Fall 2016

BIOS 9131 - Advanced Statistical Theory for Biostatistics I

Hani Samawi

Georgia Southern University, hsamawi@georgiasouthern.edu

Follow this and additional works at: https://digitalcommons.georgiasouthern.edu/coph-syllabi

Part of the Public Health Commons

Recommended Citation
https://digitalcommons.georgiasouthern.edu/coph-syllabi/72

This other is brought to you for free and open access by the Public Health, Jiann-Ping Hsu College of at Digital Commons@Georgia Southern. It has been accepted for inclusion in Public Health, Jiann-Ping Hsu College of - Syllabi by an authorized administrator of Digital Commons@Georgia Southern. For more information, please contact digitalcommons@georgiasouthern.edu.
Georgia Southern University
Jiann-Ping Hsu College of Public Health
BIOS 9131 – Advanced Statistical Theory for Biostatistics I
Fall 2016

Instructor: Hani M. Samawi
Office: 1006 Hendricks Building
Phone: 478-1345
E-Mail Address: hsamawi@georgiasouthern.edu
Office Hours: Tuesday and Thursday –1:00 pm-to-3:00 pm, Wednesday 1 pm to 2 pm.
Other times by appointment
Web Page: Yes
Class Meets: Tuesdays and Thursdays: 1:00 - 2:00 PM;
Monday 1:00-4:00 PM and by appointment
Hendricks Hall 1003

Course Catalog available at:
http://em.georgiasouthern.edu/registrar/resources/catalogs/
under Jiann-Ping Hsu College of Public Health Programs

Course schedules can be found at:
http://www.collegesource.org/displayinfo/catalink.asp

Prerequisites: None

Course Credit: This is a three-credit hour course designed for the DrPH core curriculum.

Course Structure: This course is an in-person meeting class.

Catalog Description: This course provides an advanced study of theoretical statistics. Topics include: an introduction probability and sample space, conditional probability and Bayes Theorem, probability distribution of a random variable, discrete and continuous random variables, functions of random variables, moments and moment generating functions, order statistics and their distributions, discrete distributions, continuous distributions, bivariate and multivariate normal distribution, modes of convergence, limiting moment generating functions, and the central limit theorems. 3 hours

Dr.PH Core Student Learning Outcomes (CORE)
1. Demonstrate their readiness to work with communities to address public health problems.
2. Select and apply theoretically based interventions to address public health problems.
3. Apply appropriate research methods to address community health problems, particularly among rural and underserved populations.

Dr.PH Biostatistics Concentration Student Learning Outcomes
1. Construct a public health and biomedical research questions from ideas, conditions, and events that exist in a rural and urban community, region, state, and nation using critical thinking skills.
2. Demonstrate required skills for translating public health practice objectives to appropriate biostatistical framework for analysis and interpretation of results.
3. Illustrate sufficient substantive knowledge of advanced biostatistical methods such as multiple regression, logistic regression, survival analysis, longitudinal data analysis, and Bayesian and adaptive methods to interact with biostatisticians and realted public health researches in a meaningful and productive fashion.
4. Communicate biostatistical principles and concepts to lay and professional audiences through both oral and written communication.

Dr.P.H Biostatistics Concentration Competencies:
1. Design a public health and biomedical investigation in terms of the experimental design, data to be collected that reflect research objectives, number of subjects needed, and specification of appropriate methods for analysis.
2. Analyze public health and biomedical data using appropriate statistical software such as SAS, R and S-plus.
3. Interpret analytic methods used in the public health and biomedical journals, as well as critique published reports of public health and biomedical experiments as to the validity of the inferential conclusions.
4. Develop new biostatistical methods and new ideas for applying existing biostatistical methods to applications in public health and the biomedical sciences.
5. Develop written and oral reports to communicate effectively with research investigators the pivotal aspects of a study, including: design, study objectives, data analysis methodology, results and conclusions.
6. Create a collaborative environment for working on written and oral reports.

Performance Based Objectives:
1. Understand and use probability concepts which include sample space, probability axioms, combinatorics (finite sample space), conditional probability and Bayes theorem, and independent events. (Activates 1, 2 and 3)
2. Understand random variables and be able to differentiate between discrete and continuous types. Learn probability distribution functions of random variables (continuous and discrete), find distribution of a function of a random variable, find
moments and moments generating of a distribution function and some moment’s inequalities. (Activates 1, 2 and 3)

3. Understand and use multiple random variables concepts which include independent random variables, functions of several random variables, covariance, correlation and moments, conditional expectations and order statistics and their distributions. (Activates 1, 2 and 3)

4. Understand and use some special distributions, discrete and continuous, bivariate and multivariate normal distribution, and the exponential family of distributions. (Activates 1, 2 and 3)

5. Understand and use limits theorems which include modes of convergence, Weak Law of Large Numbers, Strong Law of Large Numbers and Central Limit Theorem. (Activates 1, 2 and 3)

Assessment of students Learning

Activity 1: Use course lectures and class discussions to explain the basic terminology and definitions of biostatistical basic theories including but not limited probability concepts which include sample space, probability axioms, combinatorics (finite sample space), conditional probability, Bayes theorem, independent events, probability distribution functions of random variables (continuous and discrete), find distribution of a function of a random variable, moments and moments generating of a distribution function, some moment’s inequalities, multiple random variables concepts which include independent random variables, functions of several random variables, covariance, correlation and moments, conditional expectations, order statistics and their distributions, bivariate and multivariate normal distribution, the exponential family of distributions, modes of convergence, Weak Law of Large Numbers, Strong Law of Large Numbers and Central Limit Theorem. Competence in basic terminology will be evaluated using two activities: (1) weekly homework (2) two in class exams.

Activity 2: Use course lectures, class discussions and class exercises to illustrate proving theorems and deep understanding of biostatistical theories, including but not limited to probability concepts which include sample space, probability axioms, combinatorics (finite sample space), conditional probability, Bayes theorem, independent events, probability distribution functions of random variables (continuous and discrete), find distribution of a function of a random variable, moments and moments generating of a distribution function, some moment’s inequalities, multiple random variables concepts which include independent random variables, functions of several random variables, covariance, correlation and moments, conditional expectations, order statistics and their distributions, bivariate and multivariate normal distribution, the exponential family of distributions, modes of convergence, Weak Law of Large Numbers, Strong Law of Large Numbers and Central Limit Theorem. Competence in biostatistical theories will be evaluated using two activities: (1) weekly homework (2) two take home exams.

Activity 3: Use course lectures, class discussions and real theoretical illustration to explain the basic applications of biostatistical theories as well as the integration of these theories across the biostatistics and public health spectrum. Competence in ability to integrate theories will be evaluated using challenging theoretical published papers for the students to write a report and present the theoretical concept of these papers in the class.
Overview of the Content to be Covered During the Semester:

<table>
<thead>
<tr>
<th>Week</th>
<th>Topic</th>
<th>Readings</th>
<th>Assignment: Due within 1 week of completion of topic</th>
</tr>
</thead>
<tbody>
<tr>
<td>1-2</td>
<td>Probability (Learning Objectives: 1)</td>
<td>Chapter 1</td>
<td>1.2.2, 1.3.1, 1.3.2, 1.3.7, 1.3.10, 1.4.1, 1.4.12,</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>1.4.13, 1.5.10, 1.5.13, 1.6.1, 1.6.5, 1.6.11</td>
</tr>
<tr>
<td>3-4</td>
<td>Random Variables and Their Probability Distributions (Learning Objectives: 2)</td>
<td>Chapter 2</td>
<td>2.2.1, 2.2.4, 2.2.5, 2.3.3, 2.4.3, 2.4.5, 2.4.6,</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>2.5.1, 2.5.2, 2.5.6, , 2.5.10</td>
</tr>
<tr>
<td>5-6</td>
<td>Moments and Generating Functions (Learning Objectives: 3)</td>
<td>Chapter 3</td>
<td>3.2.3, 3.2.6, 3.2.14, 3.3.1, 3.3.4, 3.3.7, 3.4.1,</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>3.4.4, 3.4.8</td>
</tr>
<tr>
<td>7-10</td>
<td>Multiple Random Variables (Learning Objectives: 4)</td>
<td>Chapter 4</td>
<td>4.2.1, 4.2.4, 4.2.9, 4.3.2, 4.3.3, , 4.3.14, 4.4.2,</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>4.4.13, 4.4.17, 4.5.1, 4.5.3, 4.6.3, 4.6.4, 4.6.5,4.7.4</td>
</tr>
<tr>
<td>11-13</td>
<td>Some Special Distributions (Learning Objectives: 5)</td>
<td>Chapter 5</td>
<td>5.2.3, 5.2.7, 5.2.8, 5.2.10, 5.3.3, 5.3.4, 5.3.8,</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>5.4.1, 5.4.6, 5.5.1, 5.5.3</td>
</tr>
<tr>
<td>14-16</td>
<td>Limit Theorems (Learning Objectives: 6)</td>
<td>Chapter 6</td>
<td>6.2.2, 6.2.5, 6.2.9, 6.2.11, 6.3.5, 6.3.8, 6.4.1,</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>6.4.7, 6.5.1, 6.5.2, 6.5.5, 6.6.1, 6.6.2, 6.6.5</td>
</tr>
</tbody>
</table>

Samples of your work may be reproduced for search purposes and/or inclusion in the professor’s teaching portfolio. You have the right to review anything selected for use, and subsequently ask for its removal.

Instructional Methods: Class meetings will be a combination of lecture, class discussion, and computer software demonstration. Written homework assignments and examinations constitute the basis of student evaluation.
Exam Schedule and Final Examination:
Midterm Examination: October 18, 2016
Final Examination: December 8, 2016; 10:00 am -12:00 pm

Grading:
Weighting of assignments for purposes of grading will be as follows:

<table>
<thead>
<tr>
<th>Assignment</th>
<th>Learning Objectives</th>
<th>Points</th>
<th>Percentage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Midterm Exam</td>
<td>1, 2, 3</td>
<td>150</td>
<td>30%</td>
</tr>
<tr>
<td>Final Exam</td>
<td>4, 5, 6</td>
<td>200</td>
<td>40%</td>
</tr>
<tr>
<td>Assignments</td>
<td>1-6</td>
<td>150</td>
<td>30%</td>
</tr>
</tbody>
</table>

Total Possible Points 500 points (100%)

The following point scale will be utilized in grading:

- 450-to-500 points (90%) A
- 400-to-449 points (80%) B
- 350-to-399 points (70%) C
- 300-to-349 points (60%) D

A cumulative total of 299 points or less will be considered as failing.

For calculation of your final grade, all grades above will be included.

Your grades **will not** be posted. All exams and assignments will be graded and returned promptly so that students may accurately calculate their grades at any point in time during the semester. There are times when extraordinary circumstances occur (e.g., serious illness, death in the family, etc.). In such circumstances, and/or if you need additional time to satisfactorily complete any course requirement, please consult with the instructor within a reasonable amount of time. *Nota Bene:* Extensions are not guaranteed and will be granted solely at the discretion of the instructor. **NO EXTRA CREDIT PROJECTS WILL BE ASSIGNED!**

Academic Misconduct: "According to the Academic Dishonesty Policy of GSU, Plagiarism includes (but is not limited to):
A. Directly quoting the words of others without using quotation marks or indented format to identify them.
B. Using published or unpublished sources of information without identifying them.
C. Paraphrasing material or ideas without identifying the source.
D. Unacknowledged use of materials prepared by another person or agency engaged in the selling of term papers or other academic
If you are accused of plagiarism by a JPHCOPH, the following policy, as per the Judicial Affairs website (http://students.georgiasouthern.edu/judicial/faculty.htm) will be enforced:

PROCEDURES FOR ADJUDICATING ACADEMIC DISHONESTY CASES

First Offense - In Violation Plea
1. If the professor and the Dean of Students agree that the evidence is sufficient to warrant a charge of academic dishonesty, the professor should contact the Office of Judicial Affairs to determine if this is a first violation of academic dishonesty. The incident will be reported via the following website:
 http://students.georgiasouthern.edu/judicial/faculty.htm
2. If it is a first violation, the professor should talk with the student about the violation. If the student accepts responsibility in writing and the professor decides to adjudicate the case, the following procedures will be followed:
 a. The student will be placed on disciplinary probation for a minimum of one semester by the Office of Judicial Affairs.
 b. The student will be subject to any academic sanctions imposed by the professor (from receiving a 0 on the assignment to receiving a failing grade in the class).
 c. A copy of all the material involved in the case (Academic Dishonesty Report Form and the Request For Instructor to Adjudicate Form) and a brief statement from the professor concerning the facts of the case and the course syllabus should be mailed to the Office of Judicial Affairs for inclusion in the student's discipline record.

First Offense - Not In Violation Plea (student does not admit the violation)
If the professor and the Dean of Students agree that the evidence is sufficient to warrant a charge of academic dishonesty, the professor should contact the Office of Judicial Affairs to determine if this is the first or second violation of academic dishonesty. The student will be charged with academic dishonesty and the University Judicial Board or a University Hearing Officer would hear the case. If the student is found responsible, the following penalty will normally be imposed:
 a. The student will be placed on Disciplinary Probation for a minimum of one semester by the Office of Judicial Affairs.
 b. The student will be subject to any academic sanctions imposed by the professor.
Second Violation of Academic Dishonesty
If the professor and the Dean of Students agree that the evidence is sufficient to warrant a charge of academic dishonesty, and if it is determined this is the second violation, the student will be charged with academic dishonesty and the University Judicial Board or a University Hearing Officer would hear the case. If the student is found responsible, the following penalty will normally be imposed:

a. Suspension for a minimum of one semester or expulsion.
b. The student will be subject to any academic sanctions imposed by the professor.

NOT RESPONSIBLE FINDING
When a student is found not responsible of academic dishonesty, the work in question (assignment, paper, test, etc.) would be forwarded to the Department Chair. It is the responsibility of the Department Chair to ensure that the work is evaluated by a faculty member other than the individual who brought the charge and, if necessary, submit a final grade to the Registrar. For the protection of the faculty member and the student, the work in question should not be referred back to the faculty member who charged the student with academic dishonesty.

In the case of a Department Chair bringing charges against a student, an administrator at the Deans level will ensure that the students work is evaluated in an appropriate manner.

Academic Handbook: Students are expected to abide by the Academic Handbook, located at http://students.georgiasouthern.edu/sta/guide/. Your failure to comply with any part of this Handbook may be a violation and thus, you may receive an F in the course and/or be referred for disciplinary action.

University Calendar for the Semester: The University Calendar is located with the semester schedule, and can be found at: http://www.collegesource.org/displayinfo/catalink.asp.

Attendance Policy: Federal regulations require attendance be verified prior to distribution of financial aid allotments. Attendance will not be recorded after this initial period.

One Final Note: The contents of this syllabus are as complete and accurate as possible. The instructor reserves the right to make any changes necessary to the syllabus and course material. The instructor will make every effort to inform students of changes as they occur. It is the responsibility of the student to know what changes have been made in order to successfully complete the requirements of the course.