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Axenovich and Duerrschnabel: Weakly homometric sets

Abstract

For a connected simple graph G = (V, E') and a subset X of its vertices, let
d*(X) = max{distg(z,y) : x,y € X}

and let h*(G) be the largest k£ such that there are disjoint vertex subsets A and B
of G, each of size k such that d*(A) = d*(B). Let h*(n) = min{h*(GQ) : |V(G)| =
n}. We prove that h*(n) = [(n 4+ 1)/3], for n > 6. This solves the homometric set
problem restricted to the largest distance exactly. In addition we compare h*(G) with
a respective function hgiam(G), where d*(A) is replaced with diam(G[A]).

1 Introduction

For a subset X of vertices of a graph G, let d*(X) = max{diste(z,y) : x,y € X}, where
distq is the distance in G. We call two subsets of vertices A, B C V weakly homometric if
|A| = |B|, ANB =0, and d*(A) = d*(B). Let h*(G) be the largest k such that G has weakly
homometric sets of size k each. Let h*(n) be the smallest value of h*(G) over all connected
n-vertex graphs. Informally, any connected graph G on n vertices has two disjoint subsets
of vertices of the same size at least h*(n) that have the same largest distance (in G) between
their vertices. All graphs considered in this note are simple.

The notion of weakly homometric sets originates from the notion of homometric sets
introduced by Albertson et al. [1]. For a subset of vertices X, let d(X) be a multiset of
pairwise distances between the vertices of X. Two disjoint sets of vertices A and B are called
homometric, if d(A) = d(B). Let h(G) be the largest k such that G has two homometric sets
of size k each. Let h(n) be the smallest value of A(G) among all connected n-vertex graphs.
The study of homometric sets is partly motivated by the question: “Can one distinguish two
vertex sets of equal size only by the respective distances?”. The answer depends on the size
of these sets. The best known bounds on h(n) are as follows:

| 2
c (%) < h(n) <n/4 - loglogn,

for positive contants ¢, ¢/, where the lower bound is due to Alon [2], and the upper one is due
to Axenovich and Ozkahya [3], both of the bounds are slight improvements of the original
bounds by Albertson et al. [1]. There are much better bounds on A(G) known when G is
a tree or when G has diameter 2, see Fulek and Mitrovi¢ [6] and Bollobds et al. [4], see
also an earlier paper by Caro and Yuster [5]. Specifically, a result of Bollobas et al. [4]
implies that h(G) is close to @, when G is large and has diameter at most 2. Since a
closed neighborhood of a vertex induces a graph of diameter at most 2 and there is such a
neighborhood on at least 2| E(G)|/|V (G)| vertices, we have that there is a positive constant
¢ such that for any graph G, h(G) > c¢|E(G)|/|V (G)].

Weakly homometric sets are concerned only with one, the largest, distance. In this note
we find h*(n) exactly.

Theorem 1.1. For any n > 6, h*(n) = [(n+1)/3].
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Note that considering connected graphs in the definition of A* is not an essential restric-
tion. Indeed, if a graph G is not connected and has at least two components of size at least
two each, then by taking oo as a distance between any two vertices from different compo-
nents, we see that h*(G) > |n/2|. Otherwise, G has two connected components, one of which
is a single vertex. Thus by Theorem 1.1 applied to the larger component h*(G) > |n/3].

When the distance is considered in a subgraph rather than in an original graph, we
consider the following function that is of independent interest. For a graph G, hgjam(G) is
the largest integer k such that there are disjoint sets A, B C V(G), each of size k and so
that diam(G[A]) = diam(G[B]).

Theorem 1.2. Let G be an n-vertex graph, then hgam(G) > |(n +1)/3]. Moreover if
diam(G) > 4 or diam(G) =1 then hgam(G) = [n/2].

In order to prove the main result, we consider an auxiliary coloring of the edges of a
complete graph on the vertex set V = V/(G) with colors 1,2,...,diam(G) such that the
color of zy is distg(x,y), z,y € V. The result follows from observations about the structure
of the color classes. In fact, the proof allows for an algorithm determining large weakly
homometric sets.

2 Proofs

Let, for a graph G and X C V(G), E;(X) = {ay : z,y € X, distg(z,y) = i}, ie., E; is a
set of pairs at distance i in G. We say that E;(X) is good if it contains two disjoint pairs
xy,x'y’. Note that if a non-empty F;(X) is not good, i.e., bad, it is a triangle or a star in
X. Further observe that if X = AU B, where A and B are weakly homometric in G, then
E;(X) is good, for i = d*(A). We say that we split a set X of vertices if we form two disjoint
subsets of X of size || X|/2|. We denote d(zy) = distg(x,y), z,y € V(G). We denote the
edge set of a star with center = and leaf set X as S(z, X).

Lemma 2.1. Let G be a graph, X C V(G), i = d*(X). If E;(X) is good or d*(X) < 2, then
W (G) = [(1X] = 1)/2].

Proof. Assume first that zy, 2'y’ € E;(X) are disjoint pairs of vertices and i = d*(X). Split
X such that z,y are in one part and 2,9y’ in another part. The resulting sets are weakly
homometric sets. If d*(X) = 2, then either Ey(X) is good implying h*(G) > [|X|/2] or
non-edges form a star or a triangle, so deleting one vertex allows us to split the remaining
vertices of X in two sets each inducing a clique. Thus h*(G) > |(|X| —1)/2] in this case. If
d*(X) =1, then X induces a clique and h*(G) > || X|/2]. O

Proof of Theorem 1.1. First we shall show the lower bound on h*(n). Consider a connected
graph G on n vertices. Let d = diam(G). If d = 2, the lower bound follows from the
Lemma 2.1. So, we assume that d > 3. If E4(V) is good, then by Lemma 2.1 h*(G) >
[(n—1)/2] > [(n+1)/3]. If E4(V) is bad, it either forms a triangle or a star.

Case 1 E4(V) forms a triangle zyz.
Let 2’ and y' be distinct vertices such that d(zz') = d(yy’) = d — 1. Such 2’,y" could
be chosen on a shortest xy-path. Let A and B be disjoint subsets of V' — z, each of size
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|(n+1)/3], A containing = and 2/, B containing y and y’. We see that A and B are weakly
homometric with maximum distance d — 1.

Case 2 E4(V) forms a star.

Let Eq(V) = S(z¢,Y), forming a star with center z, and leaf set Y. Let x4 € Y, i.e.,
d(xoxq) = d. Consider a shortest xo-z4 path xg, ..., x4 of length d.

Case 2.1 |Y|<n—|[(n+1)/3] — 1.

Let A and B be disjoint sets such that |A| = |B| = |[(n+1)/3], ACV =Y —{x1}, A
contains xg, x4 1, B contains x1,x4. Then A and B are weakly homometric with largest
distance d — 1.

Case 2.2 |Y|>n—|(n+1)/3].

In particular d < [(n+1)/3]. Let T be a breadth-first search tree with root zo. Let L;’s be
the layers of T', i.e., sets of vertices at distance ¢ from zg, i = 1,...,d. We have that Ly =Y,
L() = {fL‘Q}

If T is a broom, i.e., all vertices of Y have a common neighbor, z;_; in T, then d*(Y U
{z4-1,74-2}) = 2 and by Lemma 2.1 *(G) = [([Y[+2-1)/2] = [(n—[(n+1)/3]+1)/2] =
[(n+1)/3].

If T is not a broom, then some layer L;, ¢ < d, has more than one vertex and d <
|(n+1)/3] — 1. Let ¢ be the smallest such index, i.e., L; = {z;} for all j < i. Then we see
that S(ZL‘],Y) - Ed_j(V), 7 <. Let V} =V - {170, .. ,Ij_l}, jg=1,... ,d.

We consider Ey_1(V4), E4_2(V2), ... in order and show that each of these sets Eq_;(V}) is
either good, allowing to use Lemma 2.1, or is a star with center z;. If for some j, 0 < j < ¢,
S(x;,Y) # Eq_;(V;), then for smallest such j, E,;_;(V;) is good and d*(V;) = d — j, so by
Lemma 2.1, h*(G) > [(n—j —1)/2] > [(n— (d—2)— 1)/2] > [(n— |(n+1)/3] +2)/2] >
|(n+1)/3|. Thus, we have that S(z;,Y) = E4_;(V;) and d*(V;) =d—j,5=1,...,i — L
Consider z;, x, € L;. We have that d(z;z4) = d — i, and the largest distance d*(V;) = d — 1.
Moreover, we claim that d(z}y) = d — i for each y € Y. Assume not and d(z}y) < d — i.
Then d(x;—1y) < d —i+ 1, a contradiction. Thus E,_;(V;) is good, and by Lemma 2.1, we
have h*(G) > |(n—14)/2] > [(n — [(n+1)/3] +1)/2]] > |(n+1)/3]. In all these cases we
have that h*(G) > [(n+1)/3].

For the upper bound on h*(n), let k = |(n+1)/3]. Consider a graph G that is a union of
a clique K on n — k vertices and a path P on k+ 1 vertices such that K and P share exactly
one vertex x that is an end-point of P. Consider two weakly homometric sets A and B in
V(G) that have the largest possible size h*(G). If (AUB) C V(K) then h*(G) < |(n—k)/2].
So, let’s assume that 2’ € V(P)N (AU B) such that 2’ has the largest distance from x among
the vertices of AU B. Assume further that 2’ € A and let i = d(2’x). Then E;,(G) consists
of all pairs z'y, y € V(K) — {x} and pairs containing vertices from P that are further from
x as o’ (if any). Since there are no such vertices in AU B, we see that F; (AU B) is a star,
soi+1#d*(A). Thus A C V(P). If d*(A) > 1 then d*(B) > 1 and B\ V(K) # (). Thus at
least one vertex in P is from B, so |A| < |V(P)| —1=k. If d*(A) =1, then |A| = 2. Thus
h*(G) < max{[(n —k)/2],k,2} < [(n+1)/3], for n > 6. O

Proof of Theorem 1.2. Let G be a graph on n vertices and let k = |[(n + 1)/3]. Assign
a color ¢(A) = diam(G[A]) to each k-element subset A of vertices of G. Then ¢(A) €
{1,2,...,k — 1,00}. So, there are at most k colors used in this coloring. The coloring
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¢ corresponds to a coloring of vertices of the Kneser graph K(n, k). Since the chromatic
number x (K (n, k)) = n—2k+2, see Lovasz [7], and the number & of colors used is less than
the chromatic number n—2k+2, we see that cis not a proper coloring, so there are two disjoint
sets A and B of the same color. Thus hgiam(G) > k. In particular, hgam(G) > [(n+1)/3].

If diam(G) = 1 then G is a complete graph and the conclusion follows trivially. If
diam(G) > 4, we consider a vertex v that is at distance at least 4 to some other vertex.
Consider a breadth first search tree with a root v. Let V;, i = 0,1,2,...,q be the layers of
that tree, i.e., V; is a set of vertices at distance i from v, Vy = {v}, ¢ > 4. We see that there
are no edges between any two non-consecutive layers. We shall build two disjoint sets A and
B such that G[A] and G[B] are both disconnected, i.e., have diameter co.

If each layer has size less than n/2, put v and V5 in A, put V; in B and split the remaining
vertices (except maybe one) between A and B such that |A| = |B|. We see that v is not
adjacent to any other vertex of A and we see that any vertex of V5 is not adjacent to any
vertex from B\ V5.

If there is a layer, L, of size at least n/2 then the total number of vertices in all other
layers is less than n/2. Consider the layers other than L, in order, and assign all vertices of
each layer to the same set, A or B, in an alternating fashion. Split the vertices of L between
A and B such that |A| = |B| = [n/2]. More precisely, let {Vo,V1,...} \ L ={Vi,,Vi,,...},
where i; < iy < ---. Put vertices of V;, in A if k is even, put vertices of V;,_ in B if k is odd.
We see that there is always a full layer in A between some two vertices of B and there is a
full layer of B between two vertices of A. So, G[A] and G[B] are disconnected. O

Acknowledgements: The authors thank Torsten Ueckerdt for interesting discussions
on the topic and the referees for carefully checking the proofs.
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