Methodology and/or Technology: Making Difference in Improving Students’ Problem Solving Skills

Zdeslav Hrepic
Columbus State University

Katherine Lodder
Columbus State University

Kimberly Shaw
Columbus State University

Follow this and additional works at: https://digitalcommons.georgiasouthern.edu/stem

Part of the *Curriculum and Instruction Commons, Educational Methods Commons, Higher Education Commons, Instructional Media Design Commons,* and the *Science and Mathematics Education Commons*

Recommended Citation
Hrepic, Zdeslav; Lodder, Katherine; and Shaw, Kimberly, "Methodology and/or Technology: Making Difference in Improving Students' Problem Solving Skills" (2012). *Interdisciplinary STEM Teaching & Learning Conference*. 61.
https://digitalcommons.georgiasouthern.edu/stem/2012/2012/61

This event is brought to you for free and open access by the Conferences & Events at Digital Commons@Georgia Southern. It has been accepted for inclusion in Interdisciplinary STEM Teaching & Learning Conference by an authorized administrator of Digital Commons@Georgia Southern. For more information, please contact digitalcommons@georgiasouthern.edu.
Methodology and/or Technology: Making Difference in Improving Students’ Problem Solving Skills

Zdeslav Hrepic, Katherine Lodder, Kimberly Shaw
Columbus State University

Georgia Scholarship of STEM Teaching and Learning
March 2012

Georgia Southern University
Motivation

Eh, what’s down Doc?
Session Goals

1. DEMO
 • to demonstrate the instructor-student classroom interaction dynamics enabled or facilitated by DyKnow software and pen-input computers.

2. SELECTED RESEARCH
 • to present selected research findings associated with student learning with this technology.
Pen-Input Computing

- Tablet PC
- Laptop w/ Wacom Bamboo

+ Slate Devices / iPad
Simultaneity and clock Synchronization

0: Clock 1 at $x_1 = 0$; starts at $t_1 = \frac{L}{2c}$

Clock 2 at $x_2 = L$; starts at $t_2 = \frac{L}{2c}$

0: $t'_1 = t_1 - \frac{u}{c^2}x_1 = \gamma \left(\frac{L}{2c} - 0 \right) = \gamma \cdot \frac{L}{2c}$

$t'_2 = t_2 - \frac{u}{c^2}x_2 = \gamma \left(\frac{L}{2c} - \frac{u}{c^2} \cdot L \right)$

$\Delta t' = t'_1 - t'_2 = \gamma \cdot \frac{uL}{c^2}$
Eg: A Young’s interference experiment is performed with blue-green argon laser light. The separation between the slits is 0.500 mm, and the interference pattern on a screen 3.30 m away shows the first maximum 3.40 mm from the center of the pattern. What is the wavelength of argon laser light?

\[
\begin{align*}
 d &= 0.500 \text{ mm} \\
 D &= 3.30 \text{ m} \\
 y_{\text{bright}} &= 3.4 \text{ mm (}m=1\text{)} \\
 \lambda &= \text{?} \\
 y_{\text{bright}} &= \frac{\lambda D}{d} \quad m \\
 m &= 0, \pm 1, \pm 2 \\
 \lambda &= \frac{y_m d}{m D} = 5.15 \text{ nm} \\
\end{align*}
\]

Better:

For max: \(dsin\varphi = n \lambda \)

\[
\lambda = \frac{dsin\varphi}{n} = \frac{0.500 \times 10^{-3} \text{ m} \cdot \sin \varphi}{1}
\]

\(\varphi \) from

\[
\tan \varphi = \frac{y}{D} = \frac{3.4 \times 10^{-3} \text{ m}}{3.30 \text{ m}}
\]
Above “Ordinary” Usage

What if:
• Many Tablet PCs
• + Wirelessly networked
• + Interactive Software?
Integrating Engagement, Collaboration and IN class learning

What if:
- Many Tablet PCs
- + Wirelessly networked
- ++ Interactive Software?
Integrating Engagement, Collaboration and IN class learning

What if:
- Many Tablet PCs
- + Wirelessly networked
- ++ Interactive Software?
Integrating Engagement, Collaboration and IN class learning

What if:
- Many Tablet PCs
- Wirelessly networked
- Interactive Software?

Engagement Collaboration
In-class learning

Guiding principles for implementation (2005)
Interactive Software Solutions

DyKnow; Classroom Presenter (Ubiquitous presenter)

UP: http://up.ucsd.edu/about/WhatIsUP.html
Demo: DyKnow
3 levels above “ordinary Tablet usage”

0 - Tablet usage baseline

1 - Step 1 up: New dynamics of the note taking

2 - Step 2 up: Multiple channels of real-time feedback

3 - Step 3 up: All in control: Students in charge of the teaching/learning game

- Synergy of 1 & 2 & 3
DyKnow – The solution found: 3 levels above “ordinary Tablet usage”

0 - Tablet usage baseline

1 - Step 1 up: New dynamics of the note taking

2 - Step 2 up: Multiple channels of real-time feedback

3 - Step 3 up: All in control: Students in charge of the teaching/learning game

• Synergy of 1 & 2 & 3
DyKnow – The solution found: 3 levels above “ordinary Tablet usage”

0 - Tablet usage baseline

1 - **Step 1 up:** New dynamics of the note taking

2 - **Step 2 up:** Multiple channels of real-time feedback

3 - **Step 3 up:** All in control: Students in charge of the teaching/learning game

- **Synergy of 1 & 2 & 3**
Usernames: demo1 ... demo7

Password: _____

Check Communication setting:
dyknow://wdyn01.columbusstate.edu
Join session
Step 1 above ordinary: Note Taking (Home Tab)
Prism disperses electromagnetic energy into its component parts.

Spectrum of wavelengths emitted by bodies at different temperatures

http://sol.sci.uop.edu/~jfalward/particlesandwaves/particlesandwaves.html
Feature set 1: New dynamics of the note taking

Content Annotations

A Particle’s Momentum

The area under the rectangle is $F_{avg} \Delta t$, its width Δt multiplied by its height F_{avg}. The area represents the impulse \mathbf{J}, which is equal to the change in momentum $\Delta \mathbf{p}$.

\[\mathbf{J} = \mathbf{F}_{avg} \Delta t = \mathbf{p}_f - \mathbf{p}_i \]

\[\mathbf{F}_{avg} = \frac{\mathbf{F}}{t_f - t_i} \]

\[\mathbf{F}_{avg} \cdot \Delta t = m (\mathbf{v}_f - \mathbf{v}_i) \]

\[\mathbf{p} = m \mathbf{v} \left[\frac{ky}{m} \frac{m}{s} \right] \]
Feature set 1: New dynamics of the note taking
Problem Solving

When Does the Block Slip?

EXAMPLE 8.7 When does the block slip?
Figure 8.21 shows a spring attached to a 2.0 kg block. The other end of the spring is pulled by a motorized train that moves forward at 5.0 cm/s. The spring constant is 50 N/m and the coefficient of static friction between the block and the surface is 0.60. The spring is at its equilibrium length at $t = 0$ s when the train starts to move. When does the block slip?
New dynamics of the note taking
Problem Solving - Record

At time of slip:

\[f_s = F_s \]

\[\mu_s mg = k \cdot ax \]

\[ky \frac{m}{s^2} \frac{N}{m} \]

\[f_s = n \cdot \mu_s = mg \mu_s \]
Feature set 1: Note Taking fancy tools
(Insert Tab and other Tabs)
Postulating basic form of free particle de Broglie wave

\[\Psi(x,t) = A \sin (kx - \omega t) \]

\[k = \frac{2\pi}{\lambda}, \quad \omega = 2\pi v \]

→ representing wave of amplitude A traveling in +x dir

Equivalent to

\[\Psi(x,t) = A \sin (kx - \omega t) \]

\[\overrightarrow{E}(x,t) = \overrightarrow{E}_0 \sin (kx - \omega t) \]

\[\overrightarrow{B}(x,t) = \overrightarrow{B}_0 \sin (kx - \omega t) \]

Consider time independent, stationary case:

\[\Psi(x) = \Psi(x,t=0) \]

\[\Psi(x) = A \sin kx \]
Benefits of the new dynamics of the note taking

Old dilemma resolved: Can have both: Notes + Understanding

- Time saving
- Accuracy
- Interaction/Discussion
- Monitoring
- Display of Students’ slides

Other advantages when compared with Tablets + PowerPoint:

- Students’ notes synchronized with instructor’s: (all on same page & no copying)
- No double posting (before and after class)
- Playback slide – problem solving gem
- Synchronization (On / Off option)
Step 2

Status: Are you with me?

Chat: Embarrassed to ask?

Pooling: Embedded Clickers

Slide submission: Open-ended questions and numerical problems

The total electric flux through this box is

- A. 6 Nm^2/C.
- B. 4 Nm^2/C.
- C. 2 Nm^2/C.
- D. 1 Nm^2/C.
- E. 0 Nm^2/C.

Example (text problem 21.10)

A hair dryer has a power rating of 1200 W at 120 V rms. Assume the hair dryer is the only resistance in the circuit.

(a) What is the resistance of the heating element?

(b) What is the rms current drawn by the hair dryer?

(c) What is the maximum instantaneous power that the resistance must withstand?

\[
P_{\text{av}} = \frac{P_{\text{rms}}}{V_{\text{rms}}} = \frac{1200 \text{ W}}{120 \text{ V}} = 10 \text{ Amps}
\]

\[
R_{\text{rms}} = \frac{P_{\text{rms}}}{V_{\text{rms}^2}} = \frac{1200 \text{ W}}{(120 \text{ V})^2} = 10 \text{ A}
\]

\[
P_{\text{max}} = I_{\text{rms}} V_{\text{rms}} = 10 \text{ A} \cdot 120 \text{ V} = 1200 \text{ W}
\]
Step 2 up from ordinary: Multiple channels of real-time feedback

- **Status:** Are you with me?

[Video Link](http://www.youtube.com/watch?v=s2e_QL-QHpw)
Step 2 up from ordinary: Multiple channels of real-time feedback

- **Status:** Are you with me?

- **Chat:** Embarrassed to ask?
Channels of real-time feedback

- **Status:** Are you with me?
 - Status: Select Your Status

- **Chat:** Embarrassed to ask?
 - Chat icon

- **Pooling:** Embedded Clickers
 - Pooling icon

Quiz

DyKnow is a:

- a) Hair dying method
- b) Washer/Drier combo
- c) Software for interactive learning
A multiple-choice question and obtained distribution of students' answers incorporated into the panel.
The total electric flux through this box is

A. 6 Nm2/C.
B. 4 Nm2/C.
C. 2 Nm2/C.
D. 1 Nm2/C.
E. 0 Nm2/C.
Multiple channels of real-time feedback
Pooling

Aristotle on Motion

♦ “Any object in motion on earth requires a force to keep it going.”

♦ (The only exceptions were objects that were returning to their natural positions, such as a rock that is made of earth, falling out of air to its lower natural position.)

True
False

![Bar graph showing responses]

![Bar graph showing responses]
Step 2 up from ordinary: Multiple channels of real-time feedback
Step 2 up from ordinary: Multiple channels of real-time feedback

- **Status:** Are you with me?

- **Chat:** Embarrassed to ask?

- **Pooling:** Embedded Clickers

- **Slide submission:** Open-ended questions and numerical problems

Write below the name of the most famous scientist of 20th century and submit the slide with answer:
EXPLAIN: Model Building

- Is **any motion needed** in order for sound to propagate (that does not exist when sound does not propagate)?
 Yes, you need motion

- If so, **motion of what?** What it is that moves for this purpose?
 Sound waves

- **What kind of motion?** How it (whatever moves) moves?
 Every which way

- Is there **anything that obstructs the motion?**
 Yes

- **How is this motion related to sound?**
 Because it is moving it is making sound.
Multiple channels of real-time feedback
Student Slide Submissions - Laptop

Problems 29 through 35 describe a situation. For each, identify all forces acting on the object and draw a free-body diagram of the object.

29. Your car is sitting in the parking lot.
30. Your car is accelerating from a stop.
31. Your car is slowing to a stop from a high speed.
32. An ice hockey puck glides across frictionless ice.
33. An elevator, hanging from a cable, descends at steady speed.
34. Your physics textbook is sliding across the table.
35. You hold a picture motionless against a wall by pressing on it, as shown in Figure P4.35.
Multiple channels of real-time feedback
Student Slide Submissions - Tablet

Example (text problem 21.10)

A hair dryer has a power rating of 1200 W at 120 V rms. Assume the hair dryer is the only resistance in the circuit.

(a) What is the resistance of the heating element?
(b) What is the rms current drawn by the hair dryer?
(c) What is the maximum instantaneous power that the resistance must withstand?

\[V_{\text{rms}} = 120 \text{ V} \]
\[P = 1200 \text{ W} \]

\[I_{\text{rms}} = \frac{P}{V_{\text{rms}}} = \frac{1200 \text{ W}}{120 \text{ V}} = 10 \text{ Amps} \]

\[P_{\text{av}} = I_{\text{rms}}^2 R \Rightarrow R = \frac{P_{\text{av}}}{I_{\text{rms}}^2} = \frac{1200 \text{ W}}{10 \text{ A}^2} = 120 \Omega \]

\[V_{\text{rms}} = 120 \text{ V} \]
\[I_{\text{rms}} = \frac{P}{V_{\text{rms}}} = \frac{1200 \text{ W}}{120 \text{ V}} = 10 \text{ A} \]

\[P_{\text{max}} = I_{\text{rms}} V_{\text{rms}} = I_{\text{rms}} \sqrt{2} \cdot V_{\text{rms}} \sqrt{2} = 10 \text{ A} \cdot \sqrt{2} \cdot 120 \text{ V} \cdot \sqrt{2} = 2400 \text{ W} \]
Benefits:
Multiple channels of real-time feedback

- Heard without voice
- All benefits of formative assessment*
 - Engages students.
 - Gives immediate feedback to the teacher.
 - Enables the teacher to adjust the teaching before the exam rather than after it and according to specific needs of his/her students.
 - Facilitates interactive learning and peer instruction (especially in large enrolment classes).

* Summative vs. Formative assessment: Customer tastes the soup vs. Cook tastes the soup
Step 3 up - All in control
Students in charge of the teaching/learning game
ENGAGE:

<table>
<thead>
<tr>
<th>Ideas:</th>
<th>Questions:</th>
</tr>
</thead>
<tbody>
<tr>
<td>A. The current is being lost between the wires connecting the 2 bulbs. When battery is connected to one light bulb, bulb lights. When battery is connected to 2 bulbs they don't... Why?</td>
<td></td>
</tr>
<tr>
<td>B. Series and parallel same circuit Can you hook up bulbs both in series or parallel in the same circuit?</td>
<td></td>
</tr>
<tr>
<td>C. Does it matter which bulb you unscrew to keep 2 bulbs lit. How can you connect 3 bulbs with 2 bulbs lit and one off?</td>
<td></td>
</tr>
<tr>
<td>D. Make 3 separate circuits. How can you create a series circuit where 2 outside bulbs are lit and the inside bulb is not?</td>
<td></td>
</tr>
<tr>
<td>E. Can you make 1 bulb brighter than the other 2? How can you hook up 3 bulbs to be as bright as 1 bulb?</td>
<td></td>
</tr>
</tbody>
</table>

ELABORATE: Discovering the Relationship Between Current, Resistance, and Voltage

<table>
<thead>
<tr>
<th>A</th>
<th>B</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.5</td>
<td>1.50</td>
</tr>
<tr>
<td>3</td>
<td>3.00</td>
</tr>
<tr>
<td>4.5</td>
<td>4.49</td>
</tr>
<tr>
<td>6 (6)</td>
<td>5.93</td>
</tr>
<tr>
<td>1.5</td>
<td>1.49</td>
</tr>
<tr>
<td>3</td>
<td>2.98</td>
</tr>
<tr>
<td>4.5</td>
<td>4.59</td>
</tr>
<tr>
<td>6 (6)</td>
<td>5.8</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>C</th>
<th>D</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.5</td>
<td>1.53</td>
</tr>
<tr>
<td>3</td>
<td>2.96</td>
</tr>
<tr>
<td>4.5</td>
<td>4.46</td>
</tr>
<tr>
<td>6 (6)</td>
<td>5.96</td>
</tr>
</tbody>
</table>
Problem: Although an excited atom can radiate at any time from $t=0$ to $t=\infty$, the average time after excitation at which a group of atoms radiates is called the lifetime, τ of a particular excited state.

(a) If $\tau = 1.0 \times 10^{-8}\text{s}$ (a typical value), use the uncertainty principle to compute the frequency line width (Δf) of light emitted by the decay of this excited state?

(b) If the wavelength of the spectral line involved in this process is 500 nm, find the fractional broadening $\Delta f / f$?
A spring-loaded gun, fired vertically, shoots a marble to an unknown height. What is the marble’s range if it is fired horizontally from 1.3 m above the ground?

Hint: What is marble’s initial velocity?

\[v_i = \sqrt{2gh} \]

\[t = \frac{v_i}{g} \]

\[\Delta x = \frac{v_i^2}{2g} \]

\[v_f = v_i - gt \]

\[\Delta x = (v_i - gt) \frac{v_i}{2} \]

\[\frac{v_f}{2} = -\frac{v_i}{2} \]

\[v_f = 0 \]

\[v_i = 10 \text{ m/s} \]

Range: 11 m, 0.5 s
58. a. A disk of mass M and radius R has a hole of radius r centered on the axis. Calculate the moment of inertia of the disk.

b. Confirm that your answer agrees with Table 12.2 when $r = 0$ and when $r = R$.

c. A 4.0-cm-diameter disk with a 3.0-cm-diameter hole rolls down a 50-cm-long, 20° ramp. What is its speed at the bottom? What percent is this of the speed of a particle sliding down a frictionless ramp?

\[
\begin{align*}
\sum_{r} r^2 dm &= \left(\frac{2 \pi m}{A} \right) \left(R^4 - r^4 \right) \\
\sum_{r} r^2 \frac{m}{A} 2 \pi r dr &= \left(\frac{2 \pi m}{R^2 + r^2} \right) \left(\frac{R^4}{4} - \frac{r^4}{4} \right) \\
\frac{2m}{A} \int_{r}^{R} r^3 dr &= \frac{2m}{R^2 - r^2} \left(\frac{R^4 - r^4}{4} \right) \\
\end{align*}
\]
Group Work and Group Annotations
Experimental investigation Physical Science
Slides collaboratively annotated by whole class, with each group writing to their respective spaces

<table>
<thead>
<tr>
<th>ENGAGE:</th>
<th>Ideas:</th>
<th>and</th>
<th>Questions:</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>The current is being lost between the wire connecting the 2 bulbs.</td>
<td></td>
<td>When battery is connected to one light bulb, bulb lights. When battery is connected to 2 bulbs they don't... Why?</td>
</tr>
<tr>
<td>B</td>
<td>Series and parallel same circuit</td>
<td></td>
<td>Can you hook up bulbs both in series or parallel in the same circuit?</td>
</tr>
<tr>
<td>C</td>
<td>Does it matter which bulb you unscrew to keep 2 bulbs lit.</td>
<td></td>
<td>How can you connect 3 bulbs with 2 bulbs lit and one off?</td>
</tr>
<tr>
<td>D</td>
<td>make 3 separate circuits.</td>
<td></td>
<td>How can you create a series circuit where 2 outside bulbs are lit and the inside bulb is not?</td>
</tr>
<tr>
<td>E</td>
<td>can you make 1 bulb brighter than the other 2?</td>
<td></td>
<td>How can you hook up 3 bulbs to be as bright as 1 bulb?</td>
</tr>
</tbody>
</table>
Group experimental investigation
Physical Science
Slides collaboratively annotated by whole class, with each group writing to their respective spaces.

ELABORATE: Discovering the Relationship Between Current, Resistance, and Voltage

<table>
<thead>
<tr>
<th></th>
<th>[Volts]</th>
<th>[Volts]</th>
<th>[Amps]</th>
<th>V/A</th>
</tr>
</thead>
<tbody>
<tr>
<td>Battery</td>
<td></td>
<td>Measured</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Voltage</td>
<td>1.5</td>
<td>1.50</td>
<td>.0078</td>
<td>192</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td>3.00</td>
<td>.0164</td>
<td>182</td>
</tr>
<tr>
<td>4.5</td>
<td>4.49</td>
<td>.0244</td>
<td>184</td>
<td></td>
</tr>
<tr>
<td>(6)</td>
<td>5.93</td>
<td>.0322</td>
<td>184</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>[Volts]</th>
<th>[Volts]</th>
<th>[Amps]</th>
<th>V/A</th>
</tr>
</thead>
<tbody>
<tr>
<td>Battery</td>
<td></td>
<td>Measured</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Voltage</td>
<td>1.5</td>
<td>1.43</td>
<td>.0548</td>
<td>262</td>
</tr>
<tr>
<td>3</td>
<td>2.83</td>
<td>.0150</td>
<td>188</td>
<td></td>
</tr>
<tr>
<td>4.5</td>
<td>4.35</td>
<td>.0234</td>
<td>186</td>
<td></td>
</tr>
<tr>
<td>(6)</td>
<td>5.96</td>
<td>.0322</td>
<td>184</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>[Volts]</th>
<th>[Volts]</th>
<th>[Amps]</th>
<th>V/A</th>
</tr>
</thead>
<tbody>
<tr>
<td>Battery</td>
<td></td>
<td>Measured</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Voltage</td>
<td>1.5</td>
<td>1.53</td>
<td>.008</td>
<td>191</td>
</tr>
<tr>
<td>3</td>
<td>2.96</td>
<td>.015</td>
<td>197</td>
<td></td>
</tr>
<tr>
<td>4.5</td>
<td>4.46</td>
<td>.0241</td>
<td>186</td>
<td></td>
</tr>
<tr>
<td>(6)</td>
<td>5.96</td>
<td>.0421</td>
<td>141</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>[Volts]</th>
<th>[Volts]</th>
<th>[Amps]</th>
<th>V/A</th>
</tr>
</thead>
<tbody>
<tr>
<td>Battery</td>
<td></td>
<td>Measured</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Voltage</td>
<td>1.5</td>
<td>1.49</td>
<td>.00894</td>
<td>177</td>
</tr>
<tr>
<td>3</td>
<td>2.98</td>
<td>.0114</td>
<td>181</td>
<td></td>
</tr>
<tr>
<td>4.5</td>
<td>4.54</td>
<td>.0251</td>
<td>181</td>
<td></td>
</tr>
<tr>
<td>(6)</td>
<td>5.8</td>
<td>.0338</td>
<td>171</td>
<td></td>
</tr>
</tbody>
</table>
All in control: Students in charge of the teaching/learning game + Technology Combo
Step 3: Firm Pad

STEP 3: Light Pad

No Pad
Exp #1

Sketch the speed-time graphs produced by the Motion Sensor from STEPS 1, 3, 4, and 5 below.

STEP 1: Single quick push

STEP 3: Forward push while moving

STEP 4: Gentle backward tap while moving

STEP 5: Tap to return to start
All in control: Students in charge of the teaching/learning game

GROUP B

STEP 1: Single quick push

STEP 3: Forward push while moving

STEP 4: Gentle backward tap while moving

STEP 5: Tap to return to start

Sketch the speed-time graphs produced by the Motion Sensor from STEPS 1, 3, 4, and 5 below.
Benefits: All in control:
Students in charge of the teaching/learning game

Unprecedented interaction opportunities:
- Group problem solving
- Group experimental investigations
- Interaction and discussions within the group and class-wide
- Automatic “file” sharing - results
- Brainstorming
- On-the-fly quizzes
- Monitoring and helping/correcting
Follow up Replay Slide – Sound recording

- Save
- Lecture Recording automatic
- Replay
Sisson (2009; 2010) - allocated one of the three weekly class periods in introductory physics course to problem solving and deployed Tablet PCs combined with interactive software (DyKnow):

Sisson (2009; 2010) - allocated one of the three weekly class periods in introductory physics course to problem solving and deployed Tablet PCs combined with interactive software (DyKnow):

<table>
<thead>
<tr>
<th>Conceptual Understanding (FCI)</th>
<th>Problem Solving (Final Exam)</th>
<th>Course Success (% A, B, C)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Algebra-based Physics I (n = 39, Fall 07)</td>
<td>7% increase ((p = 0.14))</td>
<td>2% improvement (67% \rightarrow 69%) ((p = 0.64))</td>
</tr>
<tr>
<td>Calculus-based Physics I (n = 26, Fall 08)</td>
<td>3% increase ((p = 0.99))</td>
<td>11% increase (56% \rightarrow 67%) ((p = 0.05))</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Course</th>
<th>Text-Note</th>
<th>Semester</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modern Physics</td>
<td>Calculus-based, FHSU</td>
<td>Fall06</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(Survey/Test N=9/10)</td>
</tr>
<tr>
<td>Physical Science</td>
<td>Concept-based, FHSU</td>
<td>Sum06–Fall08</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(Survey/Test N=76/91)</td>
</tr>
<tr>
<td>General Physics</td>
<td>Algebra-based, CSU</td>
<td>Spring10</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(Survey/Test N=37/53)</td>
</tr>
</tbody>
</table>
Advantages

- More interaction for the whole class
- Easy to go back and review material
- Helps students organize notes
- Allows you to focus on content, not note-taking
- Can check status button without embarrassment
- Can telecommute to class

Disadvantages

- If you have **no computer**, you are at a disadvantage
- Technical issues can eat up class time.
- Temptation to check email during class
- Couldn’t take notes by hand if using laptop in class
Figure 1: Student scores measured against Cumulative Computer Presence DyKnow Activity

Student Course Performance vs. Computer and DyKnow Activity

- Grade Score
- Test Score per Syllabus
- Avg. Score of Taken Tests

Activity

- Never Bring Computer
- Never Use Computer & DyKnow
- Rarely Use Computer & DyKnow
- Sometimes Use Computer & DyKnow
- Most of the Time Use Computer & DyKnow
- Always Use Computer & DyKnow

Score [%]

85 80 75 70 65 60 55 50 45 40
Table 6: Comparison of Students’ Computer & DyKnow Activity with Success Level

What about student background?

<table>
<thead>
<tr>
<th></th>
<th>Tests Taken</th>
<th>Tests Sylla</th>
<th>Grade</th>
<th>SAT Math</th>
<th>HS GPA</th>
</tr>
</thead>
<tbody>
<tr>
<td>I bring my computer to physics class: (Table 2 Subcategories)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3 x week N=12 Avg</td>
<td>69.6</td>
<td>74.9</td>
<td>81.3</td>
<td>552.5</td>
<td>3.27</td>
</tr>
<tr>
<td>SD</td>
<td>18.1</td>
<td>18.1</td>
<td>16.0</td>
<td>60.3</td>
<td>0.33</td>
</tr>
<tr>
<td>Inconsistent N=6 Avg</td>
<td>43.4</td>
<td>43.1</td>
<td>54.8</td>
<td>475.0</td>
<td>3.35</td>
</tr>
<tr>
<td>SD</td>
<td>30.3</td>
<td>33.57</td>
<td>27.2</td>
<td>88.3</td>
<td>0.55</td>
</tr>
<tr>
<td>Never N=5 Avg</td>
<td>58.4</td>
<td>61.0</td>
<td>67.7</td>
<td>500.0</td>
<td>3.22</td>
</tr>
<tr>
<td>SD</td>
<td>29.2</td>
<td>33.7</td>
<td>32.7</td>
<td>111.8</td>
<td>0.21</td>
</tr>
<tr>
<td>I bring computer AND I log on to DyKnow AND I actively participate (Table 3 Subcategories)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Always N=7 Avg</td>
<td>67.0</td>
<td>73.4</td>
<td>81.4</td>
<td>520.0</td>
<td>3.05</td>
</tr>
<tr>
<td>SD</td>
<td>15.0</td>
<td>15.4</td>
<td>12.0</td>
<td>21.9</td>
<td>0.26</td>
</tr>
<tr>
<td>Inconsistent N=11 Avg</td>
<td>57</td>
<td>58.5</td>
<td>66.8</td>
<td>530.9</td>
<td>3.38</td>
</tr>
<tr>
<td>SD</td>
<td>30.3</td>
<td>33.0</td>
<td>27.5</td>
<td>97.9</td>
<td>0.43</td>
</tr>
<tr>
<td>Never N=5 Avg</td>
<td>58.4</td>
<td>61.0</td>
<td>67.7</td>
<td>500.0</td>
<td>3.22</td>
</tr>
<tr>
<td>SD</td>
<td>29.2</td>
<td>33.7</td>
<td>32.7</td>
<td>99.7</td>
<td>0.38</td>
</tr>
</tbody>
</table>
In addition to three tablet PC owners who took the survey, one more student in class owned a Tablet PC (and was using it consistently). Comparing those four to the rest of the class:

<table>
<thead>
<tr>
<th>Category</th>
<th>Code</th>
<th>N</th>
<th>Avg. %</th>
<th>SD</th>
<th>All and Each Category</th>
</tr>
</thead>
<tbody>
<tr>
<td>The top mobile computer I own</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Avg. Scores Of Taken Tests</td>
<td>All</td>
<td>53</td>
<td>55.53</td>
<td>25.15</td>
<td></td>
</tr>
<tr>
<td>Tablet</td>
<td>1</td>
<td>4</td>
<td>81.96</td>
<td>3.67</td>
<td></td>
</tr>
<tr>
<td>Other</td>
<td>0</td>
<td>49</td>
<td>53.38</td>
<td>24.93</td>
<td></td>
</tr>
<tr>
<td>Mann-Whitney (2 groups)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>p=0.016</td>
</tr>
<tr>
<td>The top mobile computer I own</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Course Grade Result</td>
<td>All</td>
<td>53</td>
<td>64.44</td>
<td>27.57</td>
<td></td>
</tr>
<tr>
<td>Tablet</td>
<td>1</td>
<td>4</td>
<td>90.29</td>
<td>2.36</td>
<td></td>
</tr>
<tr>
<td>Other</td>
<td>0</td>
<td>49</td>
<td>62.33</td>
<td>27.62</td>
<td></td>
</tr>
<tr>
<td>Mann-Whitney (2 groups)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>p=0.040</td>
</tr>
</tbody>
</table>
Advantages of bringing the computer to classes

- the ease of taking/obtaining notes (10), saving/accessing notes (7), personalizing slides (5).
- the ease of following the content (9).
- the ease of seeing the screen on computer (8)
- being able to actively participate (4) and to use DyKnow (4).
- A unique benefit - to actively, and interactively, participate in a synchronous classroom experience via DyKnow software (with Skype if two way voice communication is desired).

Disadvantages of bringing computers to class:

- the inconveniences of physically carrying laptop (8)
- internet distractions (7).
- the inability to hand write notes on laptop (4), the issue with the space that the laptop takes on the desk (1)
- “a false feeling that it is not necessary to take notes” (2).
- issues with battery life (4) and technical problems with laptops or Internet (3).
- Some students specifically stated there are no disadvantages (4).
Current CSU Study
Technology vs. Methodology
Current Project

Methodology and/or Technology: Making Difference in Improving Students’ Problem Solving Skills

<table>
<thead>
<tr>
<th>Table 1: Outline of the Experimental Design</th>
</tr>
</thead>
<tbody>
<tr>
<td>1<sup>st</sup> third of semester</td>
</tr>
<tr>
<td>---</td>
</tr>
<tr>
<td>Section 1</td>
</tr>
<tr>
<td>Experimental (technology users)</td>
</tr>
<tr>
<td>Section 2</td>
</tr>
<tr>
<td>Control (paper users)</td>
</tr>
</tbody>
</table>
Methods

1. quiz and test scores
2. pre-and post tests
3. the video timings
4. the online surveys mid-semester
5. three point observations
Methods

- 1. quiz and test scores
- 2. pre-and post tests
- 3. the video timings
- 4. the online surveys mid-semester
- 5. three point observations

- Preliminary data: No difference
Exam Comparisons

- Exam 1 average
 - Thursday section 70.9
 - Friday section 70.5
 - Overall average 70.7

- Exam 2 average
 - Thursday section 69.7
 - Friday section 69.3
 - Overall average 69.5
Student’s Perceptions on Productivity of Using DyKnow Software in Teaching (FHSU and CSU Deployments)

<table>
<thead>
<tr>
<th>Category of DyKnow Evaluation</th>
<th>General Positive Aspects</th>
<th>General Negative Aspects</th>
<th>Cognition</th>
<th>Communication</th>
<th>Motivation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Students (%) who Agree and Strongly Agree Statement: Using DyKnow …</td>
<td>... was enjoyable</td>
<td>... was very challenging</td>
<td>... facilitated my learning</td>
<td>... enhanced my interaction with the instructor</td>
<td>was more motivated when DyKnow was used</td>
</tr>
<tr>
<td>Modern Physics</td>
<td>88.9</td>
<td>77.8</td>
<td>11.1</td>
<td>66.7</td>
<td>88.9</td>
</tr>
<tr>
<td>(Calculus-based, FHSU) Fall06 (N=9/10)</td>
<td>88.9</td>
<td>77.8</td>
<td>11.1</td>
<td>66.7</td>
<td>88.9</td>
</tr>
<tr>
<td>Physical Science</td>
<td>92.1</td>
<td>90.8</td>
<td>10.5</td>
<td>61.8</td>
<td>89.3</td>
</tr>
<tr>
<td>(Concept-based, FHSU) Sum06–Fall08 (N=76/91)</td>
<td>92.1</td>
<td>90.8</td>
<td>10.5</td>
<td>61.8</td>
<td>89.3</td>
</tr>
<tr>
<td>General Physics</td>
<td>81.1</td>
<td>75.7</td>
<td>24.3</td>
<td>51.4</td>
<td>64.9</td>
</tr>
<tr>
<td>(Algebra-based, CSU) Spring10 (N=37/53)</td>
<td>81.1</td>
<td>75.7</td>
<td>24.3</td>
<td>51.4</td>
<td>64.9</td>
</tr>
<tr>
<td>Weighted average across courses</td>
<td>88.5</td>
<td>85.3</td>
<td>14.7</td>
<td>59.0</td>
<td>81.9</td>
</tr>
</tbody>
</table>
Student’s Recommendations for Future Usage of DyKnow Software and Tablet PCs in Physics Courses They Took (FHSU and CSU Deployments)

<table>
<thead>
<tr>
<th>Students (%) enrolled in</th>
<th>Recommend to keep in the Physics course:</th>
<th>Definitely Yes</th>
<th>Yes</th>
<th>Neutral</th>
<th>No</th>
<th>Definitely No</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modern Physics (Calculus-based, FHSU) Fall06 (N=9/10)</td>
<td>DyKnow</td>
<td>11.1</td>
<td>44.4</td>
<td>44.4</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td></td>
<td>Tablet PCs</td>
<td>22.2</td>
<td>66.7</td>
<td>11.1</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>Physical Science (Concept-based, FHSU) Sum06–Fall08 (N=76/91)</td>
<td>DyKnow</td>
<td>50.0</td>
<td>38.0</td>
<td>12.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td></td>
<td>Tablet PCs</td>
<td>50.0</td>
<td>41.7</td>
<td>6.3</td>
<td>2.1</td>
<td>0.0</td>
</tr>
<tr>
<td>General Physics (Algebra-based, CSU) Spring10 (N=37/53)</td>
<td>DyKnow</td>
<td>24.3</td>
<td>37.8</td>
<td>18.9</td>
<td>8.1</td>
<td>10.8</td>
</tr>
<tr>
<td></td>
<td>Tablet PCs</td>
<td>24.3</td>
<td>27.0</td>
<td>29.7</td>
<td>13.5</td>
<td>5.4</td>
</tr>
<tr>
<td>Normalized average (to 100%) across courses</td>
<td>DyKnow</td>
<td>28.5</td>
<td>40.1</td>
<td>25.1</td>
<td>2.7</td>
<td>3.6</td>
</tr>
<tr>
<td></td>
<td>Tablet PCs</td>
<td>32.2</td>
<td>45.1</td>
<td>15.7</td>
<td>5.2</td>
<td>1.8</td>
</tr>
</tbody>
</table>

Studies on Tablet PC and DyKnow Software
www.hrepic.com
Conclusion

- Tablet PC technology accompanied by DyKnow software opened a plethora of new possibilities for greater and more efficient classroom interactions in all directions.

- In our experience a great majority of students like both, this hardware and the software (Hrepic, 2008-2011).

- However, still much an uncharted territory – challenges as numerous as opportunities.

- Results may very substantially with student population even within the same institution and same class (major and seniority)

- Further rigorous research necessary to determine all the relevant factors associated with its effective usage and optimal ways of using it.

Questions
More Information

Zdeslav Hrepic
Katherine Lodder
Kimberly Shaw

drz@columbusstate.edu
hreptic.com

Thank You!