
Georgia Southern University Georgia Southern University 

Georgia Southern Commons Georgia Southern Commons 

Honors College Theses 

4-20-2015 

Gallai-Ramsey and vertex proper connection numbers Gallai-Ramsey and vertex proper connection numbers 

Emily C. Chizmar 
Georgia Southern University 

Follow this and additional works at: https://digitalcommons.georgiasouthern.edu/honors-theses 

 Part of the Other Mathematics Commons 

Recommended Citation Recommended Citation 
Chizmar, Emily C., "Gallai-Ramsey and vertex proper connection numbers" (2015). Honors College Theses. 
77. 
https://digitalcommons.georgiasouthern.edu/honors-theses/77 

This thesis (open access) is brought to you for free and open access by Georgia Southern Commons. It has been 
accepted for inclusion in Honors College Theses by an authorized administrator of Georgia Southern Commons. 
For more information, please contact digitalcommons@georgiasouthern.edu. 

https://digitalcommons.georgiasouthern.edu/
https://digitalcommons.georgiasouthern.edu/honors-theses
https://digitalcommons.georgiasouthern.edu/honors-theses?utm_source=digitalcommons.georgiasouthern.edu%2Fhonors-theses%2F77&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/185?utm_source=digitalcommons.georgiasouthern.edu%2Fhonors-theses%2F77&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.georgiasouthern.edu/honors-theses/77?utm_source=digitalcommons.georgiasouthern.edu%2Fhonors-theses%2F77&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digitalcommons@georgiasouthern.edu


Gallai-Ramsey and vertex proper connection numbers

An Honors Thesis submitted in partial fulfillment of the requirements for Honors in
Mathematical Sciences

By
Emily Chizmar

Under the mentorship of Dr. Colton Magnant

ABSTRACT
Given a complete graph G, we consider two separate scenarios. First, we consider

the minimum number N such that every coloring of G using exactly k colors con-
tains either a rainbow triangle or a monochromatic star on t vertices. This number
is known for small cases and generalized for larger cases for a fixed k. Second, we
introduce the vertex proper connection number of a graph and provide a relationship
to the chromatic number of minimally connected subgraphs. Also a notion of total
proper connection is introduced and a question is asked about a possible relation-
ship between the total proper connection number and the vertex and edge proper
connection numbers.
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Chapter 1

Basic Graph Theory

1.1 Introduction

The origin of graph theory can be traced back to the early 18th century and the

famous Königsberg bridge problem. In 1736, Leonard Euler presented the problem

of the seven bridges of Königsberg. There were seven bridges connecting two islands

of Königsberg Germany, and the goal was to find a path traversing all seven bridges

exactly once. He very quickly realized that there was no such path, a proposition that

has many different proofs today. Another famous question in graph theory is the four

color question. Suppose one wanted to color a map such that no two countries of the

same color share an edge. It was found that four colors was enough to accomplish this

task, but it took centuries for a valid proof to emerge. Since this birth of graph theory,

the study of graphs has been expanded upon by many famous mathematicians such

as Leibniz, Listing, and Cayley and though its early discoveries had many pratical

applications in the field of geography, graph theory has since grown into its own

unique discipline.

Graph theory now has many different branches with diverse applications. A promi-

nent applicaiton of graph theory would be in the field of cyber security and internet
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connections. The connections between computers can be thought of as a large graph,

where the “wires” connecting each computer are the edges and the computers them-

selves the vertices. The reliability of the network can be studied using connectivity

of the graph. By coloring the edges or vertices of the graph, one can model its net-

work security, or lack thereof. Many other aspects of computer networks can also

be modeled by placing restrictions upon the graph’s colors, connection numbers, and

chromatic properties which may reflect firewalls, cookies, or something similar.

1.2 Some Defintions

A graph G is a collection of vertices v and edges e such that the edges connect pairs

of distinct vertices. If not all vertices are associated with an edge, these are refered

to as singletons. The collection of vertices of a graph G is denoted by V (G), and

the collection of edges of a graph G is denoted by E(G). A vertex v is said to be

adjacent to a vertex u if they are connected by some edge e, denoted as vu. A graph

G is said to be connected if between all pairs of vertices v, u ∈ V (G) there exists an

edge e. The degree of a graph can be associated to both the number of vertices or

the number of edges, denoted |V (G)| and |E(G)| respectively, where it defines the

number of edges extending from each vertex.

Some graphs may have only one edge associated to each pair of vertices, while

others may have multiple edges. A graph is said to be a multigraph if it has multiple

edges between vertices. A path P is defined as a sequence of edges ei for i ∈ I

connecting a sequence of vertices vj such that all v′js for i ∈ I are distinct.

If each vertex or edge of a graph G can be associated with a certain label or

coloring, G is called colored. If a graph can be divided into two subsets X, Y such

that each edge has one vertex in X and the other in Y , then it is called bipartite.

The diameter of a graph is the longest length (number of edges) of a shortest u−v
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paths over all pairs of vertices u and v. A coloring of the vertices of a graph is called

proper if no two adjacent vertices receive the same color. The chromatic number of

a graph G, denoted by χ(G), is the minimum number of colors needed to properly

color the graph G.

5



Chapter 2

Gallai Ramsey Numbers

2.1 Introduction

In this section, when it is clear from the context, we will associate a graph G with

either its edge set or its vertex set.

Throughout this research, we consider edge colorings of complete graphs on n

vertices, denoted Kn, graphs in which an edge is present between every pair of vertices.

In particular, K3 is frequently called a triangle since it consists of three vertices and

three edges. A colored graph is called rainbow if every edge has a distinct color.

Definition 1. A coloring of a complete graph G is said to be a Gallai coloring if this

coloring contains no rainbow triangles.

The following generalization of Ramsey numbers has gotten much attention in

recent years. With a formal definition in [3], the function has been studied in [4, 5,

9, 10, 11, 12] among others, with a survey of known results presented in [6].

Definition 2. The Gallai-Ramsey number, denoted grk(H : G), is the minimum

number N such that every coloring of a complete graph on at least N vertices using at

most k colors will contain either a rainbow copy of the graph G or a monochromatic

copy of the graph H.
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A very slight change in the definition, forcing the available colors to appear, yields

the following.

Definition 3. The exact Gallai-Ramsey number, denoted gr′k(H : G), is the mini-

mum number N such that every coloring of a complete graph on at least N vertices

using exactly k colors will contain either a rainbow copy of the graph G or a monochro-

matic copy of the graph H.

The overall goal of this particular section of research was to find, or at least bound,

exact Gallai-Ramsey numbers. This problem stems from what is already known about

Gallai-Ramsey numbers. It turns out that the exact Gallai-Ramsey numbers differ

from Gallai-Ramsey numbers only if the monochromatic graph G in question is a

star, that is, a single vertex with an edge to all other vertices and no other edges in

the graph. Call a star with t edges St and note that St has t+ 1 vertices.

The following theorem from [8] is utilized heavily in this proof. For this statement,

a partition is non-trivial if there exist at least two parts.

Theorem 1 (Gallai - [8]). In any Gallai colored complete graph, there exists a non-

trivial partition of the vertices such that there are at most two colors on the edges

between the parts and only one color on the edges between each pair of parts.

Generally, the main issues with applying Theorem 1 stem from not knowing how

many pieces there are in the partition other than that there are at least 2. The

only thing we can say about the subgraphs within the pieces of the partition is that

Theorem 1 can then be reapplied within each piece.

The following result solidifies the Gallai-Ramsey numbers for all stars.

Theorem 2 (Markström, Thomason, Wagner - [17]).

grk(K3 : St) =


5t− 3

2
, for t odd

5t− 6

2
, for t even.
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One of the other goals of this project was to demonstrate the difference between

the functions gr and gr′. Certainly sometimes the functions are the same, but several

small cases show that is not always true.

2.2 Small Cases

Our first result is the following.

Theorem 3. gr′3(K3 : S3) = 5.

Note that this is strictly less than 6 = gr3(K3 : S3).

Proof. For the lower bound, Figure 2.1 shows a coloring of a complete graph on four

vertices (K4) using three colors. Note, for this particular coloring, the use of three

colors is required. This graph includes a rainbow matching (the dashed and thick

edges) and another edge in the third color. In this graph, neither a rainbow colored

K3 or a monochromatic S3 can be found. Therefore, gr′3(K3 : S3) ≥ 5.

Figure 2.1: A three coloring of K4.

For the upper bound, consider a complete graph on five vertices (K5) using three

colors. By Theorem 1, there exists a partition of the vertices. Without loss of

generality, suppose colors 1 and 2 are the colors used between parts. Note that, to

avoid a monochromatic S3, there cannot be one vertex with three incident edges of

the same color. This implies there cannot be a part A containing three vertices since

any vertex outside of A would have only one color on edges going to A, creating a
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monochromatic S3. Also, there must be a part with at least two vertices since the

third color must be used.

Let A be a part with order 2 and let u, v, w be the vertices outside A. Without loss

of generality, u and v both have the same color, say red, to A. Then w cannot have

red edges to A since otherwise there would be a red S3 centered in A. Similarly, w

cannot have red edges to either u or v since otherwise there would be a red S3 centered

at u or v. Thus, w must be the center of a blue S3, completing the proof.

2.3 General Results

Theorem 4. In any colored complete graph G with k vertices using k colors, there

exists a rainbow triangle.

Proof. Let G be a complete colored graph on k vertices. Consider a subgraph H

such that every edge of H has a different color and all k colors are used. Since

|V (H)| = |E(H)| = k, H must contain a cycle. This cycle must be rainbow colored

because H itself is rainbow colored, implying there exists a rainbow cycle in G. Let

C be the smallest rainbow cycle in G. If C is a rainbow triangle, then the proof is

complete. If C is not a rainbow triangle, choose a chord e in C. This chord may

share a color with at most one edge of C. If e does share a color with an edge in C,

say f , then travel the other way (avoiding f) around the cycle, this creates a shorter

rainbow cycle, contradicting the choice of C. If e does not share a color with an edge

in C, then using e and traveling either way around the cycle C will create a shorter

rainbow cycle, contradicting the choice of C.

9



Chapter 3

Vertex and Total Proper

Connection Numbers

3.1 Introduction

All graphs considered in this work are simple, finite and undirected. Unless otherwise

noted, by a coloring of a graph, we mean a vertex-coloring, not necessarily proper.

Now well studied, the (edge) rainbow k-connection number of a graph is the min-

imum number of colors c such that the edges of the graph can be colored so that

between every pair of vertices, there exist k internally disjoint rainbow edge-colored

paths. See [13, 14] for surveys of results about the rainbow connection number. Note

that the rainbow 1-connection number is related, at least conceptually, to the diam-

eter of the graph.

The total rainbow k-connection number, defined in [15], is defined to be the mini-

mum number of colors c such that the edges and vertices of the graph can be colored

with c colors so that between every pair of vertices, there exist k internally disjoint

rainbow paths where here rainbow means all interior vertices and edges have distinct

colors. Note that we cannot require the end-vertices of the paths to also have distinct
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colors as that would reduce the problem to edge rainbow k-connectivity since every

vertex would then be required to have a distinct color.

The edge proper connection number pck(G), defined in [2] and further studied

in [7], is defined to be the minimum number of colors c such that the edges of the

graph G can be colored with c colors such that between each pair of vertices, there

exist k internally disjoint, properly edge-colored paths. One feature of edge-proper

connection that makes the results extremely complicated is that proper edge-colored

paths are not transitive in the sense that if there is a proper path from u to v and a

proper path from v to w, there may not be a proper path from u to w. For example,

let G be a path on three vertices, uvw and color both edges red.

In this work, we consider a vertex version of the edge proper connection number.

For a positive integer k, a colored graph G is called (vertex) properly k-connected

if, between every pair of vertices, there exist at least k internally disjoint properly

colored paths. Note that each path, including end-vertices, must be properly colored.

Given a graph G, the vertex proper k-connection number of the graph G, denoted

vpck(G), is the minimum number of colors needed to produce a properly k-connected

coloring of G. For ease of notation, let vpc(G) = vpc1(G).

The function vpck(G) is clearly well defined if and only if κ(G) ≥ k. Also note

that vpck(G) ≤ χ(G) for every k-connected graph G. Furthermore, the following fact

is immediate.

Fact 1. For all k ≥ 2 and every k-connected graph G, vpck(G) ≥ vpck−1(G).

A graph G is called minimally k-connected if G is k-connected but the removal of

any edge from G leaves a graph that is not k-connected. A classical result of Mader

[16] (also found in [1]) will immediately give us one of our upper bounds.

Theorem 5 ([16, 1]). A minimally k-connected graph is k+1 colorable and this bound

is sharp.

11



3.2 General Classification

Our first observation demonstrates the transitivity of the vertex proper connection,

a fact that is not true in the case of edge proper connection.

Fact 2. In a colored graph G, if there is a proper path from u to v and a proper path

from v to w, then there is a proper path from u to w.

Proof. The proof is trivial if the u− v path and the v−w path intersect only at v so

suppose the paths intersect elsewhere and let x be the first vertex on the path from u

to v that is also on the v−w path. Note that we may have x = u. Then the subpath

of the u− v path that goes from u to x and the subpath of the v −w path that goes

from x to w is a properly colored path and completes the proof.

Clearly the addition of edges cannot increase the vertex proper connection number

of a graph so the following fact is trivial.

Fact 3. Given a positive integer k and a k-connected graph G, if H is a spanning

k-connected subgraph of G, then vpck(G) ≤ vpck(H).

Our main result solidifies the link between the vpck function and the chromatic

number of the graph. It turns out that vpck(G) always equals the chromatic number

of a particular subgraph of G. Let sχk(G) denote the smallest, over all spanning

k-connected subgraphs H of G, chromatic number of H.

Theorem 6 (Classification). Given a k-connected graph G, vpck(G) = sχk(G).

Proof. Given a k-connected spanning subgraph H of G with chromatic number `,

color this subgraph properly with ` colors. Then between every pair of vertices in H,

there are at least k internally disjoint properly colored paths. Thus, using Fact 3,

vpck(G) ≤ vpck(H) = ` so vpck(G) ≤ sχk(G).

Now let ` = vpck(G) and consider an `-coloring ofG which is properly k-connected.

Let P be the set of all proper paths between pairs of vertices (k paths for each pair
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of vertices). Then the subgraph H of G induced on all the edges of P spans G, is

k-connected and has chromatic number at most `. This means vpck(G) ≥ sχk(G),

completing the proof.

3.3 Consequences of Theorem 6

Theorem 6 shows that every statement about vpck is a statement about the chromatic

number of a minimally k-connected subgraph. Particularly, if G is minimally k-

connected, then vpck(G) = χ(G). When the graph is bipartite, we get the following

easy observation.

Corollary 7. If G is k-connected and bipartite, then for all t ≤ k, we have vpct(G) =

2.

In light of the classification theorem, we immediately get equivalent colored “fan

lemma” and “disjoint paths between k-sets” versions of the definition of vertex proper

connectivity.

Corollary 8. A colored graph G is properly k-connected if and only if for every

vertex v and k-set of vertices {u1, u2, . . . , uk}, there exists a set of properly colored

paths {P1, P2, . . . , Pk} where Pi goes from v to ui and Pi ∩ Pj = {v} for all i, j.

Corollary 9. A colored graph G is properly k-connected if and only if for every 2k-

set of vertices {u1, u2, . . . , uk, v1, v2, . . . vk}, there exists a set of properly colored paths

{P1, P2, . . . , Pk} where Pi goes from ui to vj for some j and Pi ∩ P` = ∅ for all i, `.

Theorem 6, along with Theorem 5, also gives us the following general upper bound.

The sharpness of Theorem 5 and Corollary 7 yield the sharpness of both bounds here.

Corollary 10. If G is k-connected, then for t ≤ k, we have 2 ≤ vpct(G) ≤ t+ 1 and

both bounds are sharp.
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When k = 1, Corollary 10 reduces to the following.

Corollary 11. For every connected graph G on at least 2 vertices, vpc(G) = 2.

3.4 Total Proper Connection

A natural definition of a total proper connection number is the following. Let tpc(G)

be the minimum number of colors needed to color the vertices and edges of G so that

between every pair of vertices u, v, there is a path P = Pu,v such that the vertices of

P induce a properly (vertex-)colored path and the edges of P also induce a properly

(edge-)colored path. Furthermore, we define tpck(G) to be the minimum number

of colors needed to produce k internally disjoint such paths between every pair of

vertices.

One might think that tpck(G) might simply be the maximum of pck(G) and

vpck(G) but this is not obvious even when k = 1 since the edge path (for pc) and the

vertex path (for vpc) must be the same path. Indeed, in Question 1, we ask whether

this equality holds in general. Our results concerning the function tpc support a

positive answer to this question.

Question 1. Is it true that tpck(G) = max{pck(G), vpck(G)}?

First we recall a result of Borozan et al. [2] which was originally stated in a

stronger form.

Theorem 12 ([2]). If G is bipartite and 2-connected, then pc(G) = 2.

Proposition 1. If κ(G) ≥ 3, then tpc(G) = 2.

Proof. With κ(G) ≥ 3, there is a spanning 2-connected bipartite subgraph B. Color

the vertices with two colors according to this subgraph. By Theorem 12, the proper

connection number of B is 2. Color the edges of B with 2 colors to be properly
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connected. For any pair of vertices in B, there is a properly edge-colored path between

them which induces a properly vertex-colored path as well since the vertices are

properly colored. This means tpc(B) = 2. Since B ⊆ G, we must also have tpc(G) =

2 as well.

Using a similar argument and Corollary 7, we easily get the following result.

Corollary 13. If G is k-connected and bipartite, then for t ≤ k,

tpct(G) = max{pct(G), vpct(G)} = pct(G).
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