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Abstract

In this note, stochastic comparisons and results for weighted and Lindley models are presented. Approximation of
weighted distributions via Lindley distribution in the class of increasing failure rate (IFR) and decreasing failure
rate (DFR) weighted distributions with monotone weight functions are obtained including approximations via the
length-biased Lindley distribution. Some useful bounds and moment-type inequality for weighted life distributions
and applications are presented. Incorporation of covariates into Lindley model is considered and an application to
illustrate the usefulness and applicability of the proposed Lindley-Cox model is given.

Keywords: Weight functions, Stochastic inequalities, Survival function, Ordering distributions, Bounds, Lindley-
Cox Model, Covariates.

1. Introduction

Weighted distributions occur naturally in probability and statistics, and provides an approach to dealing with model
specification and data interpretation problems. Applications of weighted distributions to biased samples can be
seen in various areas including medicine, ecology, reliability, and branching processes. The reader can see the
works of Patil and Rao (1978), Oluyede (2011) and references therein. When observations are selected with
probability proportional to their length the resulting distribution is referred to as a length-biased distribution. Zelen
and Feinleib (1969) introduced weighted distribution to discuss length biased sampling and showed that cases of
chronic diseases identified by early detection screening programs constitute a length-biased sample due to the fact
that individuals with a long pre-clinical disease phase have greater probability of being identified. Length-biased
distributions are discussed by several authors including but not limited to Gupta and Keating (1985), Patil and Rao
(1978). Oluyede (1999) developed and presented useful results on inequalities and selection of experiments for
length-biased distributions. Additional results on exponential dominance and uncertainty for weighted residual life
measures are given by Oluyede (2011).

We consider a non-negative random variable X with its natural pdf f (x; θ), where θ is a parameter. The pdf of the
corresponding weighted random variable Xw is given by:

f w(x; θ, β) =
w(x, β) f (x; θ)

ω
, (1)

where the weight function w(x, β) is a non-negative function, that may depend on the parameter β, and 0 < ω =
E(w(X, β)) < ∞ is a normalizing constant.

In general, consider the weight function w(x) defined as follows:

w(x) = xkelxF i(x)F
j
(x). (2)
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Setting k = 0; k = j = i = 0; l = i = j = 0; k = l = i = 0; k = l = j = 0 and k = l = 0, i → i − 1, j = n − i in this
weight function, one at a time, implies probability weighted moments, moment-generating functions, moments,
proportional hazards, proportional reversed hazards, and order statistics, respectively, where F(x) = P(X ≤ x) and
F(x) = 1 − F(x). If w(x) = x, then X∗ = Xw is called the size-biased version of X.

Brown (1983) among others obtained measures of departure from exponentiality within the class of completely
monotone distributions and the class of increasing mean residual life (IMRL) distribution functions. These mea-
sures of departure are given in terms of ρ = | µ2

2µ2 − 1|, where µ2 = E(X2) and µ = E(X). This is due to the fact that
the exponential distribution satisfies ρ = 0.

Keilson (1979) states that “If a system is modeled by a finite Markov chain which is ergodic, the passage from
some specified initial distribution over the state space to a subset state space visited infrequently is often exponen-
tially distributed to good approximation...... For engineering purposes, it is essential to quantify departure from
exponentiality via error bounds. When one is dealing with time irreversible chains, e.g., systems with independent
Markov components, the complete monotonicity present permits such quantification and the error bounds needed.”

In this note, approximations via Lindley distribution in the class of weighted life distributions with monotone
weight functions including distributions generated under proportional hazards transforms are obtained. This paper
is organized as follows. Section 2 contains some preliminary concepts, weighted and Lindley distributions as
well as stochastic comparisons. The connection between weighted distributions and distributions generated under
proportional hazards transforms and results on stochastic dominance and comparisons are given. In section 3,
bounds, inequalities and Lindley distributional approximations to weighted distributions are presented for the
class of monotone failure rate distributions. Moment-type inequality for the comparison of weighted and Lindley
distributions are also presented. Incorporation of covariates or concomitant information into Lindley model is
considered and an application to illustrate the usefulness and applicability of the proposed Lindley-Cox model is
presented in section 4. Some concluding remarks are given in section 5.

2. Stochastic Comparisons of Weighted and Lindley Distributions

In this section, Lindley distribution (Lindley, 1958) as well as its generalizations, and weighted reliability function
in general are presented. Let F be the set of absolutely continuous distribution function satisfying

F(0) = 0, lim
x→∞

F(x) = 1, S up{x : F(x) < 1} = ∞. (3)

Note that if the mean of a random variable with distribution function in F is finite, it is positive.

Now, let X be a non-negative random variable with distribution function F and reliability or survival function F,
where F = 1 − F.We assume that X is continuous with probability density function (pdf) f , where the reliability
function F(x) =

∫ ∞
x f (t)dt. The weighted random variable XW has a reliability or survival function FW (x) given by

FW (x) =
F(x)E[W(X)|X > x]

δ∗
, (4)

where δ∗ is a normalizing constant. See Oluyede (2011) for details. The corresponding hazard or failure rate
function is hFW (x) = W(x)hF (x)

E[W(X)|X>x] , where hF(x) = f (x)/F(x). The quantity E[W(X)|X > x] is referred to as the
weighted vitality function. Under the length-biased distribution, the weight function W(x) = x and vitality function
reduces to EFl (X − x|X > x) + x = δFl (x) + x, where δF(x) =

∫ ∞
x

F(y)dy
F(x)

is the mean residual life function (MRLF).
It is clear that if VFl (x) = EFl [X|X > x] is increasing in x, then

Fl(x) = µ−1
∫ ∞

x
ydF(y) ≥ c−1F(x) ≥ F(x),

where c = F(0), FW (0) = F l(0) = 1 and c−1 = F l(0)/F(0). Indeed, if the weighted vitality function E[W(X)|X > x]
is increasing in x, then FW (x)/F(x) is increasing in x ≥ 0.

2.1 Lindley Distribution

There are various generalizations of the Lindley distribution including those that were introduced by the following
authors: Zakerzadeh and Dolati (2009), Nadarajah et al. (2011), Ghitany et al. (2013), Ghitany et al. (2008) and
Oluyede and Yang (2014) among others. These generalizations constitute flexible family of distributions in terms
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of the varieties of shapes and hazard functions. The one parameter cdf of the Lindley distribution (Lindley, 1958)
is given by

FL(x; θ) = 1 − 1 + θ + θx
1 + θ

e−θx, for x > 0, and θ > 0. (5)

The corresponding Lindley pdf is given by

fL(x; θ) =
θ2(1 + x)

1 + θ
e−θx, for x > 0, and θ > 0. (6)

Lindley distribution is a mixture of exponential and gamma distributions, that is f (x; θ) = (1− p) fG(x; θ)+ p fE(x; θ)
with p = 1

1+θ , where fG(x; θ) ≡ GAM(2, θ), and fE(x; θ) ≡ EXP(θ). The mean of Lindley distribution is given by
µ = 2+θ

θ(1+θ) .

A generalization of the Lindley distribution due to Zakerzadeh and Dolati (2009) is given as follows. Let Y1 and
Y2 be two independently gamma distributed random variables with parameters (α, θ) and (α + 1, θ) respectively.
For γ > 0, let X = Y1 with probability θ

θ+γ
and X = Y2 with probability γ

θ+γ
, then the pdf of X (see Zakerzadeh and

Dolati, (2009)) is given by

fGL(x;α, θ, γ) =
θ2(θx)α−1e−θx

(θ + γ)Γ(α)
+
γθ(θx)αe−θx

(θ + γ)Γ(α + 1)
,

or

fGL(x;α, θ, γ) =
θ2(θx)α−1(α + γx)e−θx

(θ + γ)Γ(α + 1)
,

for x > 0, θ > 0, α > 0, γ > 0. Note that when α = γ = 1, we obtain the Lindley pdf given in equation (6). When
γ = 0 we have the gamma pdf with parameters α and θ. If α = 1 and γ = 0 the resulting pdf is the exponential
pdf with parameter θ. Additional generalizations of the Lindley distribution include work by Oluyede and Yang
(2014), and Oluyede et al. (2015).

Suppose that the survival functions for the non-negative random variables X and Y with distribution functions F
and G satisfy the proportional hazards model

GY (t) = [FX(t)]β, (7)

for all t ≥ 0, and β > 0; see Cox (1959) and Efron (1981) for details. Note that the survival function in equation
(7) has the probability density function gY (t) given by gY (t) = β[FX(t)]β−1 fX(t), for β > 0, and t ≥ 0. The weight
function is given by W(t)/δ∗ = β[FX(t)]β−1, for t ≥ 0, and β > 0. The corresponding failure rate function is given
by hY (t) = βhF(t) for t ≥ 0, and β > 0. Under Lindley distribution, the density and hazard or failure rate functions,
gY (t) and hY (t) are given by

gY (t; θ, β) =
βθ2(1 + t)
θ + 1

(
1 +

θt
1 + θ

)β−1
e−βθt, t > 0, θ > 0, and β > 0. (8)

and

hY (t; θ, β) =
βθ2(1 + t)
1 + θ + θt

, for t > 0, θ > 0, and β > 0, (9)

respectively.

2.2 Some Relations and Stochastic Comparisons

In this section, stochastic dominance and closure results for Lindley and weighted distributions as well as results
on ordering of Lindley and weighted distributions and its implications on reliability measures are presented. First,
some useful definitions and utility notions are given below.

Definition 2.1 Let X and Y be two non-negative random variables with distribution functions F and G, respectively.

(i) The distribution functions F and G are stochastically ordered, denoted by F <st G, if F(x) ≤ G(x) for x ≥ 0
(Shaked and Shanthikumar, 1994).

(ii) A distribution function F is said to have increasing mean residual life (IMRL) on (0,∞) if µF =
∫ ∞

0 F(x)dx < ∞,
F(0) < 1 and E(X − x|X > x) is increasing in x ≥ 0.

(iii) A distribution function F is said to have increasing (decreasing) failure rate for x ≥ 0, denoted by IFR (DFR),
if F(0−) = 0, F(0) < 1 and P(X > x + t|X > t) = F(x + t)/F(t) is decreasing (increasing) in t ≥ 0 for each x > 0.
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(iv) Let X and Y be two non-negative random variables with probability density functions f and g respectively.
The random variable X is said to be larger than Y in monotone likelihood ratio order (X ≥lr Y) if f (x)/g(x) is
non-decreasing in x ≥ 0.

Note that if F has DFR and µF =
∫ ∞

0 F(x)dx < ∞, then F has IMRL. Note also that if the weight function W(x)
is increasing for ≥ 0, then XW ≥lr X and hFW (x) ≤ hF(x) for all x ≥ 0, so that FW (x) ≥ F(x) for all x ≥ 0, where
hF(x) = f (x)/F(x).

The next definition is due to Bhattacharjee (1986).

Definition 2.2 Let X be in F . The distribution function F(x) of X is said to be finitely and positively smooth if
there exists a number α, 0 < α < ∞, such that

limt→∞F t(x) = e−αx, (10)

for all x ≥ 0, where F t(x) = P(X > x + t|X > t) = F(x+t)
F(t)

is the survival function of a random variable Xt (lifetime
of a device at age t, t ≥ 0) and α is the asymptotic decay coefficient of X.

The next definition is due to Alzaid (1994).

Definition 2.3 Let X be a non-negative random variable with distribution function F in F . If F is finitely and
positively smooth with asymptotic decay coefficient α, then X is called

(i) Used better than aged (UBA) if

F t(x) ≥ e−αx, (11)

for all t, x ≥ 0;

(ii) Harmonic used better than aged in expectation (HUBAE) if∫ ∞
x

F(t)dt ≥ e−αx
∫ ∞

0
F(y)dy, (12)

provided µ =
∫ ∞

0 F(y)dy < ∞. The inequalities in (11) and (12) are reversed for used worse than aged (UWA) and
harmonic used worse than aged in expectation (HUWAE).

In Theorems 2.1 and 2.2, we present useful ageing properties namely UBA and HUBAE for Lindley distribution
as well as stochastic comparisons of proportional hazards Lindley distribution and weighted distributions with
monotone weight function, respectively.

Theorem 2.1 (i) Lindley distribution function FL(x) is finitely and positively smooth with asymptotic decay coeffi-
cient θ, (ii) FL(x) is Used better than aged (UBA), and (iii) FL(x) is Harmonic used better than aged in expectation
(HUBAE).

Proof. Note that

FLt (x) =
FL(x + t)

FL(t)
=

(
1 +

θx
1 + θ + θt

)
e−θx.

Now, it follows that limt→∞ FLt (x) = e−θx, for 0 < θ < ∞.

(ii) Clearly,

FLt (x) =
(
1 +

θx
1 + θ + θt

)
e−θx ≥ e−θx, (13)

so that FL is UBA for all t, x ≥ 0.
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(iii) Note that ∫ ∞
x

FL(y)dy =

∫ ∞
x

(
1 +

θy
1 + θ

)
e−θydy

=
θ + 2
θ(θ + 1)

e−θx +
θx

θ(θ + 1)
e−θx

= µFL
e−θx +

θx
θ(θ + 1)

e−θx

= e−θx
∫ ∞

0
FL(y)dy +

θx
θ(θ + 1)

e−θx

≥ e−θx
∫ ∞

0
FL(y)dy, (14)

where µFL =
∫ ∞

0 FL(y)dy. Consequently, FL of HUBAE.

Theorem 2.2 Let FW (t) = GY (t) = [FL(t)]β, β > 0, where FL is the Lindley cdf, then for t ≥ 0, (i) hFW (t) ≥ hFL (t)
for β ≥ 1, and hFW (t) < hFL (t) for 0 < β < 1, and (ii) FW (t) ≤ FL(t), for β ≥ 1, and FW (t) > FL(t), for 0 < β < 1.
(iii) If FL is an IFR (DFR) distribution and the weight function W(t) is increasing (decreasing and convex), then
GY or FW is an IFR (DFR) distribution. (iv) XW ≥lr XL.

Proof. The proof follows directly from the fact that W(t)/δ∗ = β[FL(t)]β−1 is increasing in t ≥ 0.

The next result deals with the closure of the HUBAE class of Lindley life distributions under proportional hazards
transforms. The proof is straightforward and is omitted.

Theorem 2.3 Let GYi (x) be Lindley proportional hazards distributions that are HUBAE with equal asymptotic
decay coefficient α, then the distribution function GY (x) =

∑∞
i=1 piFYi (x), 0 ≤ pi ≤ 1,

∑∞
i=1 pi = 1, is HUBAE with

asymptotic decay coefficient α.

3. Approximations via Lindley Distribution

In this section, L1 bounds for approximations via Lindley distribution to the class of weighted distributions includ-
ing distributions generated under proportional hazards transforms are presented. Bounds and stability results on
the proximity of the weighted distribution functions to the proportional hazards Lindley distributions as well as
related distributions are established. These results are given in the context of distributions with monotone failure
rate and mean residual life functions.

3.1 L1 Bounds and Approximations

In this section, approximations of weighted reliability functions via Lindley distribution are presented. First we
present the following useful result that is due to Barlow et al. (1963).

Theorem 3.1 If F has DMRL, then S k(x) ≤ S k(0)e−x/µ, k = 1, 2, . . . , and S k(x) ≥ µS k−1(0)e−x/µ − µS k−1(0) +
S k(0), k = 2, 3, . . . , where

S k(x) =
{

F(x) if k = 0,∫ ∞
0 F(x + t)tk−1dt/(k − 1)! if k = 1, 2, . . . ,

is a sequence of decreasing functions for which F possess moments of order J, that is µk = E(Xk) exists, k =
1, 2, . . . , J.

We let S −1(x) = f (x) be the pdf of F if it exists. Then S k(0) = µk/k!, and S ′k(x) = −S k−1(x), k = 0, 1, 2, . . . , J.
The ratio S k−1(x)/S k(x) is a hazard function of a distribution function with survival function S k(x)/S k(0). The
inequalities in Theorem 3.1 are reversed if F has increasing mean residual life (IMRL).

Theorem 3.2 If FW (x) is an IFR survival or reliability function with a non-decreasing weight function, where
FW (x) is given by equation (4), then∫ ∞

0
|FW (x) −GY (x)|dx ≤ 2µ|β−1 − µ2/2µ2|, (15)
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where GY (x) = [FX(x)]β, FX(x) = (1 + x/(µ + 1))e−x/µ, for x ≥ 0 and 0 < β < 1.

Proof. Let B = {x|FW (x) ≤ GY (x)}. Then for x ≥ 0, and 0 < β < 1,∫ ∞
0
|FW (x) −GY (x)|dx =

∫
B
(GY (x) − FW (x))dx −

∫
Bc

(GY (x) − FW (x))dx

≤ 2
∫

B
(GY (x) − FW (x))dx ≤ 2

∫
B
(GY (x) − F(x))dx

≤ 2
∫ ∞

0
(GY (x) − F(x))dx ≤ 2

∫ ∞
0

(GY (x) − S 1(x)/µ)dx

≤ 2
∫ ∞

0
(e−βx/µ − S 1(x)/µ)dx = 2(µ/β − S 2(0)/µ)

= 2µ(β−1 − µ2/2µ2). (16)

The first and third inequalities are straightforward, the second inequality follows from the fact that W(x) is non-
decreasing, so that FW (x) ≥ F(x), for all x ≥ 0. The fourth inequality follows from the fact that (1 + x/(µ +
1))βe−βx/µ ≤ e−βx/µ for 0 < β < 1. The fifth inequality follows directly by applying Theorem 3.1.

Corollary 3.1 Under the conditions of Theorem 3.2,∫ ∞
0
|FW (x) − FX(x)|dx ≤ 2µρ, (17)

where FX(x) = e−x/µ, for x ≥ 0, and ρ = |1 − µ2/2µ2|.
Theorem 3.3 If F

∗
W (x) is an IFR survival or reliability function, with a non-decreasing weight function W(x) > 0,

then ∫ ∞
0
|F∗W (x) − (1 + x/(µ + 1))e−x/µ|dx ≤ 2µ|1 − µ2/2µ2|, (18)

where F
∗
W (x) = F(x)(ehx+M∗F (x))

EF (ehX ) , and M∗F(x) =
∫ ∞

x
F(t)heht

F(x)
dt for x ≥ 0.

Proof. Let F
∗
(x) = (1 + x/(µ + 1))e−x/µ and A = {x|F∗W (x) ≤ F

∗
(x)}. Then for x ≥ 0, we have∫ ∞

0

∣∣∣∣∣F∗W (x) −
(
1 +

x
µ + 1

)
e−x/µ
∣∣∣∣∣dx ≤

∫ ∞
0
|F∗W (x) − e−x/µ|dx

≤ 2
∫

A
(e−x/µ − F

∗
W (x))dx

≤ 2
∫ ∞

0
(e−x/µ − F(x))dx

≤ 2
∫ ∞

0
(e−x/µ − S 1(x)/µ)dx

= 2(µ − S 1(0)/µ) = 2(µ − µ2/2µ)
= 2µ(1 − µ2/2µ2). (19)

The first inequality follows from the fact that |F∗W (x)− (1+ x/(µ+1))e−x/µ| ≤ |F∗W (x)−e−x/µ|. The second inequality
is straightforward, the third inequality follows from the fact that W(x) is non-decreasing, so that F

∗
W and F are

stochastically ordered. The fourth inequality follows from the application of Theorem 3.1.

Example 3.1 Consider the stationary renewal reliability function FW corresponding to a reliability function F,
and given by

FW (x) = µ−1
∫ ∞

x
F(t)dt, (20)

where µ =
∫ ∞

0 F(t)dt. Clearly, FW (x) is absolutely continuous with failure rate function hFW = F(x)/µFW (x) =
(E[X − t|X > t])−1. The weight function is given by W(x) = (hF(x))−1. Note that if F is IMRL then hFW (t) is
decreasing. Now applying Theorem 3.3 with F

∗
W = FW , we have∫ ∞

0
|F∗W (x) − e−x/µ|dx ≤ 2µ|1 − µ2/2µ2|.
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In particular, if

F(x; θ, ϵ) =
{

e−(x−θ)/(1−2ϵ)1/2
if x > θ, θ = 1 − (1 − 2ϵ)1/2

1 otherwise,

then ∫ ∞
0
|F∗W (x) − e−(x−θ)/(1−2ϵ)1/2 |dx ≤ 2µ|1 − µ2/2µ2| = 2ϵ.

Theorem 3.4 Let F
∗
W (x) be a DFR survival or reliability function, with non-decreasing weight function W(x) > 0.

Then for 0 < β ≤ 1, ∫ ∞
0
|F∗W (x) −GY (x)|dx ≥ 2µ2e−c/µ

∣∣∣∣∣1 − 2µ + c + 1
µ(µ + 1)

∣∣∣∣∣, (21)

where GY (x; , µ, β) = [FX(x)]β, FX(x) =
(
1 + x

µ+1

)
e−x/µ, for x ≥ 0, 0 < β ≤ 1, µ > 0, and c > 0.

Proof. Let F
∗
W (x) be DHR. Then there exists c > 0 such that F

∗
W (x) ≥

(
1 + x

µ+1

)
e−x/µ or F

∗
W (x) ≤

(
1 + x

µ+1

)
e−x/µ as

x ≥ c or x ≤ c. It follows therefore that for 0 < β ≤ 1,∫ ∞
0
|F∗W (x) −GY (x; µ, β)|dx = 2

∫ ∞
c

(
F
∗
W (x) −

(
1 +

x
(µ + 1)

)β
e−βx/µ

)
dx

≥ 2
∫ ∞

c

(
F(x) −

(
1 +

x
(µ + 1)

)β
e−βx/µ

)
dx

≥ 2
(
µS 1(c) −

∫ ∞
c

(
1 +

x
(µ + 1)

)β
e−βx/µdx

)
≥ 2µ

(
S 1(0)e

−c
µ −
∫ ∞

c

(
1 +

x
(µ + 1)

)
e
−x
µ dx
)

= 2µ2e−c/µ
(
1 − 2µ + c + 1

µ(µ + 1)

)
. (22)

The first inequality is due to the fact that W(x) is non-decreasing, so that F
∗
W (x) ≥ F(x) for all x ≥ 0 and the second

and third inequalities follows from the fact that 0 < β ≤ 1 and an application of Theorem 3.1.

Example 3.2 We apply the results of Theorem 3.4 to the stationary renewal reliability function FW (x) = µ−1
∫ ∞

x F(t)dt.
Suppose FW is a DFR reliability function, and

F(x; θ, ϵ) =
{

e−(x−θ)/(1−2ϵ)1/2
if x > θ, θ = 1 − (1 − 2ϵ)1/2

1 otherwise.

then by Theorem 3.4, we have∫ ∞
0
|F∗W (x) − FX(x; θ, ϵ)|dx ≥ 2µ2e−c/µ|1 − (2µ + c + 1)/µ(µ + 1)|

= 2e−c|1 − (2 + c + 1)/2| = e−c(c + 1).

If c = 1, then
∫ ∞

0 |F
∗
W (x) − FX(x; θ, ϵ)|dx ≥ 2e−1. Similarly, if c = 3, then

∫ ∞
0 |F

∗
W (x) − FX(x; θ, ϵ)|dx ≥ 4e−3.

3.2 Moment-Type Inequality

In this section, we obtain bounds and moment-type inequality for the comparison of weighted distributions with
Lindley distribution. We assume that the weighted distribution function FW is inF , the set of absolutely continuous
distribution functions given by equation (3).

The following results are due in part to the application of the lemma given by Brown (page 421,1983).

Theorem 3.5 Assume that E(Xk |X > x) = µk FW (x)
F(x)

is non-decreasing in x ≥ 0,or FW has IMRL, and 0 < µk =

EFL [Xk] < ∞, then for k ≥ 1,
S upx|FW (x) − FL(x)| ≤ 1 − µk/µFW

, (23)
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where µFW
=
∫ ∞

0 FW (x)dx ≥ µk, and FL(x) is the Lindley reliability function.

Proof. Applying Brown’s lemma and noting that E(Xk |X > x) = µk FW (x)
F(x)

is non-decreasing in x ≥ 0, we obtain

S upx|FW (x) − FL(x)| ≤ 1 − (µk)−1
∫ ∞

0
[µk/E(Xk |X > x)]xk fL(x)dx

≤ 1 − (µk)−1µFW

∫ ∞
0

(xk fL(x)/µFW
)2dx

= 1 − µk/µFW
. (24)

Example 3.2 Keilson (1979) defines two first passage times, TV (the ergodic sojourn time) and TE (the ergodic
exit time). The stationary renewal distribution for the finite state ergodic Markov process in continuous time is

FE(x) = µ−1
V

∫ ∞
x

FV (t)dt, (25)

where µV = E(TV ). Consider a repairable three component parallel system with component failure rate 0.01 and
component repair rate 1. The time to first system failure is the first passage to a subset B of the state space, where
B = {(0, 0, 0)}. Brown (1983) showed that EFE (TE) = 345, 181.85 and EFV (TV ) = 343, 333.33, so that

S upx|FW (x) − FL(x)| ≤ 1 − 343, 333.33/345, 181.85 = 0.005355, (26)

where FW = FE and FV = FL. Consequently, FW is within 0.005355 of FL.

4. The Lindley-Cox Model with Covariates

In this section, the Lindley-Cox model and its application to real data is presented. Cox proportional hazard (PH)
model (1972) is given by:

h(t; X, θ,β) = h0(t; θ) exp(X′β), (27)

where h0(t; θ) is the baseline hazard function (of time only). Okwuokenye (2012) considered incorporation of
covariate information using the Lindley distribution as a time-dependent component of the Cox’s PH model. Using
the Lindley model as a time-dependent component of Cox’s PH model, the hazard rate and survival functions are

h(t; X, θ,β) =
θ2(1 + t)
1 + θ + θt

exp(X′β), (28)

and

FL(t; θ,X,β) = exp(− exp(X′β)(θt − ln(1 + θ + θt) + ln(1 + θ))), (29)

respectively. Okwuokenye (2012) called model resulting from (28) the Lindley-Cox model.

Suppose a time-to-event study (in which participants independently enter at different points) terminates at time T,
the number of participants who will have the event by the termination point will be a random variable. Furthermore,
suppose that the maximum time the ith participant may be observed is Ti, then ti ≤ Ti, i = 1, 2, ...., d denotes the
observed times of events. However, tr, r = 1, 2, ...., c = n − d will be censored, representing the individuals who
dropped out of the study, or were alive at the end of the study; that is, tr ≥ Tr. The likelihood of the sample
consisting of d complete and n − d censored observations is:

L(θ,β) =
d∏

i=1

f (ti,Xi, θ,β)
n∏

r=d+1

F(Tr,Xr, θ,β).

The log-likelihood function is given by

l(θ,β) =

d∑
i=1

{ln(h(ti; θ,X,β)) + ln(F(ti; θ,X,β))} +
n∑

r=d+1

ln(F(Tr; X,β)).
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The LL function LL = l(θ,β) of a sample of n independent observations containing some right censored failure
times is given by

LL = 2n ln(θ) +
d∑

i=1

ln(1 + ti) −
d∑

i=1

ln(1 + θ + θti) +
d∑

i=1

X′iβ

−
d∑

i=1

{exp(X′iβ)(θti − ln(1 + θ + θti) + ln(1 + θ))}

−
n∑

r=d+1

{exp(X′rβ)(θtr − ln(1 + θ + θtr) + ln(1 + θ))},

where Xi=(X1, ...., Xp) is a p−component vector of covariates and β is a p × 1 vector of parameters.

4.1 Lindley-Cox Model with Covariates: Applications

Application of the Lindley-Cox model using a publicly available data set is presented in this section. The data set
has been analyzed by other authors via different models. Lindley-Cox failure density is applied, to illustrate its
application to the Fiegl and Zelen (1965) data. Fiegl and Zelen (1965) presented mortality data on two groups of
patients, AG positive and AG negative, whose disease was diagnosed as acute myelogenous leukemia. Patients
were classified as: AG positive if Auer rods, significant granulature of leukemia cells in the bone marrow, or both
were present at the time of diagnosis; AG negative, if these conditions were absent. The data contained covariate
information [white blood cell count (WBC)] and survival times in weeks. Survival times, times until death from
time of leukemia diagnosis, were analyzed by the authors, in which they assumed that the expected survival time
(the reciprocal of the parameter of the negative exponential failure density) is a linear function of the logarithm of
covariate at the time of leukemia diagnosis. The model they assume is

f (ti; θ, xi,β) = λi exp(−λiti), where λi = (α + βxi)−1,

and xi is the WBC for the ith patient. Model parameters was estimated iteratively using the maximum likelihood
estimation technique. Peace (1976) assumed exponential failure density and used λi = θ0 exp(βxi) in his form
of Cox’s PH model. Estimation was done by expansion of the two equations of partial derivatives of the log-
likelihood, with respect to the parameters, in a Taylor series to first order terms. They also estimated the hazard
and survival functions, and performed a chi-square goodness-of-fit test to assess the fit of the model. We present
results from using a Lindley-Cox model to analyze the data for the AG negative group. The parameter estimates
are obtained by the maximum likelihood method. We give parameter estimates (see Tables 1, and 2) for assessing
correlation between survival times and the covariate using the Feigl and Zelen model, Peace’s negative exponential
model, and Lindley-Cox model. The negative log-likelihood for the Feigl and Zelen model was not given by
the authors; however, the negative log-likelihood for the Lindley-Cox model is slightly higher than that of the
Peace’s negative exponential model. Feigl and Zelen model and Lindley-Cox model give estimates of coefficient
of covariate information that are negatively correlated with the survival times, while Peace’s negative exponential
gives the converse. The survival probability for the ith patient: S i = exp(−λiti) for the Feigl and Zelen, and Peace
negative exponential model.

For the Lindley-Cox model:

S i = exp(− exp(X′iβ)(θt − ln(1 + θ + θt) + ln(1 + θ))). (30)

Estimate for the survival distribution may be obtained by substituting the estimated values of the parameters in
the respective equations. Estimates of the survival distributions, Ŝ F− of Feigl and Zelen, Ŝ P− of Peace for the ith

patient in the AG negative group are
Ŝ F− = exp{−(30 − 3xi)−1ti},

and
Ŝ P− = exp{−0.0103 exp(0.41138xi)ti}.

Estimate of the survival distributions Ŝ M− of the Lindley-Cox model for the ith patient in the AG negative group is

Ŝ M− = exp{− exp(−0.2392xi)(0.2107ti − ln(0.2107ti + 0.2107 + 1)
+ ln(0.2107 + 1))}.
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Noted that Xi is a component of the estimated function, so a value of Xi (median in this case) that is, a representative
of the covariate information is desired. The medians of the white blood cell count on the log scale is 4.30 for the
AG negative group. Accordingly, the estimates of median survival distributions of the Feigl and Zelen, Peace
negative exponential, and Lindley-Cox models for the AG negative group are

Ŝ F− = exp(−0.05847953ti), Ŝ P− = exp(−0.05864598ti),

and
Ŝ M− = exp(−.3575214(0.2107ti − ln(0.2107ti + 1.2107) + 0.191199)),

respectively.

Table 1. Parameter Estimates and LL

Parameters Group F&Z Peace Lindley-Cox
θ̂ AG− 30 0.0103 0.2107
β̂ AG− -3 0.41138 -0.2392
var(θ̂) AG− 1232.01 4.1 × 10−7 0.03746
var(β̂) AG− 67.40 40.21779 0.08548

ˆcov(θ, β) AG− -284 −9.3804 × 10−3 −5.533 × 10−2

−LL AG− NG 62.166 65.1046

Table 2. Parameter Estimates and LL: Model with White Blood Cell

Parameters Lindley-Cox Exponential
θ̂ 0.2107 0.0100
S E(θ̂) 0.1935 0.0161
β̂ -0.2392 0.4114
S E(β̂) 0.2924 0.3802

h(t; θ̂,wbc) (θ̂2(1+med.time))e(β̂med.wbc)

1+θ̂+θ̂(med.time)
θ̂e(β̂(med.wbc))

((0.2107)2(1+12))e(4.3(−0.2392))

1+0.2107+0.2107(12) 0.0100e(4.3(0.4114))

= 0.0552 = 0.0587
−LL 65.1046 62.1656
H0 : β = 0 vs −2 lnΛ = 0.6167, −2 lnΛ = 1.1454,
Ha : β , 0 p > 0.05 p > 0.05

Note that −2 lnΛ ∼ χ2
1. Chi-square tests for goodness-of-fit were conducted using quartile intervals. Results for

the chi-square tests reveal that we fail to reject the hypothesis that the Lindley-Cox provides a good fit to the AG
negative group: χ2 = 5.80 with p-value = 0.055. Based on the results, the Lindley-Cox model seems to provide a
reasonable fit for AG negative group data.

5. Concluding Remarks

In this paper, stochastic orders, inequalities, bounds and relations for proportional hazards Lindley models and
weighted life distributions in general are presented. Lindley distributional approximations and bounds are obtained
for the class of IFR (DFR) weighted life distributions including proportional hazards models with monotone weight
functions. Some useful results including moment-type inequality for the comparisons of weighted distributions
with Lindley distribution are given. Covariate information is incorporated into the Lindley model to obtain results
on Lindley-Cox model and applications are given to illustrate the usefulness of the developed results.
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