1})) y_{i-1}^a}{(b^a + y_{i-1}^a)^2} \right],
\]

(17)

\[
\frac{\partial P_i(\theta)}{\partial p} = \int_{F(y_i)}^{F(y_{i-1})} h(t) \left[-\Psi \left(p + \frac{k}{a} \right) + \Psi(p + q) + \ln t \right] dt,
\]

(18)

and

\[
\frac{\partial P_i(\theta)}{\partial q} = \int_{F(y_i)}^{F(y_{i-1})} h(t) \left[-\Psi \left(q - \frac{k}{a} \right) + \Psi(p + q) + \ln(1-t) \right] dt,
\]

(19)

where $\Psi(x) = \frac{d}{dx} \Gamma(x)$. Using the equations (15)-(18) in equation (14), we can obtain the gradient functions of $L(\theta)$ with respect to parameters a, b, p, q.

The partial derivative equation (15) exists when $k > 0$. If $k = 0$, the partial derivative equation of P_i with respect to a is given by:

\[
\frac{\partial P_i(\theta)}{\partial a} = b^a \left[\frac{h(F(y_i)) (y_i)^a (\ln y_i - \ln b)}{(b^a + y_i^a)^2} - \frac{h(F(y_{i-1})) (y_{i-1})^a (\ln y_{i-1} - \ln b)}{(b^a + y_{i-1}^a)^2} \right].
\]

(20)

5 Applications

In this section, we obtain parameter estimates based on our previous discussions and results. WGB2 was fitted to U.S. family nominal income for 2001-2009. The groups consist of families whose income are in the corresponding income interval $I_i = [y_{i-1}, y_i)$, the n_i/N are the observed relative frequencies ($N = \sum n_i$).

The common way to obtain parameter estimates is to maximize the multinomial likelihood function. Since the likelihood function is nonlinear and complicated, we use MATLAB to search for the maximum value of multinomial
likelihood function. The results of this estimation for 2001, 2005, and 2009 are reported in Tables 2-4.

Based on the sum of squares error (sse) value we can conclude that: the length-biased WGB2 \((k = 1) \) provides a better fit than GB2 \((k = 0) \) and other WGB2 \((k = 2, 3, 4) \). If we plug the estimated parameters in the partial derivative equations in Section 4, we obtain the values of these partial derivative equations in Table 5-7. From the tables, we find that these values are close to zero or very small, this means that the estimated parameters that we obtained are precise and effective.

Since we have already obtained estimates of parameters for WGB2 in Section 4, and found that the length-biased WGB2 provides the best fit to income distribution, we can apply these estimated parameters from length-biased WGB2 model to obtain the estimates of the mean, variance, coefficient of variation, skewness and kurtosis, bottom sensitive index, top-sensitive index, MLD index and Theil index. The results are presented in Table 8.

6 Concluding Remarks

In this paper, the weighted generalized beta distribution of the second kind (WGB2) was fitted to U.S. family income data (2001-2009). The maximum likelihood estimation (MLE) is used for estimating the parameters of the income distribution model. The results showed that the length-biased WGB2 provides the best relative fit to income data. Based on previously obtained descriptive measures for WGB2, we estimate the mean, variance, coefficient of variation, coefficient of skewness, coefficient of kurtosis, bottom-sensitive index, top-sensitive index, MLD index and Theil index of the income data.

ACKNOWLEDGEMENTS. The authors wish to express their gratitude to the referees and editor for their valuable comments.

\(^4\)The data were taken from the Census Population Report

\(^5\)By setting different initial values and using ’fminsearchbnd’ to search for the maximum log likelihood values
References

Estimation of Parameters in WGB2

Table 1: U.S. family nominal income for 2001-2009

<table>
<thead>
<tr>
<th>([y_{i-1}, y_i)) (thousand)</th>
<th>observed relative frequencies (n_i/N)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>2001</td>
</tr>
<tr>
<td>[0,15)</td>
<td>13</td>
</tr>
<tr>
<td>[15,25)</td>
<td>11.9</td>
</tr>
<tr>
<td>[25,35)</td>
<td>11.1</td>
</tr>
<tr>
<td>[50,75)</td>
<td>18.1</td>
</tr>
<tr>
<td>[75,100)</td>
<td>11.5</td>
</tr>
<tr>
<td>[100,150)</td>
<td>11.9</td>
</tr>
<tr>
<td>[150,200)</td>
<td>4.4</td>
</tr>
<tr>
<td>[200,(\infty))</td>
<td>3.8</td>
</tr>
</tbody>
</table>
Table 2: Estimated parameters of WGB2 for income distribution (2001)

<table>
<thead>
<tr>
<th></th>
<th>(k = 0)</th>
<th>(k = 1)</th>
<th>(k = 2)</th>
<th>(k = 3)</th>
<th>(k = 4)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(a)</td>
<td>1.403</td>
<td>1.405</td>
<td>0.669</td>
<td>0.4487</td>
<td>0.3376</td>
</tr>
<tr>
<td>(b)</td>
<td>16.66</td>
<td>16.488</td>
<td>11408.457</td>
<td>5463.111</td>
<td>15213.5</td>
</tr>
<tr>
<td>(p)</td>
<td>0.999</td>
<td>0.288</td>
<td>0.000001</td>
<td>0.001681</td>
<td>0.037333</td>
</tr>
<tr>
<td>(q)</td>
<td>3.963</td>
<td>4.629</td>
<td>470.178</td>
<td>154.668</td>
<td>187.036</td>
</tr>
<tr>
<td>sse*10000</td>
<td>1.208234</td>
<td>1.208159</td>
<td>2.509558</td>
<td>8.463283</td>
<td>13.220825</td>
</tr>
</tbody>
</table>

Table 3: Estimated parameters of WGB2 for income distribution (2005)

<table>
<thead>
<tr>
<th></th>
<th>(k = 0)</th>
<th>(k = 1)</th>
<th>(k = 2)</th>
<th>(k = 3)</th>
<th>(k = 4)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(a)</td>
<td>1.423</td>
<td>1.383</td>
<td>0.646</td>
<td>0.432</td>
<td>0.339</td>
</tr>
<tr>
<td>(b)</td>
<td>15.502</td>
<td>16.621</td>
<td>12800.159</td>
<td>6595.86</td>
<td>4379.966</td>
</tr>
<tr>
<td>(p)</td>
<td>0.961</td>
<td>0.271989</td>
<td>0.000003</td>
<td>0.004804</td>
<td>0.00976</td>
</tr>
<tr>
<td>(q)</td>
<td>3.582</td>
<td>4.648</td>
<td>446.0185</td>
<td>156.662</td>
<td>127.893</td>
</tr>
<tr>
<td>sse*10000</td>
<td>0.520372</td>
<td>0.518495</td>
<td>2.109663</td>
<td>8.049098</td>
<td>13.146924</td>
</tr>
</tbody>
</table>

Table 4: Estimated parameters of WGB2 for income distribution (2009)

<table>
<thead>
<tr>
<th></th>
<th>(k = 0)</th>
<th>(k = 1)</th>
<th>(k = 2)</th>
<th>(k = 3)</th>
<th>(k = 4)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(a)</td>
<td>1.090</td>
<td>1.092</td>
<td>0.654</td>
<td>0.440</td>
<td>0.341</td>
</tr>
<tr>
<td>(b)</td>
<td>26.596</td>
<td>26.695</td>
<td>2324.550</td>
<td>3550.805</td>
<td>3964.261</td>
</tr>
<tr>
<td>(p)</td>
<td>1.413</td>
<td>0.493</td>
<td>0.000005</td>
<td>0.001079</td>
<td>0.002585</td>
</tr>
<tr>
<td>(q)</td>
<td>7.209</td>
<td>8.148</td>
<td>157.039</td>
<td>125.837</td>
<td>124.988</td>
</tr>
<tr>
<td>sse*10000</td>
<td>0.471333</td>
<td>0.467639</td>
<td>1.078739</td>
<td>6.085883</td>
<td>10.444168</td>
</tr>
</tbody>
</table>

Table 5: Values of partial derivative equations of WGB2 (2009)

<table>
<thead>
<tr>
<th></th>
<th>(k = 0)</th>
<th>(k = 1)</th>
<th>(k = 2)</th>
<th>(k = 3)</th>
<th>(k = 4)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\frac{\partial L(\theta)}{\partial a})</td>
<td>0.0255</td>
<td>-0.0029</td>
<td>0.0397</td>
<td>-0.1732</td>
<td>-0.1347</td>
</tr>
<tr>
<td>(\frac{\partial L(\theta)}{\partial b})</td>
<td>-0.0017</td>
<td>-0.0001</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>(\frac{\partial L(\theta)}{\partial p})</td>
<td>-0.0105</td>
<td>-0.0048</td>
<td>-0.0791</td>
<td>-0.1077</td>
<td>-0.0625</td>
</tr>
<tr>
<td>(\frac{\partial L(\theta)}{\partial q})</td>
<td>0.007</td>
<td>-0.0005</td>
<td>0</td>
<td>0.0004</td>
<td>0</td>
</tr>
</tbody>
</table>
Table 6: Values of partial derivative equations of WGB2 for (2005)

<table>
<thead>
<tr>
<th></th>
<th>(k = 0)</th>
<th>(k = 1)</th>
<th>(k = 2)</th>
<th>(k = 3)</th>
<th>(k = 4)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\frac{\partial L(\theta)}{\partial a})</td>
<td>-0.0069</td>
<td>-0.0341</td>
<td>0.0028</td>
<td>-0.0922</td>
<td>0.0033</td>
</tr>
<tr>
<td>(\frac{\partial L(\theta)}{\partial b})</td>
<td>-0.0021</td>
<td>-0.0017</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>(\frac{\partial L(\theta)}{\partial p})</td>
<td>0.0118</td>
<td>0.0422</td>
<td>-0.1075</td>
<td>-0.097</td>
<td>-0.0638</td>
</tr>
<tr>
<td>(\frac{\partial L(\theta)}{\partial q})</td>
<td>-0.0007</td>
<td>-0.0058</td>
<td>0.0002</td>
<td>0.001</td>
<td>-0.0001</td>
</tr>
</tbody>
</table>

Table 7: Values of partial derivative equations of WGB2 (2001)

<table>
<thead>
<tr>
<th></th>
<th>(k = 0)</th>
<th>(k = 1)</th>
<th>(k = 2)</th>
<th>(k = 3)</th>
<th>(k = 4)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\frac{\partial L(\theta)}{\partial a})</td>
<td>-0.0283</td>
<td>-0.0502</td>
<td>-0.2614</td>
<td>-0.6607</td>
<td>3.2358</td>
</tr>
<tr>
<td>(\frac{\partial L(\theta)}{\partial b})</td>
<td>-0.0031</td>
<td>-0.0123</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>(\frac{\partial L(\theta)}{\partial p})</td>
<td>0.0173</td>
<td>-0.1533</td>
<td>-0.1243</td>
<td>-0.1381</td>
<td>-0.0055</td>
</tr>
<tr>
<td>(\frac{\partial L(\theta)}{\partial q})</td>
<td>-0.0009</td>
<td>0.0327</td>
<td>0.0003</td>
<td>0.0011</td>
<td>-0.0028</td>
</tr>
</tbody>
</table>

Table 8: Estimated statistics for income distribution (\(k = 1 \) in WGB2)

<table>
<thead>
<tr>
<th>Year</th>
<th>Est.mean</th>
<th>Est.Var</th>
<th>Est.CV</th>
<th>Est.CS</th>
<th>Est.CK</th>
</tr>
</thead>
<tbody>
<tr>
<td>2001</td>
<td>6.759468</td>
<td>38.091976</td>
<td>0.913070</td>
<td>-4.242920</td>
<td>24.013806</td>
</tr>
<tr>
<td>2005</td>
<td>6.719345</td>
<td>39.169450</td>
<td>0.931423</td>
<td>-4.114463</td>
<td>25.864490</td>
</tr>
<tr>
<td>2009</td>
<td>6.629841</td>
<td>37.111483</td>
<td>0.918864</td>
<td>-4.195311</td>
<td>16.203708</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Year</th>
<th>Est.I(-1)</th>
<th>Est.I(2)</th>
<th>Est.MLE</th>
<th>Est.Theil</th>
</tr>
</thead>
<tbody>
<tr>
<td>2001</td>
<td>1.150014</td>
<td>0.416849</td>
<td>0.396929</td>
<td>1.758663</td>
</tr>
<tr>
<td>2005</td>
<td>1.252677</td>
<td>0.433774</td>
<td>0.410256</td>
<td>1.789568</td>
</tr>
<tr>
<td>2009</td>
<td>1.033116</td>
<td>0.422155</td>
<td>0.402408</td>
<td>3.567591</td>
</tr>
</tbody>
</table>