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Abstract

The matching preclusion number of a graph is the minimum number of edges whose
deletion results in a graph that has neither perfect matchings nor almost perfect match-
ings. As a generalization, Liu and Liu [17] recently introduced the concept of fractional
matching preclusion number. The fractional matching preclusion number (FMP num-
ber) of G, denoted by fmp(G), is the minimum number of edges whose deletion leaves
the resulting graph without a fractional perfect matching. The fractional strong match-
ing preclusion number (FSMP number) of G, denoted by fsmp(G), is the minimum
number of vertices and edges whose deletion leaves the resulting graph without a frac-
tional perfect matching. In this paper, we study the fractional matching preclusion
number and the fractional strong matching preclusion number for butterfly network,
augmented butterfly network and enhanced butterfly network.
Keywords: Matching; Fractional matching preclusion; Fractional strong matching
preclusion; Butterfly network; Augmented butterfly network; Enhanced butterfly net-
work

AMS subject classification 2010: 05C70, 05C72.

1 Introduction

Let G be a graph. A matching M in a graph is a set of pairwise non-adjacent edges. A
perfect matching in the graph is a set of edges such that every vertex is incident with exactly
one edge in this set. An almost-perfect matching in a graph is a set of edges such that every
vertex except one is incident with exactly one edge in this set, and the exceptional vertex
is incident to none. All graphs considered in this paper are undirected, finite and simple.
We refer to the book [2] for graph theoretical notations and terminology not defined here.
For a graph G, let V (G), E(G), and [u, v] (uv for short) denote the set of vertices, the
set of edges, and the edge whose end vertices are u and v, respectively. We use G − F to
denote the subgraph of G obtained by removing all elements of F . A set F of edges in a
graph G = (V,E) is called a matching preclusion set if G−F has neither a perfect matching
nor an almost-perfect matching. The matching preclusion number of graph G, denoted by
mp(G), is the minimum number of edges whose deletion leaves the resulting graph without
a perfect matching or an almost-perfect matching. The concept of matching preclusion was
introduced by Brigham et al. [1]. Matching preclusion has also connections to a number
of theoretical topics, including conditional connectivity and extremal graph theory, and was
further studied in [3–13, 15, 20], with special attention given to interconnection networks.

In [20], the concept of strong matching preclusion was introduced. The strong matching
preclusion number of a graph G, denoted by smp(G), is the minimum number of vertices and
edges whose deletion leaves the resulting graph without a perfect matching or an almost-
perfect matching. According to the definition ofmp(G) and smp(G), we have that smp(G) ≤
mp(G).

A fractional matching is a function f that assigns to each edge a number in [0, 1] so that∑
e∼v f(e) ≤ 1 for each vertex v, where the sum is taken over all edges e incident with v.
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Clearly, ∑
e∈E(G)

f(e) =
1

2

∑
v∈V (G)

∑
e∼v

f(e) ≤ |V (G)|
2

.

A fractional perfect matching is a fractional matching f satisfying that
∑

e∼v f(e) = 1

for every v ∈ V (G). Clearly, a fractional matching f is perfect if and only if
∑

f(e) = |V (G)|
2

and a perfect matching is a fractional perfect matching. Many further ideas and results on
fractional graph theory can be found in [24].

In organic molecule graphs, perfect matchings correspond to kekulé structures, playing an
important role in analysis of the resonance energy and stability of hydrocarbon compounds.
Cyvin and Gutman systematically gave [14] detailed enumeration formulas for kekulé struc-
tures of various types of benzenoids. Kardos et al. showed [16] that fullerene graphs have
exponentially many kekulé structures. For the details of anti-kekulé number can be found
in [22].

Recently, Liu and Liu in [17] introduced some natural and nice generalizations of the
above concepts. An edge subset F of G is a fractional matching preclusion set (FMP set
for short) if G− F has no fractional perfect matchings. The fractional matching preclusion
number (FMP number for short) of G, denoted by fmp(G), is the minimum size of FMP
sets of G, that is, fmp(G) = min{|F | : F is an FMP set}. We refer the readers to [17] for
more details and additional references.

A set F of edges and vertices of G is a fractional strong matching preclusion set (FSMP
set for short) if G− F has no fractional perfect matchings. The fractional strong matching
preclusion number (FSMP number for short) of G, denoted by fsmp(G), is the minimum
size of FSMP sets of G, that is, fsmp(G) = min{|F | : F is an FSMP set}.

An FMP (FSMP) set of minimum cardinality is called optimal. An FMP set F is trivial
if there is a single vertex of G incident to every edge in F , and an FSMP set F is trivial if
there is a vertex v such that every vertex in F is a neighbour of v and every edge in F is
incident to v. A graph G is fractional super matched (fractional strongly super matched) if
every optimal FMP (FSMP) set is trivial.

We summarize some knowledge which will be needed later.
If a graph G is Hamiltonian, we can assign to each edge which is in the Hamiltonian

cycle of G a number 1
2
, and assign to other edges a number 0. It is obvious that we obtain

a fractional perfect matching of G. Thus, the following proposition is immediate.

Proposition 1.1. If a graph G is Hamiltonian, then G has a fractional perfect matching.

Proposition 1.2. Let G be a graph. Then fmp(G) ≤ δ(G), where δ(G) is the minimum
degree of G. If the number of vertices in G is even, then mp(G) ≤ fmp(G).

However, if the number of vertices in G is odd, mp(G) and fmp(G) do not have the same
inequality relation. Some examples are given in [17].

Proposition 1.3. Let G be a graph. Then fsmp(G) ≤ fmp(G) ≤ δ(G), where δ(G) is the
minimum degree of G.

Proposition 1.4. [24] A graph G has a fractional perfect matching if and only if i(G−S) ≤
|S| for every set S ⊆ V (G), where i(G− S) is the number of isolated vertices of G− S.
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The vertex set of the hypercube Qn is the set of all binary strings of length n. Let
r ≥ 1 be an integer. The r-dimensional butterfly network denoted by BF (r) has vertex set
V = (i, x) : x ∈ V (Qr), where i is a non-negative integer and 0 ≤ i ≤ r. Where any two
vertices (i, x) and (j, y) of BF (r) are adjacent if and only if j = i+ 1 and either:

(1) x = y or
(2) x differs from y in precisely the jth bit.
For x = y, the edge is said to be a straight edge. Otherwise, the edge is a cross edge.

For fixed i, the vertex (i, x) is a vertex on layer i. The vertices at layer 0 and r are of degree
2 and all other vertices are of degree 4. Clearly, the number of vertices and edges in the
butterfly network BF (r) is equal to (r+1)2r and r2r+1, respectively. Let ES denote the set
of all straight edges in BF (r), and EC denote the set of all cross edges in BF (r) such that
ES ∪ EC = E(BF (r)). In [18] Manuel et al. proved that perfect matchings do not exists
for a butterfly network of even dimension. BF (r)− F

′
is an induced subgraph obtained by

deleting F
′
, where F

′
is the set of vertices or edges.

For convenience, we give some symbols as follows. When r is odd, BF (r) has perfect
matchingsMS andMC , whereMS is given by all the straight edges namely [(i, x1x2 · · · xr), (i+
1, x1x2 · · · xr)] with i is even and 0 ≤ i ≤ r−1, and MC is given by all the cross edges namely
[(i, x1x2 · · · xr), (i+ 1, x1x2 · · · xixi+1 · · ·xr)] with i is even and 0 ≤ i ≤ r − 1.

Butterfly networks have many weaknesses. It is non-Hamiltonian, not pancyclic and its
toughness is less than one. But augmented butterfly network retains most of the favorable
properties.

Let n ≥ 1 be an integer. The vertices of the n-dimensional augmented butterfly network
denoted by ABF (n) are the pairs (r, x) where r is a non-negative integer 0 ≤ r ≤ n called
the layer, and x ∈ V (Qn). In ABF (n) the vertex (r, x), 1 ≤ r ≤ n − 1, is adjacent
to the vertices (r+1, x), (r+1, x1x2 · · · xrxr+1xr+2 · · ·xn), (r, x1x2 · · · xr−1xrxr+1 · · ·xn) and
(r, x1x2 · · · xrxr+1xr+2 · · ·xn). In particular, when r = 0, the vertex (0, x1x2 · · · xn) is adjacent
to the vertices (1, x1x2 · · · xn), (1, x1x2 · · ·xn), and (0, x1x2 · · ·xn). Also when r = n, the
vertex (n, x1x2 · · · xn) is adjacent to the vertices (n, x1x2 · · · xn−1xn), (n−1, x1x2 · · · xn), and
(n−1, x1x2 · · · xn−1xn). Clearly, the number of vertices and edges in the augmented butterfly
network ABF (n) is equal to (n + 1)2n and 3n× 2n, respectively [18]. The vertices at layer
0 and n are of degree 3 and all other vertices are of degree 6.

The edges between (r, x) and (r, x1x2 · · · xr−1xrxr+1 · · ·xn), where 0 < r ≤ n and between
(r, x) and (r, x1x2 · · · xrxr+1xr+2 · · ·xn), where 0 ≤ r < n are called level edges. The edges
between (r, x) and (r + 1, x) are called straight edges. While the edges between (r, x) and
(r + 1, x1x2 · · · xrxr+1xr+2 · · ·xn), where 0 ≤ r ≤ n− 1 are called cross edges.

Let ES denote the set of all straight edges in ABF (n), EC denote the set of all cross edges
in ABF (n), and EL denote the set of all level edges in ABF (n) such that ES ∪ EC ∪ EL =
E(ABF (n)). Thus E(ABF (n)) is partitioned into three categories of edges namely straight,
cross and level edges.

Consider the r-dimensional butterfly network BF (r). Place a new vertex in each 4-cycle
of BF (r) and join this vertex to the four vertices of the 4-cycle. The resulting graph is called
an enhanced butterfly network EBF (r). This network has 2r−1(3r+2) vertices and r× 2r+2

edges. Additional vertices are given by the labels (x1x2 · · · xr, x1x2 · · · xi+1 · · ·xr) with the
labels (i, x1x2 · · · xr), (i, x1x2 · · · xi+1 · · ·xr), (i + 1, x1x2 · · · xr), (i + 1, x1x2 · · · xi+1 · · ·xr),
0 ≤ i ≤ r− 1. Let Li denote the set of vertices {(i, x1x2 · · · xr)|x1x2 · · · xr ∈ V (Qr)}, and L′

j

3

Wang et al.: Fractional matching preclusion for butterfly derived networks

Published by Digital Commons@Georgia Southern, 2019



denote the set of vertices {(x1x2 · · · xr, x1x2 · · · xj · · ·xr)|x1x2 · · · xr ∈ V (Qr)}.
In this paper, we investigate the fractional matching preclusion (FMP) number and frac-

tional strong matching preclusion (FSMP) number of butterfly network, augmented butterfly
network and enhanced butterfly network.

2 Butterfly Network

Theorem 2.1. Let r ≥ 1 be an integer. Then

fmp(BF (r)) =

{
2 if r is odd,

0 if r is even.

Proof. We first consider the case that r is odd. Since δ(BF (r)) = 2, it follows from
Proposition 1.2 that fmp(BF (r)) ≤ 2. In order to obtain our result, we only show that
fmp(BF (r)) ≥ 2, that is, BF (r) − {e} has a fractional perfect matching for any edge e
of BF (r). If we delete any straight edge from MS, then there exists a perfect matching
MC in BF (r). If we delete any cross edge from MC , then there exists a perfect matching
MS in BF (r). Then fmp(BF (r)) > 1, and have fmp(BF (r)) = 2. Next, we consid-
er the case that r is even. Let S = {(i, x)}, where i is odd and 1 ≤ i ≤ r − 1. Since
i(BF (r)− S) = r2r−1 +2r > |S| = r2r−1, it follows from Proposition 1.4 that BF (r) has no
fractional perfect matchings, and have fmp(BF (r)) = 0. The proof is now complete.

Remark 1. Let F = {[(0, 00 · · · 0), (1, 00 · · · 0)], [(1, 00 · · · 0), (0, 10 · · · 0)]}. Then i(BF (r)−
F − {(1, 10 · · · 0)}) = 2 > 1, which implies BF (r) − F does not have a fractional perfect
matching from Proposition 1.4. Thus, we have BF (r) is not fractional super matched.

Theorem 2.2. Let r ≥ 1 be an integer. Then

fsmp(BF (r)) =

{
1 if r is odd,

0 if r is even.

Proof. We first consider the case that r is odd. Let F = {(1, 00 · · · 0)}, S = {(1, 10 · · · 0)}.
Since i(BF (r)− F − S) = 2 > |S| = 1, it follows from Proposition 1.4 that BF (r)− F has
no fractional perfect matchings. It remains for us to show fsmp(BF (r)) ≥ 1, that is, BF (r)
has a fractional perfect matching. Since there are perfect matchings in BF (r), it follows
that fsmp(BF (r)) > 0, and have fsmp(BF (r)) = 1. Next, we consider the case that r is
even. By Theorem 2.1, fmp(BF (r)) = 0 if r is even, which implies BF (r) has no fractional
perfect matchings. So fsmp(BF (r)) = 0. The proof is now complete.

3 Augmented Butterfly Network

Lemma 3.1. [21] Let G be the augmented butterfly network ABF (n). Then mp1(G) = 3.
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00 01 10 11
0

1

2
(a) ABF (2)

(r, x)

(r + 1, x)(r + 1, x1x2 · · ·xrxr+1xr+2 · · ·xn)

(r, x1x2 · · · xrxr+1xr+2 · · ·xn)

(b) K4

Figure 1: (a) ABF (2), (b) The induced subgraph of ABF (n)

Theorem 3.2. Let n ≥ 2 be an integer. Then

fmp(ABF (n)) =

{
2 if n = 2,

3 if n ≥ 3.

Proof. We first consider the case that n = 2. Let F = {[(0, 00), (0, 10)], [(2, 00), (2, 01)]},
S = {(1, 00), (1, 01), (1, 10)}. Then i(ABF (2) − F − S) = 4 > |S| = 3 (see Figure 1
(a)), it follows from Proposition 1.4 that ABF (2) − F has no fractional perfect match-
ings, and have fmp(ABF (2)) ≤ 2. In order to obtain our result, we only show that
fmp(ABF (2)) ≥ 2, that is, ABF (2) − {e} has a fractional perfect matching for any
edge e of ABF (2). Let MSL be a perfect matching consisting of all the edges of the form
{[(1, x1x2), (2, x1x2)], [(0, x1x2), (0, x1x2)]}. Let MLC be a perfect matching consisting of all
the edges of the form {[(0, x1x2), (1, x1x2)], [(2, x1x2), (2, x1x2)]}. Let ML be a perfect match-
ing consisting of all the edges of the form {[(0, x1x2), (0, x1x2)], [(1, x1x2), (1, x1x2)], [(2, x1x2),
(2, x1x2)]}. If e ∈ ES or e ∈ EC , then there exists a perfect matching ML in ABF (n). If
e ∈ EL, then there exists a perfect matching MSL or MLC in ABF (n). Thus, we have
fmp(ABF (2)) = 2. Next, we consider the case that n ≥ 3. Since δ(ABF (n)) = 3, it follows
from Proposition 1.2 that fmp(ABF (n)) ≤ 3. It suffices to prove that fmp(ABF (n)) ≥ 3.
Since mp1(ABF (n)) = 3 from Lemma 3.1, the resulting graph by deleting any two edges
of ABF (n) still has perfect matchings. So fmp(ABF (n)) > 2. Hence fmp(ABF (n)) = 3.
The proof is now complete.

Remark 2. Let F = {[(0, 00 · · · 0), (0, 10 · · · 0)], [(0, 00 · · · 0), (1, 00 · · · 0)], [(1, 00 · · · 0), (0, 10
· · · 0)]}. Then i(BF (r)− F − {(1, 10 · · · 0)}) = 2 > 1, which implies ABF (n)− F does not
have a fractional perfect matching from Proposition 1.4. So ABF (n) is not fractional super
matched.

Theorem 3.3. Let n ≥ 1 be an integer. Then fsmp(ABF (n)) = 2.

Proof. Let F = {(1, 00 · · · 0), [(0, 00 · · · 0), (0, 10 · · · 0)]}, S = {(1, 10 · · · 0)}. Since i(ABF (n)
− F − S) = 2 > |S| = 1, it follows from Proposition 1.4 that ABF (n) − F has no
fractional perfect matchings, and have fsmp(ABF (n)) ≤ 2. Next, we need prove that
fsmp(ABF (n)) ≥ 2, that is, the resulting graph deleting any vertex or any edge of ABF (n)
still has fractional perfect matchings. By deleting any edge e of ABF (n), the resulting graph
ABF (n)−{e} still has a perfect matching by Theorem 3.2. So we only consider the case that

5
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00 111001
0

2

1

(a)EBF (2)

(0, 00 · · · 0)

0

1

(0, 10 · · · 0)

(1, 00 · · · 0)

(00 · · · 0, 10 · · · 0)

(1, 10 · · · 0)

(b) The induced subgraph of EBF (r)

Figure 2: (a) EBF (2), (b) The induced subgraph of EBF (r)

we delete a vertex (r, x) from ABF (n). Thus there exists three neighbors of (r, x) such that
they induces a complete graph say K4 (see Figure 1 (b)). It is obvious that ABF (n)−K4

has a perfect matching induced by level edges. As we can see, deleting any vertex of ABF (n)
can be regarded as deleting any vertex of K4. Clearly, after deleting any vertex of K4, the
resulting graph still has a fractional perfect matching. After deleting any vertex of ABF (n),
the resulting graph still has fractional perfect matchings. Hence fsmp(ABF (n)) > 1. So
fsmp(ABF (n)) = 2. The proof is now complete.

4 Enhanced Butterfly Network

Lemma 4.1. [21] Let G be the enhanced butterfly network EBF (r), r ≥ 2. Then G has a
perfect matching.

Lemma 4.2. [21] Let G be the enhanced butterfly network EBF (r), r ≥ 2. Then mp1(G) =
2.

Theorem 4.3. Let r ≥ 2 be an integer. Then fmp(EBF (r)) = 2.

Proof. When r ≥ 2, any enhanced butterfly network EBF (r) has a induced subgraph;
see Figure 2 (b). Let F = {[(0, 00 · · · 0), (00 · · · 0, 10 · · · 0)], [(00 · · · 0, 10 · · · 0), (0, 10 · · · 0)]},
S = {(1, 00 · · · 0),
(1, 10 · · · 0)}. Since i(EBF (r)− F − S) = 3 > |S| = 2, it follows from Proposition 1.4 that
EBF (r) − F has no fractional perfect matchings, and have fmp(EBF (r)) ≤ 2. Next, we
only prove that fmp(EBF (r)) ≥ 2. From Lemma 4.2, we have mp1(EBF (r)) = 2, and have
the resulting graph by deleting any an edge of EBF (r) still has perfect matchings. Hence
fmp(EBF (r)) > 1. So fmp(EBF (r)) = 2. The proof is now complete.

Theorem 4.4. Let r ≥ 2 be an integer. Then

fsmp(EBF (r)) =

{
1 if r = 2,

2 if r ≥ 3.
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(a) Some cycles with five vertices. (b) Some paths with six vertices.

Figure 3: (a) Some cycles with five vertices, (b) Some paths with six vertices.

Proof. We first consider the case that r = 2. Let F = {(1, 00)} and S = {(00, 10), (01, 11),
(00, 01), (10, 11), (1, 01), (1, 10), (1, 11)}. Since i(EBF (2) − F − S) = 8 > |S| = 7 (see
Figure 2(a)), it follows from Proposition 1.4 that EBF (2) − F has no fractional perfect
matchings, and have fsmp(EBF (2)) ≤ 1. In order to obtain our result, we have only to
prove that fsmp(EBF (2)) ≥ 1, that is, EBF (2) has a fractional perfect matching. From
Lemma 4.1, any enhanced butterfly network EBF (r) has a perfect matching, and have
fsmp(EBF (2)) ≥ 1. So fsmp(EBF (2)) = 1. Next, we consider the case that r ≥ 3.
Let F = {(1, 00 · · · 0), (00 · · · 0, 10 · · · 0)}, S = {(1, 10 · · · 0)}. Then i(EBF (r) − F − S) =
2 > |S| = 1. So EBF (r) − F has no fractional perfect matchings by Proposition 1.4, and
we have fsmp(EBF (r)) ≤ 2. It suffices to prove that fsmp(EBF (r)) ≥ 2, that is, after
deleting any vertex or any edge of EBF (r), the resulting graph still has a fractional perfect
matching. By deleting any edge e of EBF (r), the resulting graph EBF (r) − {e} still has
a perfect matching by Theorem 4.3. So we only need to consider the case where we delete
some vertex v of EBF (r). Let us prove the result by induction on r. We begin with r = 3.
If v ∈ (Li ∪ L′

1 ∪ L′
3) for i = 0, 1, 2, 3, then there exist 8 vertex-disjoint cycles with five

vertices such that v is a vertex of a cycle with five vertices from Figure 3 (a). Note that the
additional vertex (x1x2x3, x1x2x3) of L′

2 is adjacent to either the vertex (1, x1x2x3) or the
vertex (2, x1x2x3), so it is easy to find two different paths with six vertices whose end-vertex
is (x1x2x3, x1x2x3); see Figure 3 (b). So EBF (3)−{v} can be decomposed into a path with
four vertex, 4 paths with six vertices and 3 cycles with five vertices. Thus, EBF (3) − {v}
has a fractional perfect matching. If v ∈ L′

2, then EBF (3) − {v} can be decomposed
into 3 paths with six vertices, and 5 cycles with five vertices. Thus, EBF (3) − {v} has a
fractional perfect matching. Next, we consider the case that r = 4. If v ∈ (Li ∪ L′

1 ∪ L′
4)

for i = 0, 1, 3, 4, then there exist 16 vertex-disjoint cycles with five vertices such that v is a
vertex of a cycle with five vertices; see Figure 4. Note that, there exists a perfect matching
M of vertices in L2, L

′
2 and L′

3; see Figure 4. It follows that EBF (4)− {v} has a fractional
perfect matching. If v ∈ (L2 ∪ L′

2 ∪ L′
3), then v

′
is adjacent to a vertex of a cycle with

five vertices, where vv
′ ∈ M . It is easy to find a path with six vertices whose end-vertex

is v
′
; see Figure 5. Thus EBF (4) − {v} has a fractional perfect matching. Assume that

the argument is true for EBF (r − 2). We need to show the argument is true for EBF (r).
Let H be a subgraph of EBF (r) induced by Lr ∪ L′

r ∪ Lr−1 ∪ L′
r−1. Note that the vertex

(x1x2 . . . xr, x1x2 . . . xr−2xr−1xr) of L′
r−1 is adjacent to either the vertex (r − 2, x1x2 . . . xr)

or the vertex (r − 1, x1x2 . . . xr). Since the subgraph induced by Lr ∪ L′
r ∪ Lr−1 can be

decomposed into 2r−1 vertex-disjoint cycles with five vertices, H can be decomposed into 2r−1

7
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Figure 4: Some cycles with five vertices and a perfect matching M .
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Figure 5: Some paths with six vertices.

vertex-disjoint paths with six vertices whose end-vertex is (x1x2 . . . xr, x1x2 . . . xr−2xr−1xr).
Clearly, EBF (r) can be decomposed into a subgraph H and 4 subgraphs that is isomorphic
to EBF (r − 2), say Gi for i = 1, 2, 3, 4. If v is a vertex of Gi, then Gi − {v} has fractional
perfect matchings by induction hypothesis, where i ∈ {1, 2, 3, 4}. Moreover, Gj has fractional
perfect matchings for j ̸= i. Hence EBF (r)−{v} has a fractional perfect matching. We now
consider the case that v is a vertex of H. If v ∈ L′

r−1, then H −{v} can be decomposed into
a cycle with five vertices and 2r−1 − 1 paths with six vertices. Hence EBF (r) − {v} has a
fractional perfect matching. If v ∈ (Lr∪L′

r∪Lr−1), then there exists a path six vertices such
that v is a vertex of this path. Let u be a end-vertex of this path such that u ∈ L′

r−1. Note
that u is adjacent to a vertex in Gi, say u′, where i ∈ {1, 2, 3, 4}. It is not difficult to see
that H−{v, u} can be decomposed into a path with four vertices and 2r−1−1 paths with six
vertices. Since Gi − {u′} has a fractional perfect matching by induction hypothesis, where
i ∈ {1, 2, 3, 4}, EBF (r)−{v} has a fractional perfect matching. Hence fsmp(EBF (r)) > 1.
So fsmp(EBF (r)) = 2. The proof is now complete.
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