College of Public Health News

March 11, 2014

Georgia Southern University

Follow this and additional works at: https://digitalcommons.georgiasouthern.edu/coph-news-online

Part of the Public Health Commons

Recommended Citation


This newsletter is brought to you for free and open access by the Public Health, Jiann-Ping Hsu College of - Publications at Digital Commons@Georgia Southern. It has been accepted for inclusion in Public Health, Jiann-Ping Hsu College of - News by an authorized administrator of Digital Commons@Georgia Southern. For more information, please contact digitalcommons@georgiasouthern.edu.
Dr. Karl E. Peace Presented Sellers-McCroan Award

March 11, 2014

Dr. Karl E. Peace was presented with the Sellers-McCroan Award for his lifelong commitment to improving public health through academia and laboratory advancements. The award was presented during the Sellers-McCroan luncheon, part of the 85th Annual Meeting and Conference of the Georgia Public Health Association in Atlanta on Monday, March 10th.

Peace provided the leadership and endowments to create the Jiann Ping Hsu College of Public Health at Georgia Southern University, which was named in honor of his late wife. Peace is also a recognized authority on clinical trials methodology, measurement and analysis. He currently serves as Professor and a Distinguished Georgia Cancer Coalition Scholar at the Jiann Ping Hsu College of Public Health.

Peace was introduced by Dr. Wade Sellers, District Health Director of the Northwest Georgia Health District. "He's enabled folks who've heard the calling to go into public health to become educated, get their degrees and go out and be launched and supported," said Sellers.

Peace’s contributions were further outlined in the program for today’s event. “His national leadership has raised the visibility of both Georgia and Georgia Southern University, and his lifework and contributions have been a great credit to both the state and university. His commitment to battling cancer not just in a laboratory or library but in practice has resulted in many more South Georgians being screened. And his longtime work in biopharmaceuticals has helped create many of the lifesaving and life-improving drugs we can access today."

The program goes on to say, "He has shown many that a poor boy from a small farm in southwest Georgia can accomplish great things."

To read more, visit gapha.org.
Impaired Verbal Memory

March 11, 2014

A collaborative study including Mr. Joseph Lowry, Ms. Anissa Austin, and Mr. Hasan Al-Sayegh, alumni of the Jiann-Ping Hsu College of Public Health at Georgia Southern University examine impaired verbal memory as a significant predictor of early cerebral-cardiovascular death. The report is coauthored by Dr. Jian Zhang, associate professor of epidemiology at the the Jiann-Ping Hsu College of Public Health Georgia Southern University. The mortality pattern of individuals with impaired verbal memory (IVM) has not yet been well described. We sought to describe the risk of all-causes, as well as specific causes of death associated with IVM. The study used data of 4151 nationally representative adults > 60 years old who participated in the third National Health and Nutrition Examination Survey, 1988-1994, and completed one non-contextual (i.e., word list memory) and one contextual delayed-recall tests (i.e., short story recall). The participants were passively followed up through 31 December 2006.

The study concluded that the predictability of memory scores to early cerebral-cardiovascular deaths demonstrated that central challenge among individuals with cognitive impairment was cardiovascular diseases management.
Algebraic Statistical Model

March 11, 2014

A collaborative study including Dr. Daniel Linder, an assistant professor of biostatistics expands the algebraic statistical model for biochemical network dynamics inference. With modern molecular quantification methods, like, for instance, high throughput sequencing, biologists may perform multiple complex experiments and collect longitudinal data on RNA and DNA concentrations. Such data may be then used to infer cellular level interactions between the molecular entities of interest. One method which formalizes such inference is the stoichiometric algebraic statistical model (SASM) of Ref. [2] which allows to analyze the so-called conic (or single source) networks. Despite its intuitive appeal, up until now the SASM has been only heuristically studied on few simple examples. The current paper provides a more formal mathematical treatment of the SASM, expanding the original model to a wider class of reaction systems decomposable into multiple conic subnetworks.