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Explorations of the Collatz Conjecture (mod m)

An Honors Thesis submitted in partial fulfillment of the requirements for Honors in Mathematics.
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ABSTRACT

The Collatz Conjecture is a deceptively difficult problem recently developed in mathematics. In
full, the conjecture states: Begin with any positive integer and generate a sequence as follows: If a
number is even, divide it by two. Else, multiply by three and add one. Repetition of this process
will eventually reach the value 1. Proof or disproof of this seemingly simple conjecture have
remained elusive. However, it is known that if the generated Collatz Sequence reaches a cycle other
than 4, 2, 1, the conjecture is disproven. This fact has motivated our search for occurrences of 4, 2,
1, and other cycles in a Collatz Sequence mod m.
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Background

The Collatz Conjectjure (also known as the 3x + 1 Problem, Hailstone Problem, Kakutani’s
Conjecture, Ulam’s Conjecture, Hasse’s Algorithm, and the Syracuse Problem) is usually attributed
to Lothar Collatz, an alumnus of the University of Hamburg. While at university, Collatz became
interested in iterative graph representations of number-theoretic functions. Though never publishing
any of these problems, Collatz is known to have circulated them with his colleagues at the Interna-
tional Congress of Mathematics in 1950. By the early 1950s, the Collatz Conjecture was not just
an underground problem known by a select few professors, but it had become known to the math
community. Bryan Thwaites, another mathematician that the Collatz Conjecture is occasionally
named after, discovered the problem in 1952 and has since offered a £1000 prize for a proof. This
offer follows from similar prizes: Harold S. M. Coxeter will provide $50 for a proof while Paul Erdős
offers $500.

However, prize money is only a secondary benefit that would come from a proof. A mathe-
matician who can construct a proof of this conjecture will be known for solving a problem for which
Erdős has said, “Mathematics is not yet ready for such problems.” The method of proof will most
likely open up new areas of study as well since the Collatz Problem is tied to much more than just
number theory or graphs. As seen in the results of Krager[1], the Collatz Conjecture lends itself
to p-adic analysis, analysis where ”distance” is determined by the largest power of a given prime p
dividing the difference between two rational numbers. The Collatz Function also shares connections
to the Mersenne Primes, prime numbers of the form 2n − 1, with n a positive integer[3]. Suppose
Mi is the ith Mersenne Prime, then Ohira and Watanabe have shown a strong correlation between
the stopping time (number of iterations for the sequence to reach 1) of Mi and the index i. Another
author, Riho Terras, has published results showing that the limit of the stopping time tends to
0 as the fixed initial value is increased[6]. These results were attained using techniques from the
field of statistics. Whatever the eventual method of proof will be, it is clear that it will have deep
implications and connections to various other areas of mathematics.

Formulation of Problem

The formal statement of the Collatz Conjecture begins with the Collatz Function, C(k), defined
as follows:

For a positive integer k,

C(k) =

{
3k + 1, if k is odd
k/2, if k is even

Because the conjecture is focused on iterations of this function, let C2(k) = C(C(k)), C3(k) =
C(C2(k)), so on and denote k as C0(k). Furthermore, the sequence generated, {Ci(k)}ni=1, will be
known as the trajectory.

Conjecture (Collatz Conjecture). Beginning with any positive integer k, there exists some n such
that Cn(k) = 1.

Examples:

(a) For k = 11. The trajectory of 11, or Traj(11) = 34, 17, 52, 26, 13, 40, 20, 10, 5, 16, 8, 4, 2, 1.

(b) Traj(75) = 226, 113, 340, 170, 85, 256, 128, 64, 32, 16, 8, 4, 2, 1.

(c) Traj(16384) = 8192, 4096, 2048, 1024, 512, 256, 128, 64, 32, 16, 8, 4, 2, 1..

(d) Traj(2j) = 2j−1, 2j−2, . . . , 22, 2, 1.
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Since inception of this conjecture, the conclusion has been verified up to 258, or roughly 5.8 ×
1018[5]. However, progress towards a proof has not fared so well. In attempts to prove the Collatz
Conjecture, researchers have examined various properties and measures of the Collatz Function. The
most natural measure to look at would be the number of iterations needed for the sequence to reach
1. This is known as the stopping time. Note that this is the length of trajectory. Provided below
are graphs mapping the integers k to their corresponding stopping times.

Figure 1: Stopping times up to n = 100

Figure 2: Stopping times up to n = 1000

Figure 3: Stopping times up to n = 10000
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In Figures 1, 2, and 3, it appears that there are two distinct groupings of trajectories converging
into one large periodic distribution. Unfortunately, periodicity and nice pictures do not prove the
conjecture and we are left with another mystery of the Collatz Conjecture.

Another characteristic of interest is the maximum value attained during the trajectory of k.
Graphed below, in Figures 4, 5, 6, are integers k and their corresponding maximum trajectory
value.

Figure 4: Max values for integers up to n = 100

Figure 5: Max values for integers up to n = 1000

Figure 6: Max values for integers up to n = 10000

5



From these figures, it is easy to see that most integers reach similar max values with many of the
integers actually reaching the same max values. As the magnitude of our initial integer increases, we
also see that the number of integers with outlying max values increases. This is due to the intuitive
fact that as the starting integer k increases, more divisions by two are necessary and multiplications
by three are more likely. It is precisely because of this that some have chosen to examine somewhat

normalized max values, or the expansion factor. The expansion factor is defined as
maxj>0 Cj(k)

k
for a fixed initial value k. The above results are then transformed into the following.

Figure 7: Expansion factors for integers up to n = 100

Figure 8: Expansion factors for integers up to n = 1000

Figure 9: Expansion factors for integers up to n = 10000
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From Figures 7, 8, and 9, one can point out that there appears to be a type of exponentially
decreasing pattern as k increases. However, as we expand our interval, this characteristic becomes
less pronounced and leaves us in the dark once more. Next, one can look at the shape of the actual
trajectories for given k. Examples are given in Figures 10, 11, 12 below.

Figure 10: Trajectory of 42

Figure 11: Trajectory of 103

Figure 12: Trajectory of 27
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Finally, we can (and will) examine these trajectories when reduced by a modulus m. A priori,
one might suspect that the graphs will now have simpler looking results since the range of values
that our function can obtain has been reduced to m choices. Unfortunately, Figures 13, 14, and 15
below show this is not the case. The following graphs are even more chaotic-appearing than the
original.

Figure 13: Trajectory of 27 mod 5

Figure 14: Trajectory of 27 mod 11

Figure 15: Trajectory of 27 mod 42
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Note here that the residue trajectory can not be computed in mod m, but one must determine
the original Collatz sequence before reducing it. Also, one can bring some order to the turbulent
nature of these sequences. Now, we restate the Collatz Conjecture as the equivalent:

Conjecture (Collatz Conjecture). Given any positive integer k, the sequence generated by iterations
of the Collatz Function will eventually reach and remain in the cycle 4, 2, 1.

This is the definition that has motivated the present paper’s focus. We have examined Collatz
sequences reduced by modulus m > 4 and corresponding occurrences of the sequence 4, 2, 1. If a
Collatz Sequence eventually cycles 4, 2, 1, then the sequence mod m will also reach the cycle. Thus,
if it is shown that a reduced Collatz Sequence does not reach 4, 2, 1, then the original sequence will
not reach the cycle and the conjecture is disproven. Additionally, if a Collatz Sequence reaches a
cycle other than 4, 2, 1, the conjecture is disproven. For this reason, we have examined conditions
under which a reduced Collatz Sequence will reach a cycle other than 4, 2, 1.

Congruence mod m

Congruence of integers is a concept developed by Gauss in his classic work, Disquisitiones Arith-
meticae, published in 1801. For a fixed positive integer m, known as the modulus, we say that two
integers a and b are congruent mod m if they leave the same remainder upon division by m. We
denote this by a ≡ b mod m. For instance, 32 ≡ 7 mod 5 because each leaves a remainder of 2 when
divided by 5.

Any integer n is congruent mod m to a unique integer in the list 0, 1, 2, . . . ,m− 1. This integer
is known as the residue of n mod m. For example, if we let m = 10, then the residue of 47 mod 10
is 7 since 47 divided by 10 leaves a remainder of 7. Thus, 47 ≡ 7 mod 10.

In particular, n ≡ 0 mod m is equivalent to saying that m is a divisor of n. For instance, n ≡ 0
mod 2 if and only if n is even. Congruence is very similar to the = relation. They are both equiva-
lence relations on the integers and make it possible to establish and use properties of divisibility in
an algebraic fashion.

A more rigorous introduction to modular arithmetic and congruences is given in [4].

Results

Result 1. We are first interested in the case of 4, 2, 1 occurring in the reduced trajectories before
the cycle appears in the original trajectory. Let ai = 4 + s0m, ai+1 = 2 + s1m, and ai+2 =
1 + s2m, so that ai, ai+1, ai+2 ≡ 4, 2, 1 mod m. Moreover, if ai, ai+1 are even and ai+2 is odd, then
ai, ai+1, ai+2 ≡ 0, 0, 1 mod 2. Then we have the following result:

ai mod 2 m odd m even

0,0,0 s0 ≡ 0 mod 8 Not Possible
0,0,1 s0 ≡ 4 mod 8 s0 ≡ 1 mod 2
0,1,0 Not Possible Not Possible
1,0,0 s0 ≡ 3 mod 4, m = 11 Not Possible
1,0,1 s0 ≡ 1 mod 4, m = 11 Not Possible

Example: Suppose we wish to generate a trajectory that is congruent to 4, 2, 1 when reduced by a
modulus m and this sequence consists of an odd number followed by two evens. This corresponds to
the fourth row. From here, we can see that if our modulus is odd, then s0 ≡ 3 mod 4 and specifically,
m = 11. However, if m is even, this case is not possible. Suppose ai = 4 + s0m is odd and m is
even. Then ai ≡ (0 mod 2) + s0(0 mod 2) ≡ 0 mod 2, a contradiction.

Example: Let ai = 81 = 4 + (7)(11). Then Traj(81) = 244, 122, 61, . . . , so ai, ai+1, ai+2, ai+3 ≡
4, 2, 1, 6 mod 11.
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Result 2. To generate a repeating sequence of 4, 2, 1, begin with any integer 23k and reduce the
sequence by m = 7.

Example:

Traj(23(5)) = Traj(32768) = 16384, 8192, 4096, 2048, 1024, 512, 256, 128, 64, 32, 16, 8, 4, 2, 1.

Traj(32768) mod 7 = 4, 2, 1, 4, 2, 1, 4, 2, 1, 4, 2, 1, 4, 2, 1

That is, the residue trajectory reduces mod 7 immediately to 4, 2, 1, even though the original
sequence does not.

Theorem 1. If ai is even and ai ≡ ai+1 mod m, then ai ≡ 0 ≡ ai+1 mod m.

Theorem 2. If ai is odd, then ai ≡ ai+1 mod m iff m is odd and ai ≡ −2−1 mod m. Moreover, if
m = 2t + 1, then,

(i) If m≡ 1 mod 4, then ai ≡ t + m mod 2m

(ii) If m≡ 3 mod 4, then ai ≡ t mod 2m

Examples:

(a) Let m = 9. Then t = 4 and m ≡ 1 mod 4. Suppose ai = 49 which implies ai+1 = 148 which are
both ≡ 4 mod 9. Also, ai ≡ t + m mod 2m because 49 ≡ 13 mod 18.

(b) Let m = 7. Then t = 3 and m ≡ 3 mod 4. Suppose ai = 17 which implies ai+1 = 52 which are
both ≡ 3 mod 7. Additionally, ai ≡ t mod 2m because 17 ≡ 3 mod 14.

Theorem 3. Suppose ai, ai+1, ai+2 ≡ a, b, a mod m with a, b ∈ Z and a 6= b. Then,

(i) If ai is odd, then a ≡ −1 mod m and b ≡ −2 mod m.

(ii) If ai is even and ai+1 is odd, then a ≡ −2 mod m and b ≡ −1 mod m provided gcd(m, 2) = 1.

(iii) If ai and ai+1 are even, it must be that a ≡ b ≡ 0 which contradicts our assumption that a 6≡ b,
so this can not occur.

Examples:

(a) Let ai = 63 which is ≡ −1 mod 32. Traj(63) = 190, 95, 286, 143, . . . ≡ −2,−1,−2,−17, . . .

(b) Let ai = 138 which is ≡ −2 mod 7. Traj(138) = 69, 208, 104, 52, . . . ≡ −1,−2,−1,−5, . . .

Corollary. Suppose ai ≡ ai+1 ≡ ai+2 mod m. Then,

(i) If ai is even, then must have ai ≡ ai+1 ≡ ai+2 ≡ 0 mod m. Moreover, one can have an arbitrar-
ily long sequence of ai ≡ ai+1 ≡ ai+2 ≡ . . . ≡ ai+j given ai ≡ ai+1 ≡ ai+2 ≡ . . . ≡ ai+j−1 ≡ 0
mod m.
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(ii) If ai is odd, ai ≡ ai+1 ≡ ai+2 does not occur.

(iii) If ai, ai+1, ai+2 ≡ a, b, a and a 6= b, then a, b, a ≡ −2,−1,−2 mod m or a, b, a ≡ −1,−2,−1
mod m. Thus, any repeating pair a, b, a, b with a 6= b must be −2,−1,−2,−1 mod m or
−1,−2,−1,−2 mod m.

Proof of Theorems

Proof of Theorem 1. Let ai be even so ai+1 = b and ai = 2b. Then,

2b ≡ b mod m

b ≡ 0 mod m

i.e. b = cm

so, ai = (2c)m

ai+1 = cm

Thus, ai ≡ 0 ≡ ai+1 �

Proof of Theorem 2. Let ai be odd. Then,

ai+1 ≡ 3ai + 1 mod m

2ai + 1 ≡ 0 mod m

That is 2ai + 1 = cm for some odd integer c.

Thus, m is odd and 2ai ≡ −1 mod m

ai ≡ −2−1 mod m. �

For the converse, take m to be odd and v = 2−1 mod m. That is, 2v ≡ 1 mod m. Furthermore,
suppose ai ≡ −v mod m and ai is odd. Then,

ai+1 = 3ai + 1

≡ 3(−v) + 1 mod m

≡ −v − 2v + 1 mod m

≡ −v − (2v − 1) mod m

≡ −v mod m. �

Now, assuming m to be odd, let m = 2t+1, so t ≡ −2−1 mod m. Then ai ≡ t mod m, so ai = t+km
for some integer k. However, t and k must have opposite parities for ai to be odd. Thus, if t is even,
m ≡ 1 mod 4 and for an integer j,

ai = t + (2j + 1)m

= (t + m) mod 2m. �

Now, if t is odd, m ≡ 3 mod 4 and

ai = t + 2jm

= t mod 2m. �

Proof of Theorem 3. Define ai = a+ s0m, ai+1 = b+ s1m, ai+2 = a+ s2m, and ai+3 = a+ s3m.
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(i) Let ai be odd. Then, ai+1 = 3ai + 1 and ai+2 = 1
2 (ai+1) = 1

2 (3ai + 1). Now,

b + s1m = 3(a + s0m) + 1

= (3a + 1) + 3s0m

so, b ≡ 3a + 1 mod m.

Furthermore, a + s2m =
1

2
(3ai + 1)

2a + 2s2m = 3a + 1 + 3s0m

2s2m = a + 1 + 3s0m

thus, a + 1 = (2s2 − 3s0)m.

So a ≡ −1 mod m and b ≡ −2 mod m. �

(ii) Let ai and ai+1 be even. So,

ai+1 =
1

2
ai

b + s1m =
1

2
(a + s0m)

2b + 2s1m = a + s0m

a = 2b + (2s1 − s0)m

so, a ≡ 2b mod m

Then, ai+2 =
1

2
ai+1

a + s2m =
1

4
(a + s0m)

4a + 4s2m = a + s0m

3a = (s0 − 4s2)m

Thus, 3a ≡ 0 mod m.

Then, if gcd(m, 3) = 1, a ≡ 0 mod m. �

(iii) Let ai be even and ai+1 be odd. From (ii), we have that a ≡ 2b mod m. Now,

ai+2 = 3ai+1 + 1

a + s2m =
3

2
(a + s0m) + 1

2a + 2s2m = 3a + 3s0m + 2

(2s2 − 3s0) = a + 2

So, a ≡ −2 mod m

Thus, 2b ≡ −2 mod m.

Then, if gcd(m, 2) = 1, b ≡ −1 mod m. �
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Proof of Corollary. Proof follows from Theorem 1. Furthermore, sequences of the form below
will be ≡ 0 mod m for j + 1 iterations.

(i)

ai = 2jcm

ai+1 = 2j−1cm

ai+2 = 2j−2cm

...

ai+j−1 = 2cm

ai+j = cm

So, ai ≡ ai+1 ≡ . . . ≡ ai+j ≡ 0 mod m. �

(ii) Let ai be odd, then m = 2t + 1 is odd and ai ≡ ai+1 ≡ t mod m. Moreover, ai+1 is even, so
ai+1 ≡ ai+2 which implies ai+1 ≡ ai+2 ≡ 0 mod m by Theorem 1. So t ≡ 0 mod m. But,

m = 2t + 1

0 ≡ 2 · 0 + 1 mod m

0 ≡ 1 mod m

Thus, we have reached a contradiction, so this case is not possible. �

Special Case

Suppose we allow the case that m = 3 so that the terminal sequence 4, 2, 1, 4, 2, 1, . . . becomes 1,
2, 1, 1, 2, 1, . . .. If some term ai in a Collatz sequence is odd, then the next term ai+1 = 3ai + 1 ≡ 1
mod 3 regardless of the residue of ai. Otherwise, if ai is even, then ai+1 = 1

2ai ≡ 2ai mod 3.
Thus, an algorithm for generating the sequence of residues mod 3 is

ai+1 mod 3 =

{
1, if ai is odd,
2(ai mod 3), if ai is even.

Because mod 3 is a special case, we examined the behavior of the residue sequences for repeating
pairs a, b, a. It is simple to find numbers that generate at least a single occurrence of 1, 2, 1. It also
turns out that numbers of the form 35 · 22k+1 will produce k + 6 pairs of 1, 2 followed by infinite
repetitions of 1, 2, 1.

Examples:

• Let ai = 12s + 4 for s in the integers. Then, ai+1 = 6s + 2 and ai+2 = 3s + 1. Thus,
ai, ai+1, ai+2 ≡ 1, 2, 1 mod 3.

•
Traj(1120) = Traj(35·22(2)+1) = 560, 280, 140, 70, 35, 106, 53, 160, 80, 40, 20, 10, 5, 16, 8, 4, 2, 1.

≡ 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1 mod 3.

Or more clearly, 2, (1, 2), (1, 2), (1, 2), (1, 2), (1, 2), (1, 2), (1, 2), (1, 2, 1).
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Summary

If the Collatz Conjecture is true, then every Collatz sequence eventually produces 4, 2, 1, 4, 2, 1. A
direction for future study is the investigation of sequence whose sequence of residues eventually
becomes a, b, c, a, b, c, . . . for some modulus m. If we could find a, b, c different from 4, 2, 1, that
would disprove the Collatz Conjecture. More generally, if there exists an n-tuple, a1, a2, . . . , an
different from 4, 2, 1, which is eventually infinitely repeated in the sequence of residues, then this
would constitute a disproof. Moreover, if we could prove that the only possible n-tuple is 4, 2, 1,
that would only add to the body of evidence supporting the conjecture.
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