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Influence of Direction on Stepping Parameters and Postural Stability in Individuals with Chronic  

Ankle Instability 

by 

Jennifer Tolson 

(Under the Direction of Thomas Buckley) 

ABSTRACT 

   Lateral ankle sprains are a common athletic injury accounting for 25-50% of injuries in 

sports that include running and jumping. Individuals who suffer from a lateral ankle sprain may 

develop residual symptoms of chronic ankle instability (CAI). CAI research has examined static 

and dynamic to static movements and unidirectional tasks; however, static to dynamic 

transitional movements remains largely unexplored in this population.  Therefore, the purpose of 

this study was to evaluate dynamic postural stability during directional gait initiation in healthy 

young athletes (HYA) and athletes with CAI. There were no significant differences between the 

two groups for forward and directional gait initiation for center of pressure-center of mass 

separation at heel strike minus one, posterior and lateral displacement of the center of pressure 

during S1, step length, step velocity, and posterior and lateral velocity of the center of pressure 

during S1, We concluded that gait initiation at a 90° step angle may not be a challenging enough 

task to alter dynamic postural stability in those with CAI. 

 

INDEX WORDS:  Chronic ankle instability, Dynamic postural stability, Gait initiation 

  

1 
 



Influence of Direction on Stepping Parameters and Postural Stability in Individuals with Chronic  
 

Ankle Instability 

 

by 

 

Jennifer Tolson 

B.S. Salisbury University, 2006 

 

 

 

A Thesis Submitted to the Graduate Faculty of Georgia Southern University in Partial 
Fulfillment of the Requirements for the Degree 

 

 

 

 

MASTER OF SCIENCE 

 

 

 

STATESBORO, GEORGIA 

2009  

 

 

 

 

2 
 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

© 2009 

Jennifer Tolson 

All Rights Reserved 

 

3 
 



Influence of Direction on Stepping Parameters and Postural Stability in Individuals with Chronic  

Ankle Instability 

by 

Jennifer Tolson 

 

 

 

 

 

 

 

 

 

 

 

Major Professor:       Thomas Buckley   

Committee:           Barry Munkasy                

    Jonathan N. Metzler 

 

Electric Version Approved: 

May 2009 

 

 

 

 

 

  

4 
 



DEDICATION 

I dedicate this to my parents, my sister, and my grandparents who have shown 

tremendous love and support throughout the process of completing my thesis. Without them 

none of this would have been possible. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

5 
 



ACKNOWLEDGEMENTS 

Special thanks to Thomas Buckley, Barry Munkasy, and Jon Metzler for being 

extraordinary mentors throughout the last two years. Thank you for all of your guidance, humor, 

and knowledge in completing this project.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

6 
 



TABLE OF CONTENTS 

Page 

ACKNOWLEDGEMENTS……………………………………………………………………….6 

LIST OF TABLES………………………………………………………………………………...8 

LIST OF FIGURES…………………………………………………………………………….....9 

CHAPTERS 

 1 INTRODUCTION……………………………………………………………….10 

2 METHODS………………………………………………………………………15 

   Participants……………………………………………………………….15 

   Instrumentation………………………………………………………......15 

   Procedures...……………………………………………………………...16 

   Data Analysis…………………………………………………………….17 

   Statistical Analysis……………………………………………………….19 

 3 RESULTS………………………………………………………………………..20 

   Between Group Comparisons……………………………………………20 

   Forward Gait Initiation…………………………………………………..20 

Directional Gait Initiation………………………………………………..20 

 4 DISCUSSION……………………………………………………………………21 

REFERENCES…………………………………………………………………………………..27 

APPRENDICES 

 A RESEARCH HYPOTHESIS……………………….……………………………31 

 B LITERATURE REVIEW...………………….…………………………………..35 

 C IRB AND CONSENT FORM….………………………………………………..68 

 D MEDICAL HISTORY QUESTIONAIRE……………………………………….82 

 E FAAM QUESTIONNAIRE……………………………………………………...85 

 F TABLES AND FIGURES……………………………………………………….89 

 

7 
 



LIST OF TABLES 

Table 1   Demographics for Healthy Young Adults……………………………………………..90 

Table 2   Demographics for Chronic Ankle Instability…………………………………………..91 

Table 3   Descriptive statistics and independent t-test results.…………...……………………...92 

 

 

 

 

 

 

 

 

 

 

 

 

 

8 
 



LIST OF FIGURES 

Figure 1   Transverse Plane view of the path of the COP and COM during Forward Gait  

 Initiation…………………………………………………………………………….93 

Figure 2   COP Trace for Forward and Lateral Gait Initiation…………………………………..94 

Figure 3   A lab set-up for data collection of Forward Gait Initiation…………………………...95 

Figure 4   A lab set-up for data collection of Directional Gait Initiation………………………...96 

Figure 5   COP-COM separation at HS-1 for HYA and CAI during Forward and Directional Gait 

 Initiation……..………………………………………………………………………97 

Figure 6   Exemplar trials of the COP Trace for Forward Gait Initiation representing HYA and 

 CAI……………….…………………………………………………………………98 

Figure 7   Exemplar trails of the COP trace for Directional Gait Initiation representing HYA and 

 CAI………………..…………………………………………………………….......99 

Figure 8   Step Length for the HYA and CAI during Forward and Directional Gait Initiation...100 

Figure 9   Step Velocity for the HYA and CAI during Forward and Directional Gait  

 Initiation……………………………………………………………………….…..101 

 

 

 

 

9 
 



Chapter 1 

Introduction 

Lateral ankle sprains (LAS) are a common athletic injury accounting for 25-50% of 

injuries in sports that include running and jumping, such as basketball, volleyball, soccer, and 

football.1 It is estimated that over 9 million LAS occur annually in the United States.2 Frequently, 

LAS result in ligamentous laxity, altered proprioception and muscular function, and sensations of 

“giving away.”3 The most common predisposition to suffering a LAS is the history of at least 

one previous ankle sprain, with a noted recurrence rate exceeding 70%.2-4 Approximately 70% of 

individuals suffering from a LAS may develop residual symptoms of chronic ankle dysfunction.2 

Chronic ankle instability (CAI) is defined as, “impaired proprioception, strength, postural 

control, and neuromuscular control with or without ligamentous laxity.”3 Bonnin proposed two 

theories that concern the relationship between impaired muscle contraction and CAI.5 He 

initially suggested that a strong powerful concentric response on the part of the peroneal muscles 

was needed to fight the inversion lever and prevent the sprain as the foot and ankle are suddenly 

forced into inversion.5 This theory, however, was not fully supported by his initial findings; 

therefore he revised his theory to involve eccentric control of the ankle evertors in an attempt to 

counter the lateral displacement of the shank during close-chain stance and movement.5 Vaes 

also found during a sudden ankle inversion, the peroneals have a short deceleration time causing 

a less efficient initial passive control of the high inversion speed; therefore, the peroneals do not 

have the strength or reaction time to prevent LAS.6  Willems and Kaminski concluded that a 

combination of proprioception and the lack strength may be the cause of CAI.7-9 Participants 

with CAI were found to have less accurate active position sense at a close to maximal inversion, 
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indicating decreased proprioception. Brown found that individuals with CAI appear to have 

dynamic balance problems during double-leg stance when using time to stabilization.10 CAI 

individuals took longer to stabilize in the anterior-posterior direction after the tibial nerve was 

stimulated.10 The current literature suggests CAI is the result of impaired proprioception and 

strength. 

 Athletes’ postural control systems are constantly challenged as they vary movements due 

to external stimuli from the environment, teammates, and opponents. These challenges require 

both dynamic to static (e.g. jump landing) and static to dynamic (e.g. boxing out) transitions. 

Currently, the predominant research has examined CAI in either static only or dynamic to static 

transitions. McKeon suggested that static balance testing may lack the sensitivity to detect 

improvements in postural control.11 In 2005, Ross assessed time to stabilization after a single leg 

jump landing in participants with CAI and found that time to stabilization was longer for 

participants with CAI than for those with stable ankles.12 This finding suggests individuals with 

CAI may have poor landing strategies and predispose them to further injury.12 McKeon agreed 

with Ross and suggested that perhaps this measure may provide a greater insight into postural 

control alterations.11 Wikstrom and Willems investigated CAI using single leg hops and found 

that CAI includes a combination of decreased proprioception and peroneal weakness, indicating 

that rehabilitation programs need to emphasize both to help prevent CAI.3,7,13 Surprisingly, the 

initiation of movement, or static to dynamic transitions, has received limited attention in the 

literature. 

GI is a functional task representing one of the first voluntary destabilizing behaviors 

observed in the development of a locomotor pattern as the whole body center of mass (COM) 

transitions from a large to a small base of support.14 GI challenges the motor control system 
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because it is a volitional transition from a condition of a static stable support to a continuously 

dynamic unstable postural control during locomotion.15 Chang determined that the COP-COM 

separation at the end of the single support phase of locomotion (also known as heel strike minus 

one or HS-1) during GI was sensitive enough to differentiate healthy individuals from disabled 

individuals and suggested that the greater the separation of the COP and COM, the greater the 

need for postural control.16(Appendix F, Figure 1) Separation of COP-COM is proportional to 

the COM horizontal acceleration in an ideal inverted pendulum model of the body pivoting 

around the ankle.16 Hass suggested that the greater the COP-COM separation, the greater the 

moment arm for the ground reaction forces to act for momentum generation; therefore, a greater 

need for dynamic postural control to counteract the increase moment arm as the separation 

between COP-COM.17 Hass also found that since the COP-COM separation has the ability to 

capture the relationship between momentum generation and dynamic stability arising from 

dynamic postural control, it may serve as an indicator of disability during GI.17 Therefore, COP-

COM separation at HS-1 during activities may indicate the subject’s toleration to dynamic 

unsteadiness.16 Individuals with balance or proprioceptive deficiencies, such as individuals with 

CAI, might shorten this distance in order to maintain or enhance their balance control. 

GI has been utilized to assess postural control in many studies, but they generally have 

been limited to straight ahead walking.14-21 In the only investigation of forward GI in individuals 

with CAI, Wikstrom and Hass found that individuals with CAI appear to alter feed-forward 

control of GI. However, in addition to forward locomotion, many activities of daily living and 

sport specific activities require lateral movement; therefore it is surprising that limited research 

has investigated the effects of direction on GI.14 Hass suggest that impairments in lateral stability 

are an important aspect of balance dysfunction as well as falls and older adults are known to 
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have problems turning and moving laterally.14 Athletes change direction daily while initiating 

gait in order to block a goal shot in soccer or box out during a basketball free throw. Examining 

CAI with directional GI may lead to a better understanding of CAI and how to prevent further 

problems. Recently, Hass found that when initiating gait laterally, transitional frail individuals 

produced larger and more coordinated movement of the COP in a directionally appropriate 

manner during laterally directed GI compared to Parkinson’s disease individuals; however, 

young healthy individuals were not tested.14 

COP is the “weighted average of all the pressures over the surface area in contact with 

the ground.”18 COM is “the point on the body that moves in the same way that a single particle 

would move if subjected to the same external force, or the point at which the weight of the body 

can be considered to act.”19 During GI, the COP and COM each follow a very distant path, or 

trace. The COP trace has been divided into 3 segments by 2 distinct landmarks.14 (Appendix F, 

Figure 2) In order for the COP and COM to begin moving, they first must uncouple.20 In order to 

initiate gait, the COP must move posteriorly to generate a forward momentum.15,17 The first 

segment (S1) begins with the initiation of movement and ends with COP located at its most 

posterior and lateral position towards the initiation swing leg.15,17 This posteriolateral position of 

the COP is known as Landmark 1.15,17 As the COP is moving posteriorly and laterally, the COM 

moves anterolaterally towards the initial stance limb.20 The second segment (S2) is characterized 

by a translation of the COP medially towards the initial stance limb ending at Landmark 2, at 

which point the COP is completely under the initial stance leg.15,17 During the S2 phase, the 

COM continues to move anterolaterally towards the initial stance limb. The third segment (S3) 

extends from Landmark 2 until toe-off of the initial stance leg as COP moves anteriorly.15,17 The 

COM continues to move anteriorly during S3, but as the stance leg begins to toe-off, the COM 
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shifts medially slightly towards the initial swing limb to prepare for heel strike of the initial 

swing leg.20  

The shift of the COP increases the components of the ground reaction forces anteriorly 

and towards the initial stance limb, thereby generating forward momentum.22 The gait initiation 

motor program, inhibition of the soleus followed by activation of the tibialis anterior, generates 

the initial momentum necessary for taking a step through the posterior shift of the COP.20,22 The 

displacement of the COP influences how fast a person initiates gait and the velocity affects the 

length of the step the person takes.22 

The study of GI is a recent approach to assess deficits in postural control impairments in 

individuals with CAI. Both forward and directional GI studies have revealed alterations in the 

postural control systems. Directional GI refers to a lateral directed GI, a step at 90° from their 

initial orientation. Therefore, the purpose of this study is to evaluate dynamic postural stability 

during directional GI in healthy young athletes (HYA) and athletes with CAI. We hypothesize 

that individuals with CAI, for both forward and directional GI, will have impaired postural 

stability demonstrated by an altered COP-COM separation at HS-1, posterior and lateral 

displacement of COP during S1, step length, step velocity, and posterior and lateral velocity of 

COP during S1. 
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Chapter 2 

Methods 

Participants 

A deliberate sample of 28 participants, 14 HYA (8M, 6F) (height = 180.19 ± 7.68 cm, 

mass = 73.48 ± 14.86 kg, BMI = 22.57 ± 4.08) (Table 1) and 14 with unilateral CAI (8M, 6F) 

(height = 181.70 ± 9.66 cm, mass = 73.05 ± 14.02 kg, BMI = 21.92 ± 2.49) (Table 2), were 

recruited from the varsity athletic population at an NCAA Division I university. GI studies have 

traditionally used sample sizes from 9-59 participants and have found significance.16,20 The Foot 

and Ankle Ability Measure (FAAM) was used to categorize a participant’s CAI.23 CAI were 

determined by 3 or more LAS in the last year or greater than/equal to 5 LAS in a lifetime.2,3 

Control participants were free of any previous medical history of lateral ankle sprains. Exclusion 

criteria for both groups included: vestibular disorders, inner ear infections within the last 3 

months, cerebral concussions within the last year, current delayed onset muscle soreness, 

presence of metal plates or screws in the body, pacemakers, and history of tibular-fibular 

fractures or lower extremity dislocations. Participants were matched by gender. Participants 

provided written informed consent before participating in this study as approved by the 

university’s Institutional Review Board. 

Instrumentation 

 Kinematic data was acquired by an electromagnetic tracking system (Ascension 

Technologies; Burlington, VT) using the Motion Monitor (Innovative Sports Training, Inc.; 

Chicago, IL.) commercially available acquisition and analysis software. At the core of the system 

is a transmitter with three orthogonal coils that are used to create an electromagnetic field. 
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Sensors in the magnetic field record the magnetic flux and convey the signals to a base computer 

through cables. The Motion Monitor software calculates sensor position and orientation from 

data conveyed by the sensors. Kinematic data were collected by the computer at 100 Hz.  

Two non-conducting force-plates mounted flush with the floor (Model OR6-5, Advanced 

Mechanical Technology, Inc., Watertown, MA) were used to collect ground reaction forces and 

moments. Force-plate signals were amplified and digitized using an analog to digital card 

(Computer Board DAS 1602-12, Computer Boards, Inc., Middleboro, MA). Signals from the 

force-plates were sampled at a frequency of 1000 Hz. Ground reaction forces and moments from 

the force-plates were used to calculate COP. COM was calculated using the Dempster 

parameters.24 

Procedures 

 The participants were tested in the biomechanics lab at Georgia Southern University. 

Prior to data collection, the participants completed the informed consent materials, Medical 

History Questionnaire and FAAM questionnaire (Appendix D and E) and had any questions 

answered.23 Participants wore athletic shorts, tee-shirts and sneakers. During set-up, sensors were 

firmly attached to the participants within the capture area of the electromagnetic tracking system 

of approximately 1.8 m. Six sensors were attached bilaterally to the lower extremities on the 

dorsum of foot, the medial surface of the tibia, and the lateral thigh. One sensor was placed on 

the sacrum and another sensor was placed on C7. The lower extremity and sacrum sensors were 

attached with double-sided tape. Pre-wrap and athletic tape was used to stabilize the sensors after 

they were attached to participant. An ace wrap was used to stabilize the sacrum sensor. The C7 

sensor was attached with a Velcro shoulder strap. The 9th sensor was used to calculate the centers 
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of the ankle and knee joints with respect to the secured foot, shank, and thigh sensors. The hip 

joint centers were calculated using the Leardini method.25  

 Participants had the opportunity to practice the tasks until they were comfortable with the 

set-up. They began by standing on a single force-plate with a self-selected stance width. Once 

the stance width was chosen, their position was marked to ensure consistency across trials. The 

participants initiated gait in response to a verbal cue by stepping with the non-CAI foot. 

Therefore, the CAI limb was considered the initial stance foot. Participants walked across on the 

lab floor towards a marker place at eye level approximately 3 m away. For the safety and 

comfort of the participants, a research assistant held the sensor cords and ensured the cords did 

not contact either force-plate and get in the path of the participant during the trial. The 

participants walked across the two force-plates for the 0o direction, forward GI, and then walked 

from the force-plate they were standing on, to a second force-plate for the 90o directional 

movement, lateral GI (Appendix F, Figure 3 and 4). Five trials for each task were successfully 

completed. Healthy participants initiated gait with the limb that corresponds with their matched 

CAI participants.  

Data Analysis 

 The following variables were analyzed to assess for dynamic postural instability during 

forward and directional GI. 

COP-COM separation at HS-1. Separation of COP and COM was calculated from the 

resultant displacement between the projection of the COM in the transverse plan and the COP.20 

COP-COM Separation at HS-1 was measured in centimeters (cm).  
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Posterior displacement of the COP during S1. The posterior displacement of COP during 

S1 was measured from movement initiation (first change in medial/lateral ground reaction forces 

(mean + 2 std)) to the most posteriolateral position of the COP. The posterior displacement was 

along the z-axis of the force-plates. This was measured in centimeters (cm). 

Lateral displacement of the COP during S1. The lateral displacement was measured from 

movement initiation (first change in medial/lateral ground reaction forces (mean + 2 std)) to the 

most posteriolateral position of the COP. The lateral displacement was along the x-axis of the 

force-plates. This was measured in centimeters (cm). 

 Step Length.  Step length was the displacement of the initial step, from initial heel 

position of the initial stance foot to heel strike of the initial swing foot (the moment when the 

first vertical ground reaction force on the second force-plate occurs) Step length was measured in 

meters (m).  

 Step Velocity. Step velocity was step length divided by the time it takes initial step to heel 

strike of the initial swing foot and was measured in meters per seconds (m/s). 

Posterior velocity of the COP during S1. The posterior velocity was calculated by 

dividing the posterior displacement of the COP during S1 by the time over which the 

displacement took place. This was measured in centimeters per seconds (cm/s). 

  Lateral velocity of the COP during S1. The lateral velocity was calculated by dividing 

the lateral displacement of the COP during S1 by the time over which the displacement took 

place. This was measured in centimeters per seconds (cm/s). 
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Statistical Analysis 

 Data was collected on seven dependent variables including 1) COP-COM separation at 

HS-1, 2) posterior displacement of COP during S1, 3) lateral displacement of COP during S1, 4) 

step length, 5) step velocity, 6) posterior velocity of COP during S1, and 7) lateral velocity of 

COP during S1. Given that each of these variables was assessed on two tasks, forward GI and 

directional GI, 14 independent t-tests were conducted to assess mean differences between HYA 

and CAI groups on each dependent variable. A priori alpha was set at .05 for all tests. Bonferoni 

correction was not employed given the exploratory nature of the study. 
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Chapter 3 

Results 

Between Group Comparisons 

 All participants were able to complete the experimental trials without any difficulties. 

There were no significant differences for age (p=.75), height (p=.65), weight (p=.94), ASIS 

height (p=.68), and BMI (p=.62). (Table 1 and 2) 

Forward Gait Initiation 

 There were no significant differences during forward GI between HYA and CAI for 

COP-COM separation at HS-1 (p=.24), posterior displacement of COP during S1 (p=.12), lateral 

displacement of COP during S1 (p=.85), step length (p=.36), step velocity (p=.36), posterior 

velocity of COP during S1 (p=.15), and lateral velocity of COP during S1 (p=.60). (Table 3) 

Directional Gait Initiation 

 There were no significant differences during directional GI between HYA and CAI for 

COP-COM separation at HS-1 (p=.96), posterior displacement of COP during S1 (p=.99), lateral 

displacement of COP during S1 (p=.57), step length (p=.84), step velocity (p=.27), posterior 

velocity of COP during S1 (p=.96), and lateral velocity of COP during S1 (p=.29). (Table 3) 
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Chapter 4 

Discussion 

  The purpose of this study was to assess dynamic postural stability during directional GI 

in individuals with CAI. The principle finding of this study was no significant differences 

between groups for the measures in question. We are left to conclude that neither forward GI nor 

directional GI is a sufficiently challenging task to identify impairments in dynamic postural 

stability in individuals with CAI. 

Research on GI and dynamic postural control has suggested that the combined analysis of 

the COP and COM movements during quiet stance and dynamic activity would provide insight 

into the assessment of balance as compared to analyzing either variable alone.17 The COP-COM 

separation at HS-1 has been proposed as a variable sensitive to changes or impairments in 

postural stability.17 In our study, we found no significant differences for the COP-COM 

separation at HS-1 for HYA and CAI during forward (23.4 cm and 21.7 cm) and directional GI 

(33.6 cm and 33.5 cm). (Appendix F, Figure 5) Previous investigators have found the COP-COM 

separation at HS-1 during forward GI for healthy young adults is approximately 23 cm, for young 

elderly is 21 cm, and for elderly with disability is about 16 cm.26-28 There is a higher demand 

placed on the postural control system when the COP-COM separation at HS-1 is greater. 

  Posterior displacement of the COP during S1 period generates the forward momentum 

needed to initiate gait.14 As people age or become disabled, there is a reduction in the magnitude 

of the posterior COP displacement during S1 within GI.14 Despite not reaching statistical 

significance, we noted a 21% reduction in the posterior translation of the COP (4.8 cm and 3.9 

cm, p=.12) between HYA and CAI groups. (Appendix F, Figure 6) These findings are consistent 
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with a previous investigation which found a posterior translation of 4.7 cm in HYA.21 In elderly 

and disabled populations, this posterior displacement has ranged from as little as 2.7 cm in 

Parkinson’s disease patients to 3.5 cm in a healthy elderly population suggesting that there is an 

alteration in the control mechanism responsible for shifting the COP posteriorly which 

progressively deteriorates with disability and aging.12,21 The posterior displacement of the COP 

is the result of the GI motor program whereby the tibialis anterior (TA) fires immediately 

following the relaxation of the soleus (SOL).29 Therefore, a diminished TA activation pattern 

will likely reduce the posterior displacement of the COP. Despite what the literature has found 

between PD and transitionally frail individuals for posterior displacement of COP, our results 

suggest it is likely that CAI do not have the same impairment in the motor program. 

The lateral displacement of COP, which is controlled by the muscle activation of the 

gluteus medius, propels the COM towards the initial stance limb.29 In this study there were no 

differences between HYA and CAI groups for lateral displacement of the COP during S1 (4.0 cm 

vs. 3.9 cm). (Figure 6) These findings for both groups fell within the previously established 

range of 2.9 to 4.5 cm seen in HYA and were substantially greater than previously reported in 

elderly, transitionally frail, and PD patients (1.8-2.5 cm).14 We likely did not find significance 

because the lateral COP displacement is largely based on gluteus medius activity and it is 

unlikely that CAI injury impairs the activation of the gluteus medius.  

Surprisingly, there is limited research available that describes laterally directed GI.14 

Hass found that during directional GI the COP moves posterior and towards the initial swing foot 

like in forward, but the magnitude of the posterior displacement is reduced.14 This was not 

surprising since forward momentum is not as relevant in the lateral directed initiation, whereas 

the momentum generation in the intended direction of movement (lateral) should be amplified.14 
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In our study, we found no differences in the posterior displacement of the COP between CAI and 

HYA (0.37 cm and 0.38 cm, p=.99) or lateral displacement of COP (0.55 cm and 0.66 cm, 

p=.57). (Appendix F, Figure 7) Hass found that PD individuals reduce the magnitude of the 

posterior displacement of COP (2.1 cm) during a lateral step less than transitionally frail (1.5 

cm).14 To explain this observation, it’s suggested that PD individuals may produce minimal 

postural adjustments as a result of deficits in the ability to generate propulsive forces or as an 

attempt to simplify the motor act.14 During forward GI the literature indicates that the older or 

more disabled you become the greater you restrict your posterior COP movement, however the 

limited research on directional GI this suggests this movement may be counterproductive. The 

PD and transitionally frail individuals inappropriately scale the motor program during directional 

GI, whereby the HYA and CAI individuals perform the task in a more efficient manner by not 

generating unneeded forward momentum, which is counterproductive to the goal of the task.  

Since we found no differences in the posterior and lateral displacements of the COP, we 

not surprised about not finding differences with step length for forward (0.6 ± 0.1 m and 0.6 ± 

0.2 m) or directional (0.4 ± 0.1 m and 0.4 ± 0.1) GI. (Appendix F, Figure 8) The GI motor 

program generates the initial momentum necessary for taking a step through the posterior shift of 

the COP.22 The displacement of the COP influences how fast a person initiates gait and the 

velocity affects the length of the step the person takes.22 

Before the COM begins to move, the COP must shift posterior and towards the initiation 

swing limb. This shift of the COP increases the components of the ground reaction forces 

anteriorly and towards the initial stance limb, thereby generating momentum forward.22 The GI 

motor program generates the initial momentum necessary for taking a step through the posterior 

shift of the COP.22 Polcyn found that posterior velocity of the COP was highly correlated with 
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walking speed.22 She found that a decrease in posterior COP shift in the elderly (0.78 ± 0.12 cm) 

as compared to a young population (0.88 ± 0.07 cm), caused a decrease in the step velocity.22 

She suggested this could be attributed by an imbalance in the motor programming. In this study, 

we found no significant differences between HYA (0.5 ± 0.1 m/s and 0.4 ± 0.1 m/s) and CAI 

(0.5 ± 0.1 m/s and 0.3 ± 0.1 m/s). (Appendix F, Figure 9) 

After a systematic review of postural control and lateral ankle instability, McKeon 

concluded that there are postural control deficits in those with CAI as compared to HYA, using 

tests like single leg stance, time-to-stabilization, and Star Excursion Balance Test.30 Brown 

found that individuals with CAI took longer to return to a stable state as compared to healthy, 

providing evidence for the effects of CAI on sensorimotor system.10 Olmsted found deficits in 

the proprioception between CAI and controls using the Star Excursion Balance Test and 

concluded that it’s an effective test for detecting deficits in individuals with CAI.31 Wikstrom 

found that the dynamic postural stability index can be used in conjunction with a functional 

single-leg hop stabilization test to detect dynamic postural stability in CAI.32 While impairments 

in postural stability have been well documented in the CAI literature, there seems to be 

agreement that tasks that are static and dynamic to static can detect deficits, but static to dynamic 

tasks may not be challenging enough. 

Like all research, there are limitations to this study. Our decision not to differentiate 

specifically between functional and mechanical instability may have limited our findings. This 

may have limited our results because it is possible that only one of these instabilities may affect 

dynamic postural stability. It is possible the participants may have restricted their movement, 

even though a research assistant held the cords and allowed appropriate amount of slack 

constantly. By restricting their movements, the participants may have used a different motor 

24 
 



programming which could affect the dynamic postural stability. Our measurements were also 

dependent upon the electromagnetic system and its limitations. The electromagnetic system only 

has a 1.8 m capture range and COM calculations could vary based upon the accuracy of the joint 

measurements. As a participant comes close the edge of the capture zone that the data may be 

bad which can affect the results. Data collection can also be affected by vibrations of the 

electromagnetic sensors during participant’s movement. The vibrations of the sensors can add 

unwanted noise to the data collected which can affect results. The results of our study could have 

also been limited by the power results found an average observed power of 0.146 which is well 

below an appropriate power value of 0.8. To achieve a strong power, we would have needed to 

have 134 participants in each group. 

 Future research should continue to study postural instability during various directions in 

both HYA and CAI subjects in order to address some of the limitations of our study. Future 

studies may also consider looking at the difference between mechanical and functional CAI and 

directional GI to see if there are any affects on dynamic postural stability. Various speeds during 

90° step angle with GI may also be investigated, as it could be a more challenging task on the 

dynamic postural stability. EMG testing of the lower extremity muscles should also be studied to 

assess the motor programming that controls the COP displacement. Another future research idea 

may be add a second task (e.g. dual task) to the testing procedures and see if dynamic postural 

stability. Dual task trails could be interesting to study along with CAI because athletes have to 

think about other things that are occurring on the field while playing and it may affect dynamic 

postural stability. 

According to the results of our study, there appears to be no changes in dynamic postural 

stability during directional GI for those with CAI compared to HYA. This suggests that 
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directional GI may not be a challenging enough task to affect dynamic postural stability in those 

with CAI. Despite noted postural instabilities associated with CAI during forward GI, 

surprisingly we found no deficits in postural instabilities with CAI during directional GI. 
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Research Hypothesis 

1) Healthy young individuals will have a difference in COP-COM separation at HS-1 during 

a) forward and b) directional GI than those with chronic ankle instability. 

2) Healthy young individuals will have a difference in posterior displacement of the COP 

during S1of a) forward and b) directional GI than those with chronic ankle instability. 

3) Healthy young individuals will have a difference in lateral displacement of the COP 

during S1 of a) forward and b) directional GI than those with chronic ankle instability. 

4) Healthy young individuals will have a difference in posterior velocity of the COP during 

S1of a) forward and b) directional GI than those with chronic ankle instability. 

5) Healthy young individuals will have a difference in lateral velocity of the COP during S1 

of a) forward and b) directional GI than those with chronic ankle instability. 

6) Healthy young individuals will have a difference in step length during a) forward and b) 

directional GI than those with chronic ankle instability. 

7) Healthy young individuals will have a difference in step velocity during a) forward and b) 

directional GI than those with chronic ankle instability. 

Limitations 

1) The participants were selected from a convenience sample of both female and male 

participants, recruited within a single university in the southeastern United States.  

2) The electromagnetic tracking system requires the use of cords to transmit the information 

from the sensors to the computer so it may cause movement restrictions. 

3) The system requires manual location of joint lines to calculate joint centers which may 

affect the accuracy of measurements due to multiple raters. 

4) Vibration of the electromagnetic sensors during participant’s movement. 
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5) An average observed power value of 0.146. 

Delimitations 

1) Participants were within the ages of 18 and 26 years old. 

2) Participants were all physically active individuals 

3) The electromagnetic tracking system only has a 1.8 m capture zone to collect reliable 

data in. 

4) While all tasks simulated GI activity, tests were carried out in a controlled lab setting, 

where the participants had prior knowledge to the GI being performed. 

5) Any participant with a previous history of ankle sprains, surgery or, fracture to either 

lower extremity were unable to participant. 

Assumptions 

1) Participants were truthful when reporting their medical history and activity level. 

2) Participants gave maximum effort on every trial during every task. 

3) There were no gender differences among the variables.  

4) Data collection instruments maintained calibration throughout the experiment. 

5) All post assessment calculations were accurate for every trial for every task. 

Definitions 

1) Chronic Ankle Instability (CAI): impaired proprioception, strength, and postural and 

neuromuscular control with or without ligament laxity. 

2) Center of Pressure (COP): the point of application where the resultant of all the ground 

reaction forces act. 

3) Center of Mass (COM): the point on the body that moves in the same way that a simple 

particle would move if subjected to the same external force. 
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4) Heel Strike minus one (HS-1): the last moment in swing phase before heel strike. 

5) Healthy: an athlete without a previous history of ankle sprains, significant lower 

extremity injuries, neurological-vestibular pathology to be used as control participants in 

the study. 
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Literature Review 

Anatomy and Physiology 

The stability of the ankle joint is proved by 3 major contributors: the congruity of the 

articular surfaces when the joints are loaded, the static ligamentous restraints, and the dynamic 

stabilization from the musculotendinous units.1 

The lower leg, which lies between the knee and the ankle, contains two bones: the tibia 

and the fibula. The distal portions of the tibia and the fibula form the ankle joint along with the 

talus.2 The calcaneus does not help form the ankle joint, which is created by the talocrural and 

subtalar joints, but it plays a critical role in the function of the joint.2  

The tibia is the second longest bone in the body and is the principle weight-bearing bone 

on the lower leg.2 The tibia is a triangularly shaped bone in the upper two-thirds but is rounded 

in the lower third.2 In the lower third of the tibial shift is where the most pronounced change 

occurs. This change produces an anatomical weakness.2 The shaft of the tibia has 3 surfaces: 

posterior, medial and lateral. The lateral and posterior surfaces are covered by muscles that help 

move and support the ankle joint; the medial surface is subcutaneous. 

The long and slender fibula is located on the lateral aspect of the lower leg. The main 

function of the fibula is to provide an attachment site for muscles of the lower leg.2 The distal 

ends of both the tibia and the fibula are referred to as the medial malleolus and the lateral 

malleolus, respectively. The lateral aspect of the ankle joint has greater stability than on the 

medial aspect due to the bony arrangement of the tibia and the fibula.2 The lateral malleolus of 

the fibula extends further distally than the medial malleolus creating the greater stability.2  
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The talus is the link between the lower leg and the foot and it is the main weight-bearing 

bone of the ankle joint. It is located superficial to the calcaneus and it receives the articular 

surfaces of the tibia and the fibula.2 The calcaneus does not form the ankle joint, but it is 

important because it provides attachment sites for major ligaments that support the ankle and the 

Achilles tendon. 

The ankle joint is comprised of 3 articulations: the talocrural joint, the subtalar joint and 

the distal tibiofibular joint. These 3 articulation work together to coordinate rearfoot movement, 

which occurs in all 3 cardinal planes: sagittal-plane motion (plantarflexion-dorsiflexion), frontal-

plane motion (inversion-eversion), and transverse-plane motion (internal and external rotation).1 

The coordinated movement of the 3 joints allows the rearfoot to move about an axis of rotation 

oblique to the long axis of the lower leg instead of an isolated motion within the individual 

planes.1 Due to the oblique axes of the subtalar and talocrural joints, rearfoot motion does not 

occur strictly in the cardinal planes which cause a coupling of the rearfoot motion that best can 

be described as pronation and supination.1  

The talocrural joint is a synovial joint3, created by the articulation of the distal end of the 

tibia, the distal end of the fibula, and the dome of the talus. The talocrural joint is also classified 

as a hinge joint.2 In the hinge joint, the articular surfaces are moulded to each other in such a 

manner as to permit motion only in one plane, forward and backward, the extent of motion at the 

same time being considerable.2 The axis of rotation of the talocrural joint passes through the 

medial and lateral malleoli.77 The axis is slightly anterior to the frontal plane as it passes through 

the tibia but slightly posterior to the frontal plane as it passes through the fibia.77 The bony 

arrangement is often referred to as the ankle mortise.2 The ankle mortise is the tibiofibular socket 

formed by the plafond (vault), the tibial malleolus and the fibular malleolus. The ligaments that 
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support the talocrural joint are the anterior talofibular ligament (ATF), posterior talofibular 

ligament (PTF), calcaneofibular ligament (CF) and the deltoid ligaments. The ATF originates off 

the anterolateral surface of the lateral malleolus and inserts on the talus.4 The ATF resists the 

motion of inversion of the talocalcaneal unit in the plantarflexed position and it also limits the 

anterior translation of the talus on the tibia.4 The PTF originates from the posterior aspect of the 

lateral malleolus and runs inferior and posterior to attach to the talus and calcaneus.4 The PTF 

limits the posterior translation of the talus on the tibia.2, 4 The third lateral ligament, the CF, 

originates from the outermost portion of the lateral malleolus and inserts on the calcaneus.4 The 

CF is the primary resistant of talar inversion within the midrange of talocrural motion.4  

The deltoid ligament is a strong, flat, triangular band that originates from the medial 

malleolus and inserts to the talus, the calcaneus, and the navicular.4 The deltoid ligament is 

comprised of four ligaments: the anterior tibiotalar (ATT), the tibiocalcaneal (CT), the posterior 

tibiotalar (PTT), and the tibionavicular (TN).4 These ligaments provide the medial static 

ligamentous support of the ankle joint.  

The subtalar joint is formed by the articulations between the talus and the calcaneus. Due 

to the shapes of the talus and calcaneus, the subtalar joint has 2 separate articulating surfaces that 

function together.3 In the anterior portion of the subtalar joint, the articular surface of the 

calcaneus is concave and the surface of the talus is convex.3 In the posterior portion of the 

subtalar joint, the articular surface of the calcaneus is convex and the articular surface of the 

talus is concave.3 The subtalar joint has two separate cavities that share a common axis of 

rotation.77 The axis is an oblique axis of rotation, which averages a 42° upward tilt and 23° 

medial angulation from the perpendicular axes of the foot.77 The subtalar joint is supported by a 

complex ligamentous support structure which is separated into 3 groups: deep ligaments, 
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peripheral ligaments and the retinacla.1 The deep ligaments, the cervical and interosseous 

ligaments, stabilize the subtalar joint and form a barrier between the anterior and posterior joint 

capsule.1 The cervical ligament runs anterior and lateral to the interosseous ligament and runs 

from the cervical tubercle of the calcaneus anteriomedially to the talar neck and resists 

supination.1 The interosseous ligament originates on the calcaneus just anterior to the posterior 

subtalar joint capsule and runs superiomedially to its insertion on the talar neck and resists 

supination and pronation.1 The peripheral ligaments include the calcaneofibular ligament (CFL), 

the lateral talocalcaneal ligament (LTCL) and the fibulotalocalcaneal ligament (FTCL).1 The 

LTCL runs parallel and anterior to the CFL and only crosses the posterior subtalar joint.1 It helps 

prevent excessive supination of the subtalar joint.1 The FTCL is also known as the ligament of 

Rouviere.1 The FTCL runs from the posterior surface of the lateral malleolus to the 

posteriolateral surface of the talus and then to the posteriolateral calcaneus and assists in resisting 

excessive supination.1 

The distal tibiofibular joint, which is a syndesmosis joint, is the articulation between the 

tibia and fibula, which is stabilized by the anterior and posterior inferior tibiofibular ligaments 

and the thick interosseous membrane. The distal tibiofibular joint allows only limited movement 

between the two bones, but accessory gliding at this joint is crucial to normal mechanics 

throughout the entire ankle complex.1 The involuntary motions of anterioposterior glide and 

slight spreading of the mortise occur at the distal tibiofibular joint.77 The fibula glides superiorly 

during dorsiflexion and inferiorly during plantarflexion.77 The structural integrity of the distal 

tibiofibular joint is necessary to form the stable roof for the talocrural joint.1 

The musculature that provides dynamic stability and movement for the ankle joint are 

external to the joint itself. The muscles originate in the lower leg, across the ankle joint and 
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insert on the bones of the foot. The lower leg is divided into 4 compartments that contain muscle 

and neurovascular structures that are bound by fascia.2, 4  

The anterior compartment consists of the tibialis anterior, the extensor hallucis longus, 

the extensor digitorum longus, the peroneus, the deep peroneal nerve and the anterior tibial 

artery. The anterior tibialis is the primary mover for ankle dorsiflexion and subtalar joint 

inversion. The other anterior muscles assistant with ankle dorsiflexion, but are primarily 

responsible for toe extension.  

The lateral compartment contains the three peroneal muscles: the peroneus longus, the 

peroneus brevis, and the peroneal tertius. The superficial peroneal nerve and the peroneal artery 

form the neurovascular bundle within the lateral compartment.2, 4 The peroneals are strong 

evertors of the foot and contribute to plantarflexion of the ankle.  

The superficial posterior compartment houses the gastrocnemius, the soleus, the plantaris, 

the tibial nerve and the posterior tibial artery. The gastrocnemius and the soleus have a common 

insertion on the calcaneus via the Achilles tendon.2 These muscles are the prime movers during 

plantarflexion, but since the gastrocnemius is a 2-joint muscle it is mostly involved with knee 

extension.  

The posterior tibialis, the flexor digitorum, and the flexor hallucis longus are within the 

deep posterior compartment. According to Starkey, the deep posterior compartment does not 

contain a neurovascular bundle, whereas others say that the posterior tibial artery lies within the 

deep posterior compartment.2,4 The posterior tibialis muscle is the only muscle that acts primarily 

on the ankle. It is the primary adductor of the forefoot and assists in plantarflexion and inversion. 

The other muscles provide secondary assistance for plantarflexion and inversion of the ankle.  
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The ankle is formed by the tibia, fibula, and talus. The articulations of the 3 bones create 

3 joints: the talocrural, the subtalar and the distal tibiofibular joints. The ankle joint is stabilized 

by static and dynamic structures. 

Pathophysiology 

Frequency/cost 

Lateral Ankle Sprains (LAS) are among the most common injuries in athletics.1, 5-15 It has 

been estimated that between 23,000 and 27,000 ankle sprains occur daily in the United States, 

which is an estimated number of 8 to 10 million sprains a year.5, 8, 16 Due to the frequent nature 

of LAS and the medical care needed to treat them, in 2003 it was estimated to cost the United 

States $3.65 billion to treat LAS annually.17, 18 LAS often occur in sports that include running, 

jumping and landing, such as basketball, volleyball and soccer.7, 10 Of those who suffer LAS, it is 

estimated that 55-56.8% of them will not seek medical care.8, 16 The recurrence rate for LAS is 

between70-80%.1, 8-9, 16, 19-20, 77 Between 40-75% of those who sprain their ankle will report 

having residual symptoms that include pain, repeated sprains and episodes of “giving way” 6-18 

months after initial injury.8-9, 19, 21 Approximately 40% of those who suffer LAS will be affected 

by CAI.10, 22 

LAS commonly occur during the initial contact of the rearfoot during gait or landing 

from a jump.16 Jump landings are responsible for about 45% of all ankle injuries.16 Of those 

45%, half occurred as a result of landing half of the foot on the playing surface and the other half 

on another player’s foot.16 The most common mechanism of injury is excessive supination of the 

rearfoot about an external rotated lower leg.1, 3 The lateral ankle ligaments are most commonly 

the ones affected with this mechanism of injury due to the increase in torque caused by the 
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excessive inversion coupled with external rotation.1 The ATF is the most common ligament 

injured with LAS, followed by the CF and PTF.1 When the ATF ligament is sprained it allows 

for increase internal rotation of the rearfoot and leads to further stress on the remaining intact 

ligaments, which is commonly referred to as “rotational instability.”1 Rotational instability is 

commonly overlooked with LAS.1 The PTF is most commonly injured with more severe LAS 

and is often has an associated fracture or dislocation or both.1 

What is CAI? 

Chronic ankle instability (CAI) has been defined as, “altered mechanical joint stability 

due to repeated disruptions to ankle with resultant perceived and observed deficits in 

neuromuscular control.”20 CAI has been linked to two probable causes: mechanical instability 

(MI) and functional ankle instability (FAI).1 Mechanical instability and FAI have been found not 

to be mutually exclusive, but likely have some overlap.1, 8 A review of literature found that only 

42% of FAI was associated with mechanical instability and only 36% of mechanical instability 

was associated with FAI.1, 8 

Mechanical instability is referred to as anatomical changes, most notably joint laxity of 

the lateral ligaments and capsule.1, 8- 9 There are several changes that lead to mechanical 

instability, including pathological laxity or hypermobility, impaired arthokinematics or 

hypomobility, the development of degenerative joint disease and synovial changes.1 These 

anatomical changes may happen in combination or isolation.1  

Pathological laxity is often the result of ligamentous damage.1 The severity of 

pathological laxity depends on the amount of ligamentous damage to the lateral ligaments.1 It 

can be assessed with a physical examination, stress radiographs, and instrumented arthrometry.1 
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Pathologic laxity is often present in individuals with CAI, 11% of healthy individuals also have 

asymmetric ankle laxity as assessed by the anterior drawer and talar tilt tests.1 The result of 

pathological laxity is hypermobility and an increase in the accessory motion available at a joint.77 

Decrease accessory motion of a joint indicates an enlargement of the neutral zone. The neutral 

zone is the area of the joint that accessory motion is possible without ligamentous tensioning.77 

Further strain is placed on the injured ligaments due to the increase motion and it may lead to the 

axis of rotation to become more anterior or posterior in the frontal plane.77 

Impaired arthokinematics can be caused by both a positional fault at the inferior 

tibiofibular joint and Hypomobility.1 The positional fault, in individuals with CAI, is when the 

distal fibula, the lateral malleolus, is displaced inferiorly and anteriorly from it is original 

position.1 If the lateral malleolus is fixed in this position then the ATF may be more relaxed in 

this position.1 As a result of the increased slack, the talus is allowed to move through a greater 

range of motion when the rearfoot starts to supinate before the ATF becomes taut.1 This may 

result in repeated bouts of LAS due to episodes of recurrent instability.1  

Hypomobility is defined as, “the diminished range of motion” of a joint.1 Hypomobility 

is thought to be a predisposition to lateral ankle sprains because if the talocrural joint is not able 

to fully dorsiflex, it will not reach its closed-packed position during the stance phase of walking.1 

If the closed-packed position is not reached the ankle joint will be able to invert and internally 

rotate more easily.1 Although the decrease in dorsiflexion ROM can be attributed to a tight 

gastrocnemius-soleus complex, more often the decrease is likely due to limitations in the 

accessory joint movement.77 The abnormal restrictive barrier to accessory movement changes the 

pattern of movement of the axis of joint rotation. Abnormal stress is placed on the ligaments due 
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to the axis becoming slightly anterior to the lateral malleolus as it passes through the tibia and 

fibula.77 

Mechanical instability may be also caused by synovial impingements and degenerative 

changes of the ankle joint. Synovial impingements are caused by hypertrophic synovial tissue 

and inflammation in the talocrural and posterior subtalar joint capsules.1 Hertel found that of 

those who required surgery for lateral ankle instability, 67% had anterolateral impingement 

syndrome of the talocrural joint and 49% had talocrural synovitis.1 Additionally, individuals 

undergoing surgery for ankle-ligament repair were greater than 3 times more likely to have 

osteophytes than those with asymptomatic ankles. Osteophytes are the overgrowth of bone tissue 

or small round lumps of extra bone that grows around joints. It is unclear whether degenerative 

changes are in response to structural predispositions or to repeat bouts of ankle instability that 

lead to recurrent LAS.1 

FAI is defined as, “impaired proprioception, strength, and postural and neuromuscular 

control without ligamentous laxity.”8-9, 16, 23 FAI has also been defined based on the athlete’s 

subjective complaint of the ankle “giving way.”6-7, 21, 24-26 FAI has been established by 

quantifying deficits in ankle proprioception, nerve-conduction velocity, postural control, 

cutaneous sensation, neuromuscular response times, and strength.1 FAI has been studied in both 

clinical and laboratory settings to detect and explain deficits in athletes. These deficits have been 

examined through proprioception, muscle strength and postural control; however most of these 

studies were done from a static state or a dynamic to static state. 1, 5-10, 16-17, 19-35 

Studies have found that those prone to repetitive ankle sprains have impaired 

proprioception at the ankle on measures of kinesthesia and active replication of joint angles.1 The 
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clinical relevance of these deficits is still not understood at this time according to Hertel.1 Hertel 

found that impaired neuromuscular-recruitment patterns have been found in individuals with a 

history of repetitive LAS.1 Due to mixed methodologies, there are conflicting results on the 

reflexive response times of the peroneal muscles. They found that the peroneal response may be 

impaired in CAI due to impaired proprioception, slowed nerve-conduction velocity or central 

impairments in neuromuscular-recruitment strategies. 

Strength 

Strength was originally thought to be the cause of CAI, but current research has found 

that strength does not have an affect. The peroneals have been the most studied muscles because 

they were thought to help control LAS.26, 28, 31- 32 However, studies have shown that the peroneals 

fire too late during a LAS that they do not help prevent or control it.26, 28, 31- 32 Strength is an 

important consideration during rehabilitation, but it should not be the main focus. During 

Kaminski’s review, he found 2 theories that concern the relationship between muscle weakness 

and CAI.28 The first theory was proposed in 1950 by Bonnin suggested that a strong powerful 

concentric response on the part of the peroneal muscles was needed to fight the inversion lever 

and prevent the sprain as the foot and ankle are suddenly forced into inversion.28 Bonnin 

mentioned that in untrained individuals, a false step may catch the weak muscles “off guard”, 

meaning the forces have overcome the resistance of the muscles.28 He also added that frequent 

sprains due to excessive strain on the ligaments may be caused by added leverage. This added 

leverage could possibly due to the rotation away from the midline of the joint. The development 

of the muscular control by the peroneals is encouraged by Bonnin to help limit the rotation away 

from the midline.28 The second theory was developed when more recent research was not able to 

support the finding of weakness in the evertors. The second theory involved eccentric control of 
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the ankle invertors in an attempt to counter the lateral displacement of the lower leg during close-

chain stance and movement.28 

Vaes looked at the reaction timing of the peroneal muscles during a sudden ankle 

inversion.31 They concluded that with the shorter first deceleration there is possible higher 

inversions speed in unstable ankles because the initially passive control is shown to be less 

efficient in unstable ankles, which causes a very high inversion speed.31  

As researchers were finding that strength may not be the primary cause of CAI, they 

started to examine strength along with proprioception together. They found that the instability 

group was significantly less accurate with active position sense, using a Biodex, at a position 

close to maximal inversion compared to the controls. The instability group also had significantly 

lower relative eversion muscle strength. Willems concluded that CAI may be caused by a 

combination of diminished proprioception and evertor muscle weakness.32 Kaminski found that 

strength and proprioception either alone or combined had no effect on the kinetic 

measurements.26 What these studies found were that strength and proprioception alone or 

combined do not have a big impact on CAI. 

Proprioception 

Proprioception is defined as “the ability to determine the position of a joint in space.”2 

Recently it has been suggested that proprioception deficits may be the primary cause of CAI.22 

Transitions from double-leg to single-leg stance, with eyes open and eyes closed, the results 

showed that participants with CAI activated their muscles later at the ankle, hip and in the 

hamstring muscles compared to control participants.22 The results showed that individuals with 

CAI initiated muscle activity in the more proximal regions of the hip and knee, while the ankle 
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muscles are actived last.22 These results suggested that the muscles around the ankle are not they 

only ones active with unstable ankles. Van Duen also found that there was less variability in 

muscle activations patterns between test conditions in CAI compared to control. This could mean 

that control participants are able to modify their muscle activation pattern according to the 

changing situation, whereas participants with CAI are less flexible in the selection of an adequate 

response to the disturbance of postural balance.22 With this information, treatment for CAI would 

broaden to incorporate the whole lower extremity and the trunk to stop help with the activation 

patterns.22 

What’s been tested? 

Manual Muscle Tests 

 Bosein in 1955 reported that peroneal weakness was the most significant factor 

contributing to recurrent ankle sprains.36 Manual muscles tests (MMT) revealed peroneal 

weakness in 22% of the 133 ankles examined and of the 35 injuries associated with both residual 

changes and ankle symptoms, 66% had peroneal weakness.36 Overstretching of the peroneal 

muscles, disuse atrophy, or both are what caused the weakness. In Kaminski’s review, he found 

that only 43% of the symptomatic ankles that were examined by MMT of the peroneals showed 

some degree of weakness.28 These results were concluded that peroneal weakness was one causal 

factor that could be easily treated. Kaminski concluded in another study that he conducted that 

MMT provided less accurate measure and do not reflect the true dynamic nature of the inversion-

eversion subtalar joint motion.37 
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Single Leg Balance 

 Brown used tibial nerve stimulation as perturbations to test dynamic balance deficits 

between individuals with stable ankles and CAI.21 Brown analyzed the time-to-stabilization 

(TTS) in the A/P and the M/L.21 The results found the A/P TTS was the only significant 

difference between the two groups. The CAI group took 0.78 ± 0.12 sec to return to a stable 

range of ground reaction forces (GRF) compared to the healthy group, who took 0.71 ± 0.09 

seconds.4 Dynamic balance in double-leg stance as measured by TTS appears to be affected in 

individuals with CAI only in the A/P direction. Brown concluded that this delay provided 

evidence for the central effects of CAI on the sensorimotor system.21 CAI may be viewed as a 

constraint on the sensorimotor system, limiting its ability to quickly generate new patterns of 

movement to control posture and return to a steady stance after an external perturbation is 

applied.21 Brown also concluded that lateral ligamentous injury may be a limitation that affects 

global sensorimotor responses, causing individuals with CAI to be less able to compensate and 

adjust after perturbation.21 

Star Excursion Balance Test  

The Star Excursion Balance Test (SEBTs) is a clinical test purported to detect functional 

performance deficits associated with lower extremity pathology in otherwise healthy 

individuals.61 The SEBTs consists of a series of lower extremity reaching tasks in 8 directions 

that challenge the individual’s postural control, strength, ROM, and proprioceptive abilities. The 

farther an individual can reach with one leg while balancing on the opposite leg, the better 

functional performance they are deemed to have.61 
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Olmsted studied proprioception by using the SEBTs, as a measure of dynamic stability.29 

Olmsted found that participants with CAI have a shorter reach while standing on their injured 

ankle compared to the controls (78.6cm vs. 82.8 cm).29 Reach distances were also decreased for 

the CAI participants when their injured ankle and their uninjured ankle were compared (78.6cm 

vs. 81.2cm). They concluded that the SEBTs was an effective means for detecting reach deficits 

between and within participants with CAI.29 

Hertel did a study to if the SEBTs could be simplified for easier and faster use to detect 

deficits in individuals with CAI.61 Hertel found that performing all 8 reach directions were 

unlikely necessary when evaluating for functional deficits related to CAI.61 This conclusion was 

reached due to redundancy among the reach directions. The posteriomedial (PM) reach direction 

was the most strongly associated with performance between subjects with and without CAI; 

however, the PM, anteriomedial (AM), and the medial (MD) directions showed differences 

between limbs with and without CAI.61 

Jump Landing  

Wikstrom found that the dynamic postural stability index (DPSI) in conjunction with a 

functional single-leg hop stabilization test to be a reliable and accurate measure of dynamic 

postural stability (DPS).35 The DPSI is a composite of the medial-lateral stability indices, 

anterior-posterior stability indices and vertical stability indices. The DPSI was used in 

conjunction with a jump landing protocol that was established by Colby.35 The results found that 

the DPSI was highly reliable between test sessions (r=.96) and very accurate (SEM=.03). It was 

found that with the DPSI and the jump-landing protocol that a 3 second sampling interval was 
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the best choice because it mimicked athletic performance as closely as possible35 compared to a 

5 second or 10 second sampling interval.  

Wikstrom performed a study that looked at DPS deficits during a single-leg jump landing 

protocol.9 The results found that individuals with CAI had significant higher DPS scores in the 

anterior-posterior (A/P) and vertical plane and overall DPSI score during a jump landing 

protocol9, which supports that individuals with CAI have worse DPS than those with healthy 

ankles when transitioning from dynamic to static movement. 

Time to Stabilization  

Wikstrom performed a study to find which combination of landing protocol and analysis 

techniques are the most effective time-to-stabilization (TTS) combination for detecting dynamic 

postural stability (DPS) in individuals with CAI.8 They concluded that the UTOP analysis and 

the jump protocol is the best combination to detect DPS deficits in participants with CAI.8 

Ross used the same jump landing protocol and identified that there were DPS deficits in 

the A/P and M/L directions using the TTS measure.23 Wikstrom did not found any significance 

in the M/L as Ross and other researchers.9 Ross speculated that damage due to LAS and other 

ankle instabilities might be responsible for the increased DPS scores.23 Ross believe this is due to 

people with CAI take longer to decelerate their COM because they allow it to reach the limits of 

stability, causing the external moments that act to destabilize the body.23 They suggested that 

individuals with CAI may use a different landing strategy to improve stabilization time than 

those with healthy ankles which would explain for the increased DPS scores. Wikstrom agrees 

with Ross that this may be the reason but Wikstrom is not sure because it may be attributed to 

ankle-instability symptoms such as self-reported weakness.9 
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Balance Training 

 Balance training has been suspected to be an effective modality in the rehabilitation and 

prevent of recurrent sprains in those with CAI; however, there is limited evidence of its 

effectiveness.74 McKeon found that with four weeks of balancing training program that consisted 

of a combination of time-to-boundary (TTB) and SEBTs, that individuals with CAI had 

improved self-reported function, static postural control, and dynamic postural control.74 Self-

reported disability was measured on the FADI and FADI Sports scales. The static postural 

control was measured by COP excursion and TTB. The anterior, posteriolateral, and 

posteriomedial directions of the SEBTs were used to assess dynamic postural control.  

Time-To-Boundary 

 Postural control deficits have been shown to be a potential contributing factor in CAI. An 

original measurement technique derived from the dynamical systems theory of motor control 

known as TTB has shown promise in detecting deficits in postural control related to CAI.74 TTB 

uses the relationship of individual COP data points with the boundaries of support.74 TTB 

represents the amount of time it would take the COP excursion to reach the boundary of support 

should the direction and velocity of the COP remain unaltered.74 McKeon and Hertel found that 

individuals with CAI moved closer to the spatiotemporal boundaries of stability in a more 

predictable manner than healthy individuals. Individuals with CAI have less time to correct their 

posture in the AP direction than healthy individuals.12,  74 

Summary 

 CAI has been studied extensively and from different prospective. As research and 

technology evolves and becomes more advanced, a better understanding of what CAI is and what 
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factors contribute to it are know. Through research we have found that just strengthening an 

ankle after a sprain does not help prevent recurrent sprains. We have to focus more on 

proprioception and add strengthening with it. We also have seen that a lot of the research has 

been done from a dynamic to a static movement which really does not represent what happens in 

athletics. 

COP-COM 

 Researchers have been trying to find ways to provide insight into postural control 

deficiencies. One method utilized to assess postural control was the quantification of the 

movement of the center of pressure (COP).38 Corriveau defined COP as “a weighted average of 

all the pressures over the surface area in contact with the ground.”39- 40 During quiet stance, the 

COP was located slightly anterior to the ankles’ malleloli.41 Martin stated that the 

anterior/posterior (A/P) and the medial/lateral (M/L) translations of the COP are influenced by 2 

separate factors.38 The A/P movements are influenced by the net ankle moments associated with 

postural control and the M/L translations are influenced by hip control in the frontal plane.38 

Corriveau found there was one major disadvantage with using COP to assess postural stability; 

COP does not actually assess it.42 Rather, COP measures the secondary consequences of the 

swaying movements, i.e. center of mass measurements and not the movements’ themselves.42-43 

 Center of mass (COM) was defined by Martin as “the point on the body that moves in the 

same way that a single particle would move if subjected to the same external force, or the point 

at which the weight of the body can be considered to act.”38 The average vertical position of the 

COM is about 55% of the subject’s height, which is approximately located at the upper border of 

the pelvis during quiet stance.41 Researchers observe the COM in the transverse plane in order to 
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see how it interacts with the COP.  The COM is kept at a fairly constant position between the 

feet by the COP.40, 44 The COP oscillates either side of the COM, so if the COP is more 

anteriorly to the COM, the COM accelerates posteriorly. If the COP is to the right of the COM 

then the COM accelerates to the left.44 

 Researchers proposed that a new biomechanical variable be used to better understand 

postural control, the COP-COM separation.35, 42-43 The COP-COM separation is the distance 

between the vertical projection of the COP and the COM in the transverse plane.38 The peak of 

the COP-COM separation, which occurs at the last moment before heel strike of the swing limb 

(HS-1), has been reported to be measured at varying distances based on the population being 

studied. For healthy young adults and the elderly adults, the COP-COM separation ranges from 

21-32 cm.43, 45 The COP-COM separation ranges from 16-30 cm in those with Parkinson’s 

disease or other disabilities.43, 45 Hass stated that the COP-COM separation when measured at 

any given time may enhance our understanding of the COP and the COM displacements and 

provided better insight into postural control.43 

 Chang suggested that the magnitude of the separation between COP and COM relates to a 

participants tolerance of dynamic unsteadiness and generation of forward momentum.45 

Therefore, the COP-COM separation is a valid tool for discriminating unsteady older adults from 

healthy older adults or from those with balance dysfunctions.45-46 Martin and Corriveau both 

found that combined analysis of the COP and COM distances during quiet stance provided a 

better understanding into the assessment of balance then interpreting either variable alone.38, 39 

Corriveau had a major argument for using the COP-COM separation since it is highly correlated 

or proportional to the horizontal acceleration of the COM during quiet stance.39, 40 
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The purpose of the COP-COM separation is that it has been found to be sensitive enough 

to the changes or problems of dynamic postural stability (DPS).43 DPS requires the central 

nervous system to integrate multiple sensory and motor pathways so that the body can coordinate 

both postural and intentional movement components during locomotion.45 Martin found that 

individuals with less effective DPS are likely to reduce the COP-COM separation during 

transitional movements in an effort to reduce the need for active postural control.38 Martin also 

demonstrated those with intact postural control can more readily tolerate a larger COP-COM 

distance during walking.38 Martin suggested that with the shortening of the COP-COM 

separation during gait initiation may reflect a need to preserve stability because impairments in 

DPS and an inability to generate enough momentum using the COP “shift mechanism” during 

the S1 phase.38 

Gait Initiation 

 Gait initiation (GI) is a “functional task that challenges the balance control system by 

forcing an individual from a state of stable balance to a continuously unstable posture during 

walking.”38 Chang conducted a study that determined if the COP-COM separation during GI was 

sensitive enough to differentiate healthy individuals from disabled individuals.45 The results of 

Chang’s study found that the peak COP-COM separation and steady-state gait were both greater 

in the healthy elderly than in the elderly with vestibular hypofunction (VH) during GI.45 

According to Chang this implies that a decreased gait speed was a sign of balance impairment in 

the VH group.45 After analyzing and interpreting the results of his study, Chang made the 

suggestion that different variables from different tasks, such as GI and steady-state gait, might 

reflect various levels of DPS and should be interpreted carefully.45 
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During GI, the COP and COM each follow a very distant path, or trace, that can be 

observed and compared. This trace has been divided into 3 segments by 2 distinct landmarks.43, 46 

In order for the COP and COM to begin moving, they first must uncouple.47 The first segment 

(S1) begins with the initiation of movement and ends with COP located at its most posterior and 

lateral position towards the initiation swing leg.43, 46 This posteriolateral position of the COP is 

known as landmark 1.41, 43, 46 As the COP is moving posteriorly and laterally, the COM moves 

anterolaterally towards the initial stance limb.38 The second segment (S2) is characterized by a 

translation of the COP medially towards the initial stance limb ending at landmark 2, which is 

the point where the COP is completely under the initial stance leg.41, 43, 46 During the S2 phase, 

the COM continues to move anterolaterally towards the initial stance limb. The third segment 

(S3) extends from landmark 2 until toe-off of the initial stance leg as COP moves anteriorly.41, 43, 

46  The COM continues to move anteriorly during S3 but as the initial stance leg begins to toe-

off, the COM shifts medially slightly towards the initial stance limb to prepare for heel strike of 

the initial swing leg.47 

Gait Initiation has been utilized to assess postural control in many studies, but they 

generally have been limited to straight ahead walking.48 Many activities of daily living (ADLs) 

require lateral movement; therefore it is surprising that there has not been any research done on 

the effects of changing direction during GI. Rogers stated that “impairments in lateral stability 

are an important aspect of balance dysfunction and falls” and older adults are known to have 

problems turning and moving laterally.48 Athletes change direction daily while initiating gait in 

order to block a shot on goal in soccer or box out during a free throw in basketball. Examining 

CAI with directional GI may lead to a better understanding of CAI and how to prevent further 

problems. Recently, Hass found that when initiating gait laterally, transitional frail individuals 
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produced larger and more coordinated movement of the COP in a directionally appropriate 

manner during lateral and forward directed GI compared to Parkinson’s disease individuals.48 

The activation of the lower leg muscles are done in a certain pattern that creates moments 

of force about the ankles and hips that rotate the body like an inverted pendulum.47 At the start of 

GI, there is an inhibition of the soleus muscle, which is active during quiet stance, followed by 

the onset of the tibialis anterior muscle of both the swing and stance limbs.47, 49, 50 The 

decoupling of the COM and COP is due to this interaction of the soleus and the tibialis anterior 

at the beginning of GI.47 The movement of the COP toward the swing limb is created by the hip 

abductors of the swing leg.47 The muscle activity at the ankle and hip tend to propel the COM 

forward and towards the initial stance limb.47 The COP moves anteriorly and posteriorly 

primarily under the control of the plantarflexor muscles, like the soleus.44 In the M/L direction, 

the COP-COM separation was mainly explained directly by strength according to Corriveau.42 

The hip abductors are suggested to be important in the M/L direction.42 Winter found that the 

M/L COP is virtually in phase with fraction of body weight taken by the individual feet. 44 This 

mechanism of M/L has been described as a “load/unload” mechanism because it’s controlled by 

the simultaneous loading of one limb and unloading of the opposite limb by the hip abductor and 

adductor muscles.44 

 Before gait is initiated, the horizontal and vertical ground reaction forces (GRF) are 

constant. As a person initiates gait, the HGRF stay pretty steady but the VGRF begins to 

decrease which means the stance limb is unloading. This all occurs as the COP moves 

posteriolateral under the swing limb. Peak VGRF occurs about the time the COP reaches 

landmark 1. At the peak VGRF, the stance limb is unloaded. As the COP begins to move towards 

the stance limb, the HGRF and VGRF begin to increase. The increase in HGRF means an 
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anterior movement and the increase in VGRF is the loading of the stance limb. As toe off of the 

swing limb happens the HGRF peaks, which occurs around landmark 2 of COP. During the S3 

phase of COP, the HGRF decreases slightly or propels you backward to control the falling 

forward action caused by momentum. At heel strike of the swing limb, the HGRF peaks again 

which makes sense because there is a need to be propelled forward to drive the stance limb 

through. 
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Table 1   Demographics for Healthy Young Adults 

 GENDER AGE(yrs) HEIGHT(cm) WEIGHT(kg) ASIS(mm) BMI 

 M 21 183.40 66.56 93.50 19.79 

 M 21 181.30 82.21 90.00 25.01 

 M 21 176.60 60.90 86.00 19.53 

 M 22 191.40 84.06 98.00 22.95 

 F 18 175.00 62.60 90.00 20.44 

 M 21 195.60 80.80 104.50 21.12 

 M 19 188.50 75.20 99.00 21.16 

 M 20 179.80 104.86 93.00 32.44 

 F 21 168.60 63.50 85.00 22.34 

 F 19 177.00 61.70 89.00 19.69 

 F 19 168.80 56.03 85.50 19.66 

 M 19 180.00 93.60 90.00 28.89 

 F 20 177.60 55.80 89.50 17.69 

 F 19 179.10 80.90 87.50 25.22 

       

AVG  20.00 180.19 73.48 91.46 22.57 

STD  1.18 7.68 14.86 5.65 4.08 
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Table 2   Demographics for Chronic Ankle Instability 

 GENDER AGE(yrs) HEIGHT(cm) WEIGHT(kg) ASIS(mm) BMI 

 M 21 181.20 76.79 89.00 23.39 

 F 18 177.90 65.90 89.00 20.82 

 M 21 191.20 87.32 101.00 23.89 

 M 22 191.60 86.56 94.25 23.58 

 M 18 183.70 71.34 97.00 21.14 

 M 21 184.40 83.65 89.00 24.60 

 M 20 193.30 86.50 101.00 23.15 

 M 19 192.40 91.70 97.00 24.77 

 F 19 171.80 51.10 91.50 17.31 

 F 20 176.20 56.80 89.00 18.30 

 F 20 165.30 49.20 85.50 18.01 

 M 19 191.80 79.60 99.00 21.64 

 F 20 166.90 62.90 84.00 22.58 

 F 20 176.10 73.40 87.00 23.67 

       

AVG  19.86 181.70 73.05 92.38 21.92 

STD  1.17 9.66 14.02 5.79 2.49 
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Table 3   Descriptive statistics and independent t-test results 

  HYA CAI     
  

M SD M SD t p d 
Observed 

Power 
Forward GI 
 COP-COM separation at HS-1 (cm) 23.4 2.8 21.7 1.0 1.20 0.24 0.47 0.22 
 Posterior displacement of COP (cm) 4.8 0.3 4.0 0.3 1.60 0.12 0.63 0.36 
 Lateral displacement of COP (cm) 4.0 0.3 3.9 0.3 0.19 0.85 0.08 0.05 
 Step Length (m) 0.6 0.1 0.6 0.2 0.92 0.36 0.36 0.15 
 Step Velocity (m/s) 0.5 0.1 0.5 0.1 0.92 0.36 0.39 0.17 
 Posterior velocity of COP (cm/s) 11.2 1.3 8.8 2.3 1.40 0.15 0.58 0.32 
 Lateral velocity of COP (cm/s) 9.9 1.2 8.9 2.3 0.53 0.60 0.21 0.08 
Directional GI 
 COP-COM separation at HS-1 (cm) 33.6 0.8 33.5 1.1 0.57 0.96 0.22 0.09 
 Posterior displacement of COP (cm) 0.4 0.2 0.4 0.2 0.76 0.99 0.29 0.12 
 Lateral displacement of COP (cm) 0.7 0.5 0.6 0.4 0.76 0.57 0.29 0.12 
 Step Length (m) 0.4 0.1 0.4 0.1 0.96 0.84 0.38 0.16 
 Step Velocity (m/s) 0.4 0.1 0.3 0.1 0.19 0.27 0.39 0.05 
 Posterior velocity of COP (cm/s) 1.1 0.3 1.1 0.4 0.60 0.96 0.24 0.09 
 Lateral velocity of COP (cm/s) 2.0 2.4 1.4 0.7 0.11 0.29 0.05 0.05 
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Figure 1   Transverse plane view of the path of the COP and COM during Forward Gait 

Initiation when stepping with the right foot.17 The arrow represents the calculated distance 

between the COP and COM. 
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Figure 2   COP Trace for Forward and Lateral Gait Initiation.14 Exemplar record of an overhead 

view of the path of the COP during forward (left) and lateral (right) oriented gait initiation when 

stepping with the left foot. Landmark 1 and Landmark 2 were identified separating the COP trace 

into defined sections S1, S2, and S3. 
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Figure 3   A lab set-up for data collection of Forward Gait Initiation. The chronic ankle 

instability (CAI) limb is the initial stance leg. The initial swing leg is the uninvolved limb. The 

arrow represents the line of progression. The electromagnetic tracking is where the box for the 

system is mounted. 
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Figure 4   A lab set-up for data collection of Directional Gait Initiation. The chronic ankle 

instability (CAI) limb is the initial stance leg. The initial swing leg is the uninvolved limb. The 

arrow represents the line of progression. The electromagnetic tracking is where the box for the 

system is mounted. 
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Figure 5   COP-COM separation at HS-1 for HYA and CAI during Forward and Directional Gait 
Initiation. 
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Figure 6   Exemplar trials of the COP Trace for Forward Gait Initiation representing HYA and 

CAI. 
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Figure 7   Exemplar trials of the COP Trace for Directional Gait Initiation representing HYA 
and CAI. 
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Figure 8   Step Length for HYA and CAI during Forward and Directional Gait Initiation.  
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Figure  9   Step Velocity for HYA and CAI during Forward and Directional Gait Initiation. 
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