11-2010

Note on Gradient Estimates of Heat Kernel for Schrödinger Operators

Shijun Zheng
Georgia Southern University, szheng@georgiasouthern.edu

Follow this and additional works at: https://digitalcommons.georgiasouthern.edu/math-sci-facpubs

Part of the Mathematics Commons

Recommended Citation
https://digitalcommons.georgiasouthern.edu/math-sci-facpubs/256

This article is brought to you for free and open access by the Mathematical Sciences, Department of at Digital Commons@Georgia Southern. It has been accepted for inclusion in Mathematical Sciences Faculty Publications by an authorized administrator of Digital Commons@Georgia Southern. For more information, please contact digitalcommons@georgiasouthern.edu.
Note on Gradient Estimate of Heat Kernel for Schrödinger Operators

Shijun Zheng
Department of Mathematical Sciences, Georgia Southern University, Statesboro, USA
E-mail: szheng@georgiasouthern.edu
Received August 27, 2010; revised September 24, 2010; accepted September 27, 2010

Abstract
Let \(H = -\Delta + V \) be a Schrödinger operator on \(\mathbb{R}^n \). We show that gradient estimates for the heat kernel of \(H \) with upper Gaussian bounds imply polynomial decay for the kernels of certain smooth dyadic spectral operators. The latter decay property has been known to play an important role in the Littlewood-Paley theory for \(L^p \) and Sobolev spaces. We are able to establish the result by modifying Hebisch and the author’s recent proofs. We give a counterexample in one dimension to show that there exists \(V \) in the Schwartz class such that the long time gradient heat kernel estimate fails.

Keywords: Heat Kernel, Schrödinger Operator, Functional Calculus

1. Introduction
Consider a Schrödinger operator \(H = -\Delta + V \) on \(\mathbb{R}^n \), where \(V \) is a real-valued potential in \(L^1_{\text{loc}}(\mathbb{R}^n) \). It is noted in [1,2] that for positive \(V \), if \(H \) admits the following gradient estimates for its heat kernel \(p_t(x,y) = e^{-|x-y|^2/t} \): for all \(x,y \in \mathbb{R}^n \) and \(t > 0 \),
\[
|p_t(x,y)| \leq c_d t^{-n/2} e^{-c|x-y|^2/t},
\]
\[
|\nabla_t p_t(x,y)| \leq c_d t^{-(n+1)/2} e^{-c|x-y|^2/t},
\]
then the kernel of \(\Phi(H) \) and its derivatives satisfy a polynomial decay as in (4), where \(\Phi \) is a function in certain Sobolev space with support in \([-2^j, 2^j]\]. As is well-known, the decay estimate in (4) implies the Littlewood-Paley inequality for \(L^p(\mathbb{R}^n) \) [3-6].

For positive \(V \), based on heat kernel estimates one can show (4) by a scaling argument [2]. In this paper we will prove the general case, namely Theorem 1, by modifying the proofs in [7,8] and [2].

However, in general the gradient estimates (1), (2) do not hold for all \(t \). This situation may occur when \(H \) is a Schrödinger operator with negative potential, or the sub-Laplacian on a Lie group of polynomial growth, cf. [9-12]. A second part of this paper is to show such a counterexample, based on Theorem 1.

Recall that for a Borel measurable function \(\phi: \mathbb{R} \to \mathbb{C} \), one can define the spectral operator \(\phi(H) \) by functional calculus \(\phi(H) = \int_{\mathbb{R}} \phi(\lambda) dE_\lambda \), where \(dE_\lambda \) is the spectral measure of \(H \). The kernel of \(\phi(H) \) is denoted \(\phi(H)(x,y) \) in the following sense. Let \(A \) be an operator on a measure space \((M,d\mu)\), \(d\mu \) being a Borel measure on \(M \). If there exists a locally integrable function \(K_A: M \times M \to \mathbb{C} \) such that
\[
\langle Af, g \rangle = \int_M (Af) g d\mu
\]
for all \(f, g \in C_0(M) \) with \(\text{supp} f \) and \(\text{supp} g \) being disjoint, then \(A \) is said to have the kernel \(\phi(H) = K_A(x,y) \). Throughout this paper, \(c \) or \(C \) will denote an absolute positive constant.

The main result is the following theorem for \(V \in L^1_{\text{loc}}(\mathbb{R}^n) \).

Theorem 1 Suppose that the kernel of \(e^{-at} \) satisfies the upper Gaussian bound for \(\alpha = 0,1 \)
\[
|\nabla_a e^{-at}(x,y)| \leq c_d e^{-c|x-y|^2/t}, \quad \forall t > 0. \tag{3}
\]
Let \(\Phi \) be supported in \([-1,1]\) and belong to \(L^1_{\text{loc}}(\mathbb{R}^n) \) for some fixed \(N \geq 0 \) and \(\delta > 0 \). Then for each \(N \geq 0 \), there exists a constant \(c_N \) independent of \(\Phi \) such that for all \(j \in \mathbb{Z} \)
\[
|\nabla^a \Phi_j(H)(x,y)| \leq c_N 2^{j(N+a)/2} (1 + 2^{j/2} |x-y|)^{-N} \left\| \Phi \right\|_{\frac{a+1}{2}+N+\delta}, \tag{4}
\]
for all \(x, y \in \mathbb{R}^n \).
where $\Phi_j(x) = \Phi(2^{-j} x) \Phi(2^{-j} x)$ and $H^* := H^*(\mathbb{R})$ denotes the usual Sobolev space with norm
$$\|f\|_{H^p} := \left\|\left(1 - d^* / d^**\right)^{j/2} f\right\|_{L^p}.$$

When V is a result of the above type was proved and applied to the cases for the Hermite and Laguerre operators $[1]$. The observation was that if $V \geq 0$, then the constants corresponding to Lemma 2 do not change for $V_a(x) = \alpha^2 V(x)$ (called scaling-invariance in what follows), according to the Feynman-Kac path integral formula [13]
$$e^{-\text{d} t} f(x) = E_x \left(f(\phi(t)) e^{-\int_0^t V(\phi(s)) ds}\right),$$

here E_x is the integral over the path space Ω with respect to the Wiener measure μ_x, $x \in \mathbb{R}^n$ and $\phi(t)$ stands for a brownian motion (generic path).

For general V the technical difficulty is that we do not have such a scaling-invariance. We are able to overcome this difficulty by establishing Lemma 6, a scaling version of the weighted L^1 inequality for $\Phi_j(H)(x,y)$ with $\Phi \in H^*$, for which we directly use the scaling information indicated by the time variable appearing in Lemma 2. Thus this leads to the proof of the main theorem by combining methods of Hebisch and the author's in $[7,2]$.

In Section 3 we give a counterexample to show that for $V_a(x) = -\nu \nu + 1 (\cosh x)^2$, $\nu \in \mathbb{N}$, the estimates in (1) and (2) fail for $t \to \infty$.

Note that under the condition in Theorem 1, (4) is valid for all $\varphi_j \in C_0^\infty(\mathbb{R}^n)$, $j \in \mathbb{Z}$ satisfying (i) $\text{supp} \varphi_j \subset \{x: x \leq 2k\}$ and (ii) $|\varphi_j(x)| \leq C 2^{-k}$. Then the constants corresponding to Lemma 2 do not change for $V_a(x) = \alpha^2 V(x)$ (called scaling-invariance). We are able to overcome this difficulty by establishing Lemma 6, a scaling version of the weighted L^1 inequality for $\Phi_j(H)(x,y)$ with $\Phi \in H^*$, for which we directly use the scaling information indicated by the time variable appearing in Lemma 2. Thus this leads to the proof of the main theorem by combining methods of Hebisch and the author's [1, Theorem 1.5], see also [2,3].

2. Heat Kernel Having Upper Gaussian Bound Implies Rapid Decay for Spectral Kernels

In this section we prove Theorem 1. Following [7] we begin with a simple lemma.

Lemma 2 Suppose that (1) holds. Then
$$\int |e^{-\text{d} t} (x,y)|^2 \, dx \leq c e^{-\nu/2} =: C(t).$$

The next lemma can be easily proved by a duality argument and we omit the details.

Lemma 3 Let L be a selfadjoint operator on $L^2(\mathbb{R}^n)$ and $\rho, \nu \in L^*(\mathbb{R})$. Then for each y,
$$\|\rho(L)(\nu)(y)\|_{L^2} \leq \rho(L) \|\nu(L)(y)\|_{L^2}.$$

If in addition $\rho(L)$ is unitary, then the equality holds.

Let ν be a submultiplicative weight on $\mathbb{R}^n \times \mathbb{R}^n$, i.e., $0 \leq w(x,y) \leq w(x,z)w(z,y)$, $\forall x,y,z \in \mathbb{R}^n$. For simplicity we also assume $w(x,y) = w(y,x)$. Define the norm for $k \in L_0^\infty(\mathbb{R}^{2n})$ as follows:
$$\|k(x,y)\|_w = \sup_{y \in \mathbb{R}^n} \int_{\mathbb{R}^n} |k(x,y)| w(y,x) \, dx.$$

Then given two operators L_1, L_2, it holds that
$$\|L_1 L_2(\nu)(y)\|_{L^2} \leq \|L_1(\nu)(y)\|_{L^2} \|L_2(\nu)(y)\|_{L^2}.$$

(6)

The following lemma is a scaling version of [8, Theorem 3.1] for $V \in L_0^\infty(\mathbb{R}^n)$.

Lemma 4 Suppose that (1) holds. Let $L_j = e^{-\text{d} t} H$. Then for each $\alpha \geq 0$, there exists a constant $c = c(n,\alpha)$ depending on n, α only such that for all $j \in \mathbb{Z}$ and $k \in \mathbb{R}$,
$$\int \left| (e^{\beta t} L_j(\nu)(y)) \right|^2 \, dx \leq c(n,\alpha)(1 + |k|)^{2s+\alpha}.$$

(7)

Proof. (a) First we show the case $j = 0$. For notational convenience write $L = L_0$, then by Lemma 2 we have, with $t = 1$,
$$\sup_{y \in \mathbb{R}^n} \|L(x,y)\|_w^2 \leq C(1) = c.$$

sup
$$\int_{y \in \mathbb{R}^n} \|L(x,y)\|_w^2 \leq C(s,1) =: C(s) = c e^{\nu^2}.$$

Let $\phi(x,y) = e^{\beta x-y} (1 + |x - y|)^{s}$, $0 < \beta < s$. Then
$$\|L(x,y)\|_w = \int |L(x,y)\|_w e^{\beta x-y} e^{-\beta x+y} \, dx \leq C(s) \sup_{x,y} e^{-(1-\beta x-y)} (1 + |x - y|)^{s} =: C(s) c_{s,\beta}.$$

In view of Lemma 3, setting $\ell = \beta^{-1} |k|$ and $\|L(x,y)\|_w$, we have
$$\int \left| (e^{\beta t} L_j(\nu)(y)) \right|^2 \, dx \leq \int_{y \in \mathbb{R}^n} \|L(x,y)\|_w^2 + \|L(x,y)\|_w e^{\beta t} \|L(\nu)(y)\|_w \leq (1 + \ell)^{2s+\alpha} \|L(\nu)(y)\|_w + C(s) c_{s,\beta}.$$

$\leq C(s)(1 + \beta^{-1} |k| c_{s,\beta})^{2s+\alpha} + C(s) c_{s,\beta},$

where we note that by (6)
We have the Fourier series expansion on $L_2([0,2\pi])$ with
\[\sum_{n=-\infty}^{\infty} \hat{g}(n) e^{in(x-\lambda)} = g(x) \]
for all $x \in [0,2\pi)$.

Let $L = e^{-2\lambda} H$, then Lemma 2 tells that with $t = 2^{-\lambda}$
\[
\int |e^{-2\lambda} H(x,y)|^2 \, dx \leq c_{2\lambda} \| \Phi \|_{l_1}^2.
\]
We also need a basic property on the weighted L^2 norm of Fourier coefficients of a compactly supported function in Sobolev space, which can be proved by elementary Fourier expansions.

Lemma 5 Let $s \geq 0$, $T > 0$ and $H^s_T([0,T]) = C^0_T([0,T])$ denote the subspace of Sobolev space $H^s([0,T])$. Then we have for all $g \in H^s_T([0,T])$,
\[
\| \hat{g} \|_{l_2} \leq c \| \Phi \|_{l_1},
\]
where $\| \alpha_n \|_{l_2} = (\sum_{n \in \mathbb{Z}} |\alpha(n)|^2)_{(n/T)^{2s}}^{1/2}$ and $\hat{g}(n)$ are the Fourier coefficients of g over the interval $[0,T]$.

The inequality in (8) can be replaced by equality (however we will not use this improvement), which is a special case of the general norm characterization for periodic functions in $H^s([0,T])$, see e.g. [14].

It follows from Lemma 4 and Lemma 5 the following weighted L^2 estimates for $\Phi(H(x,y))$, which is an improved version of [2, Lemma 3.1], where the restriction $V \geq 0$ is removed.

Lemma 6 Suppose $V \in L^1_{loc}(\mathbb{R}^n)$ and the kernel of $e^{-i\lambda} g$ satisfies for all $t > 0$
\[
|e^{-it\lambda} (x,y)| \leq c_{t} e^{-t^2 \lambda^2 (x-y)^2/2t}.
\]
If $s > (n+1)/2 + N$, $N \geq 0$ and $\text{supp} \Phi \subset [-10,10]$, then
\[
\sup_{j \in \mathbb{Z}, y \in \mathbb{R}^n} \| \Phi(2^{-j} H)(x,y)(2^{-j/2} (-y))^{N} \|_{l_1}^2 \leq c_{t} \| \Phi \|_{l_1}^{2t}.
\]

Proof. Let $\Phi \subset [-1,1]$. If $\text{supp} g \subset I := [0,2\pi]$, then g has the Fourier series expansion on I
\[
g(x) = \sum_{k} \hat{g}(k)e^{ikx},
\]
where $\hat{g}(k) = \frac{1}{2\pi} \int_{0}^{2\pi} g(x)e^{-ikx} \, dx$. Let
\[
\Phi(\lambda) = g(e^{2\lambda}) e^{-\lambda} \quad \text{and} \quad f_k(\lambda) = \lambda e^{ik\lambda}. \quad \text{Then} \quad \Phi(\lambda) = \Phi(-\log y)/y \quad \text{with} \quad \text{supp} \subset [e^{-1}, e], \quad \text{and so}
\]
\[
\Phi(2^{-j} H) = \sum_{k} \hat{g}(k)e^{-i2^{-j} \lambda} e^{-2^{-j} \lambda^2} = \sum_{k} \hat{g}(k)f_k(e^{-2^{-j} \lambda}).
\]

It follows from Lemma 4, (10) and Lemma 5 that for every y
\[
\left| \int \Phi(H(x,y)) (2^{-j/2} (-y))^{N} \, dx \right| \leq c_{t} \| \hat{g} \|_{l_2}^{2t}
\]
\[
= c_{t} \left| \sum_{k} \hat{g}(k)f_k(2^{-j/2} (-y))^{N} \right| \left| \lambda e^{ik\lambda} \right|^{2^{-j/2}}
\]
\[
\leq c \left| \sum_{k} \hat{g}(k) \right| \left| \lambda e^{ik\lambda} \right|^{2^{-j/2}} \left| \lambda e^{ik\lambda} \right|^{2^{-j/2}}
\]
\[
\leq c \| g \|_{l_2}^{2t} \| \Phi \|_{l_1}^{2t} \delta^{1/2}
\]
where $\delta = s - N - (n+1)/2$ and the last inequality follows from a change of variable and interpolation.

Remark 7 Let $V = V_0 - V_1$, $V_0 \geq 0$ on \mathbb{R}^n, $n \geq 3$. Then the heat kernel estimate in (9) holds if V_0 is in Kato class and $\| V_0 \|_{l_1}$, the global Kato norm of V_0, is less than $\kappa_n := \pi^{2n}/\Gamma(n^{2} + N)$. See [15]. Also (9) holds...
whenever \(V \geq 0 \) is locally integrable on \(\mathbb{R}^n \), \(n \geq 1 \).

2.1. Proof of Theorem 1

With (3) and Lemma 6 we are in a position to prove (4). The proof is similar to that of Proposition 3.3 in [2] in the case of positive \(V \). For completeness, we present the details here.

\[
\nabla^a \Phi_j(H)(x, y) = \int \nabla^a e^{itH}(x, z)(e^{itH}(H)(z, y))dz.
\]

By (3) we have

\[
| \nabla^a \Phi_j(H)(x, y) | \leq c_d t^{-n+a/2} \left| e^{-i(x-z)^2/16} (x-z)/\sqrt{t} \right|^N (x-z)/\sqrt{t})^{-N}
\]

\[
\cdot |(z-y)/\sqrt{t})^{-N} | (e^{itH}(H)(z, y))dz \leq c_d t^{-n+a/2} \left| (x-y)/\sqrt{t} \right| N \int |(z-y)/\sqrt{t})^{-N} | (e^{itH}(2^{-j}H)(z, y))dz.
\]

Applying Lemma 6 with \(t = 2^{-j} \), we obtain

\[
| \nabla^a \Phi_j(H)(x, y) | \leq c_d t^{-n+a/2} \left| (x-y)/\sqrt{t} \right| N \left\| \Phi(\lambda) \right\|_{H^{-N+\delta}} \leq c_d t^{-n+a/2} \left| (x-y)/\sqrt{t} \right| N \left\| \Phi(\lambda) \right\|_{H^{-N+\delta}}, \quad \delta > 0.
\]

Remark 8 In the following section we will show that there exists \(V \in \mathcal{S} \), the Schwartz class, such that (4) does not hold for \(j \rightarrow \pm \infty \). By Theorem 1, this means that for such \(V \) the gradient upper Gaussian bound (3) does not hold for all \(t \).

3. A Counterexample to the Gradient Heat Kernel Estimate

Consider the solvable model \(H = -d^2/dx^2 + V \), \(V \in \mathbb{N} \), where

\[
V_{\nu}(x) = -\nu(\nu+1)\text{sech}^2x.
\]

We know from [5] that solving the Helmholtz equation for \(k \in \mathbb{R} \setminus \{0\} \)

\[
H_{\nu}e(k, x) = k^2 e(x, k),
\]

yields the following formula for the continuum eigenfunctions:

\[
e(x, k) = (\text{sign}(k))^{\nu} \left(\prod_{j=0}^{\nu} \frac{1}{j+i|k|} \right) P_{\nu}(x, k) e^{ikx},
\]

where \(P_{\nu}(x, k) = p_{\nu}(\text{tanh} x, ik) \) is defined by the recursion formula

\[
p_{\nu}(\text{tanh} x, ik) = \frac{d}{dx}(p_{\nu-1}(\text{tanh} x, ik) + (i\nu - \text{tanh} x) p_{\nu-1}(\text{tanh} x, ik)), \quad \text{with } p_0 \equiv 1.
\]

Note that \(e(x, -k) = e(-x, k) \) and the function

\[
(x, y, k) \mapsto e(x, y)e(-y, k)
\]

is real analytic on \(\mathbb{R}^3 \). Moreover, \(H_{\nu} \) has only absolutely continuous spectrum \(\sigma_{ac} = [0, \infty) \) and point spectrum \(\sigma_{pp} = \{-1, -4, \ldots, -\nu^2\} \). The corresponding eigenfunctions \(\{e_{a_j}\}_{a_j} \) in \(L^2 \) are Schwartz functions that are linear combinations of \(\text{sech} x \text{tanh} x \), \(m \in \mathbb{N} \), \(\ell \in \mathbb{N}_0 \). Let \(H_{ac} = H = E_{ac} \) denote the absolutely continuous part of \(H_{\nu} \) and \(E_{ac} = E_{(0, x)} \) the corresponding orthogonal projection. If \(\phi \in C_c(\mathbb{R}) \), then we have for all \(f \in L^r \cap L^T \),

\[
\phi(H_{\nu}) f(x) = \int K(x, y) f(y)dy + \sum_{n=1}^{\infty} \phi(n^2)(f, e_n)e_n,
\]

where \((f, e_n) \) is the kernel of \(\phi(H_{ac}) = \phi(H)E_{ac} \), cf. [16]. Since \(H_{\nu} \) has eigenfunctions in \(\mathcal{S}(\mathbb{R}) \) and \(\sigma_{pp} \) is finite, from now on it is essential to check the kernel \(\phi(H_{ac})(x, y) = K(x, y) \) instead of the kernel of \(\phi(H_{ac}) \).

3.1. Decay for the Kernel of \(\Phi_j(H)E_{ac} \)

Let \(\{|\phi_j\} \subset C_c(\mathbb{R}) \) satisfy

(i') \(\text{supp} \phi_j \subset \{ x : 2^{j-1/2} \leq |x| \leq 2^j \} \) and

(ii') \(\phi_j(x) \leq c_j 2^{-j}, \forall j \in \mathbb{Z} \), \(k \in \mathbb{N}_0 \). Let \(\kappa_j(x, y) = \phi_j(H_{ac})(x, y) \). In [5] we showed that for each \(N \)

\[
| \kappa_j(x, y) | \leq c \cdot 2^{j \alpha} (1 + 2^{j/2} |x-y|)^{-N}, \quad \forall j \in \mathbb{Z}
\]

but (with \(\alpha = 1 \))

\[
| \partial_x^\alpha \kappa_j(x, y) | \leq c \cdot 2^{j(\alpha + 2 \alpha)} (1 + 2^{j/2} |x-y|)^{-N}
\]

only holds for \(j \geq 0 \) and does not hold for all \(j < 0 \). This suggests that (3) fails for \(\alpha = 1 \) and \(t > 1 \) (or more precisely \(t \rightarrow \infty \)), according to Theorem 1.

Now consider the system \(\{\Phi_j\}_{j \in \mathbb{Z}} \) which satisfy (i), (ii) as in Section 1. We may assume \(\Phi_j(x) = \Phi(2^{-j}x) \) for a fixed \(\Phi \) in \(C^\infty([-1,1]) \) with \(\Phi(0) = 1 \) on \([-1, 1] \). Let \(f^\wedge \) and \(f^\vee \) be the Fourier transform and its inverse of \(f \) on \(\mathbb{R} \). The following lemma
shows that (13) does not hold for \(\Phi_j(H_{ac})(x,y) \) when \(j \to \infty \).

Lemma 9 Let \(K_j(x,y) \) be the kernel of \(\Phi_j(H)E_{ac} \).

a) For each \(N \in \mathbb{N}_0 \) there exists \(c_N \) such that for all \(j \leq 0 \),
\[
|K_j(x,y)| \leq c_N 2^{j/2} (1 + 2^{j/2} |x - y|)^{-N}. \tag{15}
\]
b) For each \(N \in \mathbb{N}_0 \) there exists \(c_N \) such that for all \(j > 0 \), precisely
\[
|K_j(x,y)| \leq c_N 2^{j/2} (1 + 2^{j/2} |x - y|)^{-1}. \tag{16}
\]
In particular, the decay in (15) does not hold for all \(j > 0 \) with \(N > 1 \).

c) There exist positive constants \(C \) and \(c \) such that for all \(j \in \mathbb{Z} \),
\[
|K_j(x,y)| \leq C |\Psi_j^-(x-y)| + |\Psi_j^+(x-y)| e^{-|x-y|/c} du,
\]
where \(\Psi_j^\pm(k) = \Phi_j(k^2) \) and it is easily to see that for each \(N \), there exists \(c_N \) such that for all \(j \)
\[
|\Psi_j^\pm(x-y)| \leq c_N 2^{j/2} (1 + 2^{j/2} |x - y|)^{-N}.
\]

Proof. (a) Let \(\lambda = 2^{-j/2} \). By (12), (11) and integration by parts we have
\[
2\pi i (x-y)^N K_j(x,y) = (-1)^N \int e^{ik(x-y)} \cdot e^{\lambda \phi(x,y)},
\]
which can be written as a finite sum of
\[
(\tanh x)^m (\tanh y)^n
\]
\[
[\Phi_j(k^2)]^{(i)} \left(\sum_{i=1}^r (i^2 + k^2)^{-1/2} (q_{2i}(k))^{(i)} \right)^{(j)} (x-y), \tag{17}
\]
\[
0 \leq i \leq r \leq N, \quad i + r + s = N, \quad q_{2i}(k) \text{ are polynomials of degree } \leq 2r.
\]
We obtain for each \(N \) and all \(j \leq 0 \)
\[
|\Phi_j(x,y)| = O(\lambda^{-1}) = O(\lambda^{-N-1}) = O(2^{-j/2(N-1)}),
\]
using
\[
\left\{
\begin{aligned}
(\Phi_j(k^2))^{(i)} &= O(\lambda^i) \\
\left(\sum_{i=1}^r (i^2 + k^2)^{-1/2} \right)^{(j)} &= O((k)^{-2r-\epsilon}) \\
q_{2i}^{(i)} &= O((k)^{-2r-\epsilon}).
\end{aligned}
\right.
\]
This proves (15) for \(j \leq 0 \).

In order to show part (c), for \(j \in \mathbb{Z} \), using partial fractions we write \(K_j(x,y) \) as a finite sum of
\[
(\tanh x)^m (\tanh y)^n \left[\Phi_j(k^2) \left(\sum_{i=1}^r (i^2 + k^2)^{-1/2} q_{2i}(k) \right)^{(j)} \right] (x-y), \tag{18}
\]
which is bounded by (up to a constant multiple)
\[
||\Phi_j(k)\|^2(x-y) + \sum_{i=1}^r \left| \left(\int |\Psi_j^+(u)| e^{-|x-y|/c} du \right) \right| (x-y),
\]
where \(a_i,b_j \in \mathbb{R} \). The general term in the sum is estimated by
\[
||\Phi_j(k)\|^2(x-y) \leq C \int |\Psi_j^+(u)| e^{-|x-y|/c} du,
\]
in terms of the identities
\[
(e^{-1})^\lambda(k) = \frac{2}{1+k^2}, \tag{19}
\]
\[
\text{sign}(x)e^{-|x|}(k) = \frac{-2ik}{1+k^2}. \tag{20}
\]
(b) Finally we prove the sharp estimate in (16). For \(j > 0 \), (15) does not hold for \(N \geq 2 \), instead we have only, with \(N = 0, 1 \),
\[
|K_j(x,y)| \leq c 2^{j/2} (1 + 2^{j/2} |x - y|)^{-N},
\]
by using similar argument and noting (17), (19), (20). Indeed, let \(j > 0 \), \(N \geq 2 \). It is easy to find \(\{\phi_j\} \) satisfying (i') and (ii') such that
\[
\Phi_j(x) = 1 - \sum_j \phi_j(x).
\]
We have by (13)
\[
\sum_j (x-y)^N |\phi_j(H_{ac})(x,y)| \leq c_N \sum_j 2^{-j/2(N-1)} = 2^{-j/2(N-1)}.
\]
On the other hand, from (18) and the relevant steps in part (c) we observe that if \(N > 1 \),
\[
(x-y)^N \text{I}_{(0,\infty)}(H_j)(x,y)
\]
\[
= (x-y)^N \int_{0}^{\infty} e_i(x,k) \mathcal{E}_i(y,k) dk
\]
\[
= \text{finite sum of } (x-y)^N.,
\]
\[
\sum_j \left(\sum_s \left(\alpha_s e^{-|x|} + \text{sign}(x) \beta_s e^{-|x|} \right),
\right.
\]
where \(\alpha_s, \beta_s \neq 0 \) are of the form \(c \tanh' x \tanh'' y \). This shows that the term \((x-y)^N \Phi_j(H_{ac})(x,y) \) cannot admit a decay of \(2^{-j/2(N-1)} \) for all \(j > 0 \), otherwise one would have \(|(x-y)^N \text{I}_{(0,\infty)}(H_j)(x,y)| \sim 2^{-j/2(N-1)} \), which leads to a contradiction that the sum of those functions in (21) must vanish, by letting \(J \to \infty \).

Remark 10 The argument in the proof of part (b) can be made rigorous by replacing \(\text{I}_{(0,\infty)}(H_j) \) with \(\Phi_j(H_j) \), and then let \(L \to \infty \) to get the same contradiction.

3.2. The Derivative of the Kernel of \(\Phi_j(H)E_{ac} \)

Similar argument shows that
\[|\hat{\partial}_j K_j(x, y)| \leq c_N 2^{-j/2(N-2)} / |x-y|^N \]

holds for all \(j > 0 \) but does not hold for all \(j < 0 \). Therefore the inequality in (4) does not hold for general \(V \in L^1_{\text{loc}} \).

4. Acknowledgements

The author gratefully thanks the hospitality and support of Department of Mathematics, University of California, Riverside during his visit in November 2008. In particular he would like to thank Professor Qi S. Zhang for the kind invitation and discussions. The author also wishes to thank the referee for careful reading of the original manuscript, whose comments have improved the presentation of this article.

5. References