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Abstract

For connected graphs G and H, Graham conjectured that π(G�H) ≤ π(G)π(H)
where π(G), π(H), and π(G�H) are the pebbling numbers of G, H, and the Cartesian
product G�H, respectively. In this paper, we show that the inequality holds when H
is a complete graph of sufficiently large order in terms of graph parameters of G.

1 Introduction

Throughout this paper, all graphs are considered to be finite and simple. For a graph G,
we denote the order of G by |G|. For a positive integer n, we denote Kn to be a complete
graph of n vertices. For basic definitions and terminologies not mentioned here, we refer the
reader to the book of West [10].

Given two graphs G and H, the Cartesian product of G and H, denoted by G�H, is the
graph with the vertex set V (G)× V (H) and the edge set

{(u, v1)(u, v2) : u ∈ V (G) and v1v2 ∈ E(H)} ∪ {(u1, v)(u2, v) : u1u2 ∈ E(G) and v ∈ V (H)}.

We note that G�H is connected if and only if G and H are both connected. For more
detail treatments of graph products, we refer the reader to [7]. In order to study graph
products practically, we need some definitions that consider the product of sets A and B. In
particular, if C ⊆ A× B, we define p1(C) = {a : (a, b) ∈ C where b ∈ B}. For a function f
from a finite set I to the set N ∪ {0}, we recall that

∑
i∈I f(i) = 0 whenever I = ∅. And we

use this convention for Lemma 2.1 and the proof of Proposition 2.1. Moreover, for graphs
G and H, we denote S�H and G�T the induced subgraphs of G�H induced by S × V (H)
and V (G)× T , respectively, where S ⊆ V (G) and T ⊆ V (H).

Let G be a connected graph. A (pebbling) configuration on G is defined to be a function
D : V (G) → N ∪ {0} or we can say that D distributes

∑
v∈V (G) D(v) pebbles on G. A

configuration D on G is said to be moveable if there exist two adjacent vertices u and v such
that D(u) ≥ 2. For a moveable configuration D on a graph G and adjacent vertices u and v
with D(v) ≥ 2, the (pebbling) move from u to v in G is defined to be the triple (D, u, v) and
we denote it by D(u → v) for convenience. For a move D(u → v) in G, the configuration
D′ : V (G) → N ∪ {0} defined by

D′(x) =


D(x)− 2 if x = u;

D(x) + 1 if x = v;

D(x) otherwise

is called the configuration with respect to D(u → v). Let D be a moveable configuration on
a graph G. A D-moving sequence in G is a finite sequence of moves D1(u1 → v1), D2(u2 →
v2), . . . , Dn(un → vn) such that D = D1 and Di is the moveable configuration with respect
to Di−1(ui−1 → vi−1) for every i ∈ {2, . . . , n} and we write u1 → v1, u2 → v2, . . . , un → vn
for convenience. For a vertex r of G, if r appears in some D-moving sequences or D(r) ≥ 1,
we say that one can pebble r under a configuration D on G or we can say that D is r-solvable
on G. Furthermore, a configuration is solvable whenever it is r-solvable for every vertex
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r. It is unsolvable otherwise. Given a configuration D on a connected graph G; we call∑
v∈V (G)D(v) the size of D and denoted by |D|. In a Cartesian product graph G�H, |Dx|

denotes
∑

v∈V (H)D(x, v) for each x ∈ V (G). The pebbling number of a connected graph G,

denoted by π(G), is the smallest integer m such that D is solvable for every configuration D
on G with |D| ≥ m. We note a basic fact, mentioned by Chung [1], of pebbling number of a
connected graph G that π(G) ≥ |G|. For a survey of graph pebbling we refer the reader to [5],
[6] and [8]. Now, we introduce a new graph pebbling parameter called the support number
which is actually an extension of the pebbling number. The support of a configuration D on
a connected graph G means the set {v ∈ V (G) : D(v) > 0}. For a connected graph G and
a positive integer n, the n-support number of G is the minimum m such that D is solvable

for any configuration D on G with
∑

v∈V (G)

⌊
D(v)
n

⌋
≥ m if n ≤ π(G). It equals 1 otherwise.

Obviously, the 1-support number is actually the pebbling number. Additionally, we denote
the 2-support number of G by π̃(G).

One of the interesting topics in recent graph pebbling is the Graham’s conjecture which
introduced by Chung [1]. It is about an upper bound of the pebbling number of the Cartesian
product of graphs as follows:

Conjecture 1.1. [1] If G and H are connected, then

π(G�H) ≤ π(G)π(H).

Chung [1] showed that the conjecture holds when H is a complete graph and G is a
graph satisfying the so-called 2-pebbling property. Such property plays an important role in
verifying the conjecture for certain families of graphs. In case H is a complete graph, it is
in general still open by Herscovici [4]. However, we make progress toward this work from a
different perspective by focusing on the order of the complete graph H in terms of π(G) and
|G| as we see in the next section.

2 Main Results

In this section, we will prove Theorem 2.4 by means of the technical Lemma 2.2 about the
2-support number.

Lemma 2.1. Let G = (V,E) be a connected graph, S be a subset of V and D be a configu-
ration on G. Then we have∑

v∈V \S

D(v)− n
∑

v∈V \S

⌊
D(v)

n

⌋
≤ (n− 1)(|G| − |S|)

for any positive integer n.

Proof. The inequality holds since D(v)− n
⌊
D(v)
n

⌋
≤ n− 1 for each v ∈ V .

We see that the configuration D on G defined by D(v) = n − 1 for each v ∈ V attains
the upper bound in Lemma 2.1.
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Lemma 2.2. For a nontrivial connected graph G and a positive integer m greater than 1,
we have

π̃(G�Km) ≤ π(G).

Proof. Let V ′ = V (G�Km), D be a configuration on G�Km with
∑

(x,y)∈V ′

⌊
D(x,y)

2

⌋
≥ π(G)

and (r, t) be a vertex of G�Km. Let M = {(x, y) ∈ V ′ : D(x, y) > 1} and let Mx =
{z ∈ V (Km) : (x, z) ∈ M} for each x ∈ p1(M). Then we can pebble (x, t) with at least∑

z∈Mx

⌊
D(x,z)

2

⌋
pebbles for each x ∈ p1(M) since π̃(Km) = 1. Let D′ be a configuration

on G�Km after pebbling (x, t) with at least
∑

z∈Mx

⌊
D(x,z)

2

⌋
pebbles for all x ∈ p1(M). It

follows that ∑
x∈V (G)

D′(x, t) ≥
∑

x∈p1(M)

D′(x, t) ≥
∑

x∈p1(M)

∑
z∈Mx

⌊
D(x, z)

2

⌋

=
∑

(x,y)∈V ′

⌊
D(x, y)

2

⌋
≥ π(G).

Hence we can pebble (r, t) within the induced subgraph G�{t}.

Lemma 2.3. Let G be a nontrivial connected graph with V = V (G). For a positive integer
n, let D be a configuration on G�Kn and (r, t) be a vertex of G�Kn. If S is a proper subset
of V containing r such that

∑
x∈V \S |Dx| ≥ n(|V \ S|) + 2π(G), then one can pebble (r, t).

Proof. Let V ′ = V (G�Kn) and S ′ = V (S�Kn). By Lemma 2.1, we obtain that

2
∑

(x,y)∈V ′\S′

⌊
D(x, y)

2

⌋
≥

 ∑
(x,y)∈V ′\S′

D(x, y)

− (|V ′| − |S ′|)

=

 ∑
x∈V \S

|Dx|

− (n|G| − n|S|) =

 ∑
x∈V \S

|Dx|

− n(|G| − |S|)

=

 ∑
x∈V \S

|Dx|

− n|V \ S| ≥ n|V \ S|+ 2π(G)− n|V \ S|

= 2π(G).

By Lemma 2.2, ∑
(x,y)∈V ′

⌊
D(x, y)

2

⌋
≥

∑
(x,y)∈V ′\S′

⌊
D(x, y)

2

⌋
≥ π(G) ≥ π̃(G�Kn).

Therefore, we can pebble (r, t).

Now, we are ready for determining an upper bound for the pebbling number of the
Cartesian product of a graph and a complete graph.
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Proposition 2.1. For a positive integer n and a connected graph G, we have

π(G�Kn) ≤ n|G|+ 2π(G)− 2.

Proof. Let V = V (G) and V ′ = V (Kn). If |Dr| ≥ n, then we can pebble (r, t). In addition,
we can assume that |Dr| ≤ n− 1. We now consider the following two cases.
Case 1: |Dr| ≤ n− 2.

Clearly,∑
x∈V \{r}

|Dx| = |D| − |Dr| ≥ |D| − (n− 2) = (n|G|+ 2π(G)− 2)− (n− 2)

= n(|G| − 1) + 2π(G) = n|V \ {r}|+ 2π(G).

By Lemma 2.3, we can pebble (r, t).
Case 2: |Dr| = n− 1.

If D(r, vr) ≥ 2 for some vr ∈ V ′ \ {t}, then we can pebble (r, t). So we can assume that
D(r, vr) = 1 for all vr ∈ V ′\{t}. Since n(|G|−1)+2π(G)−1 ≥ n(|G|−1)+1, there are at least
n(|G| − 1) + 1 pebbles distributed by D on n(|G| − 1) vertices in V (G�Kn) \ V ({r}�Kn).
By the pigeonhole principle, D(g, u) ≥ 2 for some (g, u) ∈ V (G�Kn) \ V ({r}�Kn). Let
g = w1, w2, . . . , wm = r be a g, r-path in G. Obviously, m ≥ 2 since g ̸= r. Note that∑

x∈V \{wm}

|Dx| =
∑

x∈V \{r}

|Dx| = |D| − |Dr| = |D| − (n− 1)

= (n|G|+ 2π(G)− 2)− (n− 1) = n(|G| − 1) + 2π(G)− 1.

This implies that V \ {wm} ̸= ∅ since n(|G| − 1) + 2π(G)− 1 ≥ 2π(G)− 1 > 0. In this case,
we can succeed within m− 1 steps.
Step 1.
If D(wm−1, vm−1) ≥ 2 for some vm−1 ∈ V ′, then we move

• (wm−1, vm−1) → (wm, t) = (r, t) if vm−1 = t;

• (wm−1, vm−1) → (wm, vm−1), (wm, vm−1) → (wm, t) = (r, t) if vm−1 ̸= t.

In addition, we can assume that D(wm−1, vm−1) ≤ 1 for all vm−1 ∈ V ′, i.e., |Dwm−1 | ≤ n.

• If D(wm−1, vm−1) = 1 for all vm−1 ∈ V ′, then |Dwm−1 | = n and so

∑
x∈V \{wm−1,wm}

|Dx| =

 ∑
x∈V \{wm}

|Dx|

− |Dm−1|

=

 ∑
x∈V \{wm}

|Dx|

− n

= (n(|G| − 1) + 2π(G)− 1)− n

= n(|G| − 2) + 2π(G)− 1.

This implies V \{wm−1, wm} ̸= ∅ since
∑

x∈V \{wm−1,wm} |Dx| ≥ n(|G|−2)+2π(G)−1 ≥
2π(G)− 1 ≥ 2|G| − 1 > 0. So |G| ≥ 3 and we go to Step 2.
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• If D(wm−1, vm−1) = 0 for some vm−1 ∈ V ′, then |Dwm−1 | ≤ n− 1 and so

∑
x∈V \{wm−1,wm}

|Dx| =

 ∑
x∈V \{wm}

|Dx|

− |Dwm−1 |

≥

 ∑
x∈V \{wm}

|Dx|

− (n− 1)

= (n(|G| − 1) + 2π(G)− 1)− (n− 1)

= n(|G| − 2) + 2π(G)

= n|V \ {wm−1, wm}|+ 2π(G).

By Lemma 2.3, we can pebble (r, t).

Step i (1 ≤ i ≤ m− 2).
If D(wm−i, vm−i) ≥ 2 for some vm−i ∈ V ′, then we move

• (wm−i, vm−i) → (wm−i+1, vm−i), . . . , (wm−2, vm−i) → (wm−1, vm−i), (wm−1, vm−i) →
(wm, t) = (r, t) if vm−i = t;

• (wm−i, vm−i) → (wm−i+1, vm−i), . . . , (wm−2, vm−i) → (wm−1, vm−i), (wm−1, vm−i) →
(wm, vm−i), (wm, vm−i) → (wm, t) = (r, t) if vm−i ̸= t.

In addition, we can assume that D(wm−i, vm−i) ≤ 1 for all vm−i ∈ V ′, i.e., |Dwm−i
| ≤ n.

• If D(wm−i, vm−i) = 1 for all vm−i ∈ V ′, then |Dwm−i
| = n and so

∑
x∈V \{wm−i,...,wm−1,wm}

|Dx| =

 ∑
x∈V \{wm−i+1,...,wm−1,wm}

|Dx|

− |Dwm−1 |

=

 ∑
x∈V \{wm−i+1,...,wm−1,wm}

|Dx|

− n

= (n(|G| − i) + 2π(G)− 1)− n

= n(|G| − (i+ 1)) + 2π(G)− 1.

This implies V \{wm−i, . . . , wm−1, wm} ̸= ∅ since
∑

x∈V \{wm−i,...,wm−1,wm} |Dx| ≥ n(|G|−
(i + 1)) + 2π(G) − 1 ≥ 2π(G) − 1 ≥ 2|G| − 1 > 0. So |G| ≥ i + 2 and we go to Step
i+1.
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• If D(wm−i, vm−i) = 0 for some vm−i ∈ V ′, then |Dwm−i
| ≤ n− 1 and so

∑
x∈V \{wm−i,...,wm−1,wm}

|Dx| =

 ∑
x∈V \{wm−i+1,...,wm−1,wm}

|Dx|

− |Dwm−i
|

≥

 ∑
x∈V \{wm−i+1,...,wm−1,wm}

|Dx|

− (n− i)

= (n(|G| − i) + 2π(G)− 1)− (n− i)

= n(|G| − (i+ 1)) + 2π(G)

= n|V \ {wm−i, . . . , wm−1, wm}|+ 2π(G).

By Lemma 2.3, we can pebble (r, t).

Step m-1.
Since D(w1, u) = D(g, u) ≥ 2, we can move

• (w1, u) → (w2, u), . . . , (wm−2, u) → (wm−1, u), (wm−1, u) → (wm, u) = (r, t) if u = t;

• (w1, u) → (w2, u), . . . , (wm−2, u) → (wm−1, u), (wm−1, u) → (wm, u), (wm, u) → (wm, t)
= (r, t) if u ̸= t.

It is easy to establish the sharpness of the upper bound stated in Proposition 2.1, by
considering G = K1 together with the fact that π(K1�Kn) = π(Kn) = n.

In the following result, we obtain an alternative sufficient condition for the Cartesian
product of a graph and a complete graph to satisfy Graham’s conjecture.

Theorem 2.4. For a positive integer n and a connected graph G, if π(G) > |G| and
n ≥ 2(π(G)−1)

π(G)−|G| , then

π(G�Kn) ≤ π(G)π(Kn).

Proof. If π(G) > |G| then n ≥ 2(π(G)−1)
π(G)−|G| implies n|G|+ 2π(G)− 2 ≤ nπ(G) = π(Kn)π(G) so

the results follows from Proposition 2.1.

We note that the condition in Theorem 2.4 does not imply the 2-pebbling property of G
as one can see in the following counter example. For a positive integer k, Gao and Yin [2]
not only proved that the graph Lk (see Fig. 1) does not satisfy the 2-pebbling property, but
they also showed that π(Lk) = 2k+3.

However, Lk satisfies the condition of G in Theorem 2.4 for each k with a sufficiently
large n. And we obtain the following partial result of Gao and Yin [3].

Corollary 2.5. For positive integers k and n, if 2
n
+ 4k+7

2k+3−1
≤ 1, then

π(Lk�Kn) ≤ π(Lk)π(Kn).

for positive

Proof. By mathematical induction on k, π(Lk) = 2k+3 > 4k+8 = |Lk|. Furthermore, we can

derive 2
n
+ 4k+7

2k+3−1
≤ 1 from n ≥ 2(π(Lk)−1)

π(Lk)−|Lk|
= 2(2k+3−1)

2k+3−4k−8
. Hence the result follows by Theorem

2.4.

6

Theory and Applications of Graphs, Vol. 7, Iss. 1 [2020], Art. 1

https://digitalcommons.georgiasouthern.edu/tag/vol7/iss1/1
DOI: 10.20429/tag.2020.070101



..a1.

b1

.

c1

.

d1

.
ak−1.

bk−1

.

ck−1

.

dk−1

. ak.

bk

.

ck

.

dk

Figure 1: The graph Lk.
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