Mar 6th, 12:30 PM - 12:50 PM

Luncheon Keynote Address #1: An Engineer's Education and It's Use in Aerospace

Vu Nguyen

Gulfstream Aerospace, vu.nguyen@gulfstream.com

Follow this and additional works at: https://digitalcommons.georgiasouthern.edu/stem

Recommended Citation

https://digitalcommons.georgiasouthern.edu/stem/2015/2015/62

This event is brought to you for free and open access by the Conferences & Events at Digital Commons@Georgia Southern. It has been accepted for inclusion in Interdisciplinary STEM Teaching & Learning Conference by an authorized administrator of Digital Commons@Georgia Southern. For more information, please contact digitalcommons@georgiasouthern.edu.
Vu Nguyen
An Engineer's Education and Its Use in Aerospace
Education

- Absegami High School – Galloway, NJ
 - Honors Algebra 2, Honors Geometry, Honors College Math (Pre-Calc), AP Calculus I, AP Calculus II
 - Honors Chemistry I & II, AP Physics
 - Honors/AP English
 - AP US History 1 & 2, AP European History

- Rutgers University, College of Engineering – Piscataway, NJ
 - Electrical Engineering Major, 2004
 - Multivariable Calculus, Differential Equations, Linear Algebra
 - Chemistry, Physics (Newtonian, Electricity & Magnetism, Quantum/Relativistic), Statics, Assorted EE Courses
 - English
Work Experience

- **Robert Wood Johnson Medical School/University Hospital**, New Brunswick, NJ

- **Gulfstream Aerospace Corporation** – Savannah, GA
 - Flight Test Engineer (2014 – Present)
Gulfstream Aerospace

- #1 Manufacturer of Purpose-Built Business Aircraft
- Fastest civilian aircraft in the world
- Quietest interior noise levels in the world
- Longest range of any purpose-built business aircraft
- Most advanced flight deck technology
- 2004 recipient of Collier Trophy for G550
- 2014 recipient of Collier Trophy for G650
Engineering Airplanes

- Preliminary Design
- Initial Phase Engineering
- Final Phase Engineering
- Production Engineering
- Flight Test Engineering
- Service Engineering
- Sustaining Engineering
- Sales Engineering
Initial Phase Engineering

- Flight Sciences
 - Applied Aero, Performance, Flight Dynamics
- Human Factors
- Structures/Powerplant (Acoustics/Vibration/Thermo) /ECS/Electrical/Mechanical Systems, Flight Controls
- Stress
 - Structural Analysis, Fatigue & Damage Tolerance, Methods
- Materials & Processes
 - Metallics, Composites, Coatings/Sealants
- Manufacturing
- Loads & Dynamics
- Mass Properties
Mass Properties Engineering

- Aircraft weight & balance
 - Component/section weights & CGs
 - Moments/products of inertia
- Predict, track, and influence weight-efficient design
- Calculate aircraft buoyancy
- Aircraft tip-back protection
- Weighing aircraft
Weighing Components
Weighing An Airplane

Requirement
- Measure weight of aircraft
- Determine longitudinal (X-axis) center of gravity in relation to aircraft axes
 - $X =$ Fuselage Station (FS)
 - $Y =$ Buttock Line (BL)
 - $Z =$ Water Line (WL)

Givens/Measurables
- Contact points
- Forces at those points

FS297.4, BL-37.9, WL28.0
Jacktop Weighing

- Aircraft is jacked at three hard points
- Each hard point has known coordinates (X,Y,Z)
- Aircraft is leveled (0° pitch, 0° roll)

\[W = W_N + W_L + W_R \]
\[CG = \frac{X_N W_N + X_L W_L + X_R W_R}{W_N + W_L + W_R} \]
Pros
- Accurate
- Repeatable
- Ergonomically safe
- Lower initial investment

Cons
- Takes time to level the aircraft
- Not recommended to jack the aircraft with tanks full of fuel
- Incorrect jacking technique can cause aircraft to fall off jacks
Platform Weighing

- Measure
 - Contact points
 - Forces at those points
 - Aircraft pitch

- Contact Points
 - Measure directly using tape measure/measuring wheel
 - Derive from other (more convenient) measurements
Determining Contact Point

- Measure directly
 - Drop plumb bob from datum point
 - Measure orthogonal distance to tire contact point

- Derive from secondary measurement
Determining Contact Point (cont’d)

- Measure landing gear extension
- Landing gear kinematics described by polynomials
- Tire contact point can be calculated
Calculating CG

- \(Z_{LG} = (W_L + W_R) \times (4.2 \times 10^{-4}) - 14.287 \)
- \(\bar{h} \approx (Z_{CG} - Z_{LG}) \cos \alpha \)
- \(x_{CG} = \frac{X_N W_N + X_L W_L + X_R W_R}{W_N + W_L + W_R} - \bar{h} \tan \alpha \)
What About Error?

- Compare:
 - Jacktop Weighing
 - (3) Scales
 - 0.1% Accuracy
 - Level aircraft
 - Platform Weighing
 - (5) Scales
 - 0.1% Accuracy
 - Aircraft in nominal attitude
What Skills Do We Use

- Collaboration
- Mathematics
 - Algebra
 - Linear Algebra
 - Trigonometry
- Software (Excel, Matlab, CATIA V5, Word)
- Basic physical sciences (Chemistry, Physics)
- Writing

BASICS ARE ESSENTIAL
Realities of the Real World

- Training/Mentorship may not be good
 - Up to you to learn and teach yourself

- Being a “specialist” does not mean existing in a bubble
 - The best engineers make an effort to learn (and cooperate) across disciplines
 - Majoring in one field should not discount one from learning about other fields

- Many engineering firms require a bachelor’s degree in an engineering field
Questions?